
Chapter 10 – Strong flows

◮ Birefreingent strand

– thin layer of high stress leaqving a stagnation point

◮ Wine-glass model of contraction flow

– anisotropic flow from anisotropic material

◮ Corner singularity

– fast flow with no relaxation

◮ Limited-forec flows

– strain only to avoid relaxation
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−ve !

Microstructure deforms without limit if E > 1
2τ : A = e(2E−

1
τ
)t

Need to limit deformation of microstructure
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FENE modification

Finite Extension Nonlinear Elasticity

DA

Dt
= A · ∇u+∇u

T
· A−

f

τ
(A− I)

σ = −pI+ 2µ0E + Gf A

f =
L2

L2 − traceA
keeps A < L2

6
µext

-E

O-B

µ0 + GτL2

Will use FENE, and if safe Oldroyd-B, in following strong flows



FENE flow past a sphere

Oldroyd-B gave decrease is drag

FENE

F

De

Chilcott & Rallison 1988 JNNFM

Experiments M1

De

Tirtaatmadja, Uhlherr & Sridhar 1990 JNNFM

FENE gives drag increase



. . . FENE flow past sphere

FENE drag increase from long wake of high stress

Chilcott & Rallison 1988 JNNFM

Cressely & Hocquart 1980 Opt Act

“Birefringent strand”



. . . birefringent strands

Boundary layers of high stress.
Crude model: µext in wake, µ0 elsewhere.
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Harlen, Rallison & Chilcott 1990 JNNFM



. . . birefringent strands

Can apply to all flows with stagnation points, e.g.

� -

6

?

Harlen, Rallison & Chilcott 1990 JNNFM

Also cusps at rear stagnation point of bubbles.
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Analysis of birefringent strand in exit channel

U(x)
x

y=−a

y=0

y=a
y

Flux Q, constant

Lubrication flow

u(x , y) = U(x)
a− y

a
+ (Q − Ua)

3y(a− y)

a2

Force balance on strand
[

µ
∂u

∂y

]0+

0−

+
∂

∂x

(

δµext
∂U

∂x

)

Solving (Student Exercise)

U(x) =
3Q

2a

(

1− e
−

√

8µ
δµexta

x

)



Birefringent pipes

Very low extension rate in the strand can fail to stretch the
microstruture, so relax, producing birefringent “pipes”.

Harlen, H, Rallison (1992) JNNFM 44



Formation of a cusp at rear stagnation point of a bubble

Curvature increases with 
extensibility of fluid

Rallsion & Malaga (2007) JNNFM 141



FENE contraction flow

Oldroyd-B gave decrease is pressure drop

FENE L = 5

∆p

Szabo, Rallison & Hinch 1997 JNNFM

Experiments

Cartalos & Piau 1992 JNNFM

FENE gives increase in pressure drop



. . . FENE contraction flow

Increase in pressure drop from long upstream vortex

FENE L = 5

Szabo, Rallison & Hinch 1997 JNNFM

Experiments

Cartalos & Piau 1992 JNNFM
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◮ Sink flow u = Q

2πr2

◮ Stretching starts at 1
τ = E = ∂u

∂r , i.e. at rE = (Qτ)1/3

◮ Then deforms as A ∝ u2 ∝ r−4

◮ So fully stretched at A ≈ L2, at rL = rE/L
1/2

◮ Hence fully stretched only if De = Qτ
d3 > L3/2.
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◮ By small cone angle ∆θ =
√

µshear

µext

◮ Length of cone (rL − rc)/∆θ.
◮ Start up possible.

Szabo, Rallison & H (1997) JNNFM 72

Flow anisotropy from material anisotropy: µext ≫ µshear TDR
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Fast flows with no relaxation

If ∇u ≫ 1
τ

DA

Dt
= A · ∇u+∇u

T
· A−

1

τ
(A− I)

Recall material line elements

d

dt
δℓ = δℓ · ∇u,

So δℓ stretches when u increases, in steady flow δℓ ∝ u

Suggests steady solution (g(ψ) from matching to slower region)

A = g(ψ)uu, so σ = −pI+ 2µ0E + Gguu

Tensions in streamlines again
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Fast flows with no relaxation 2

Momemtum, ignoring viscous stress

0 = −∇p + Gg1/2
u · ∇g1/2

u.

Euler equation!!

Anti-Bernoulli

p − 1
2Ggu

2 = const

Dollet, Aubouy & Graner 2005 PRL
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Fast flows with no relaxation 3

Potential flows g1/2
u = ∇φ

Flow around sharp 270◦ corner: Hinch 1995 JNNFM

φ = r2/3 cos 2
3θ, σ ∝ r−2/3 ψ = r14/9 sin7/3 2

3θ

Alves, Oliviera & Pinho 2003 JNNFM
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The matching for ψ

g1/2(ψ)∇× (0, 0, ψ) = g1/2
u = ∇φ = ∇× (0, 0, 32 r

2/3 sin 2
3θ)

so
ψ = f (r3/2 sin 2

3θ) ∼ f (r2/3θ) at small θ.

{

In fast core, De ≥ 1 Arr = gu2 = r−2/3

Near bndry, De ≤ 1 Arr = 1 + 2γ2
Match:

{

γ = r−1/3

1 = De = u
r

Now near the boundary

r = u = γrθ, so θ = r1/3, so ψ = γ(rθ)2 = r7/3 = (r2/3θ)7/3

Hence elsewhere
ψ = Cr14/9 sin7/3 2

3θ.

Details of the boundary layers – very difficult
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Deforming with the flow

While line elements parallel to the flow are stretched ∝ u,
perpendicular elements are squashed ∝ 1/u, plus some shear.
Hence try

A = λuu+ µ(uv + vu) + νvv

with u · v = 0 and v = 1/u

Oldroyd-B becomes Student Exercise

u · ∇λ =
2γ

u2
µ−

1

τ

(

λ−
1

u2

)

u · ∇µ =
γ

u2
ν −

1

τ
µ

u · ∇ν = −
1

τ

(

ν − u2
)

with
γ = v · (∇u+∇u

T ) · u = −u2∇ · v

Renardy (1994) JNNFM 52
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Mass ȧ = −1
2Ea

Momentum
χ

a
= 3µ0E + G (Azz−Arr )



Capillary squeezing – controlled by relaxation

6
radius a(t)

-
strain rate E (t)

Surface tension χ

Mass ȧ = −1
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Capillary squeezing – controlled by relaxation

6
radius a(t)

-
strain rate E (t)

Surface tension χ

Mass ȧ = −1
2Ea

Momentum
χ

a
= 3µ0E + G (Azz−Arr )

Microstructure Ȧzz = 2EAzz −
1
τ (Azz−1)

Solution a(t) = a(0)e−t/3τ Student Exercise

Need slow E = 1/3τ to stop Azz relaxing from χ/Ga



. . . capillary squeezing

Oldroyd-B a(t) = a(0)e−t/3τ does not break

Experiments S1 fluid

a

1e-05

0.0001

0.001

0.01

0 5 10 15 20

t

Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM

but filament eventually breaks in experiments
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Ȧi
zz = 2

(

E = −2
ȧ
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Hence momentum equation

χ
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=

1
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i.e.

a(t) =

(

G (t)

χ

)1/3

with relaxation G (t) =
∑

gie
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Spectrum needed to fit experiments at middle times



FENE capillary squeezing

Filament breaks in with FENE L = 20

a

1e-05

0.0001
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t

Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM


