Chapter 10 - Strong flows

- Birefreingent strand
- thin layer of high stress leaqving a stagnation point
- Wine-glass model of contraction flow
- anisotropic flow from anisotropic material
- Corner singularity
- fast flow with no relaxation
- Limited-forec flows
- strain only to avoid relaxation

Oldroyd-B, and its limitations

$$
\begin{gathered}
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I}) \\
\sigma=-p \mathbf{I}+2 \mu_{0} E+G f A
\end{gathered}
$$

Oldroyd-B, and its limitations

$$
\begin{gathered}
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I}) \\
\sigma=-p \mathbf{I}+2 \mu_{0} E+G f A
\end{gathered}
$$

Steady extensional flow

Oldroyd-B, and its limitations

$$
\begin{gathered}
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I}) \\
\sigma=-p \mathbf{I}+2 \mu_{0} E+G f A
\end{gathered}
$$

Steady extensional flow

Microstructure deforms without limit if $E>\frac{1}{2 \tau}: \quad A=e^{\left(2 E-\frac{1}{\tau}\right) t}$

Oldroyd-B, and its limitations

$$
\begin{gathered}
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I}) \\
\sigma=-p \mathbf{I}+2 \mu_{0} E+G f A
\end{gathered}
$$

Steady extensional flow

Microstructure deforms without limit if $E>\frac{1}{2 \tau}: \quad A=e^{\left(2 E-\frac{1}{\tau}\right) t}$
Need to limit deformation of microstructure

FENE modification

Finite Extension Nonlinear Elasticity

$$
\begin{aligned}
& \frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{f}{\tau}(A-\mathbf{I}) \\
& \sigma=-p \mathbf{I}+2 \mu_{0} E+G f A \\
& f=\frac{L^{2}}{L^{2}-\operatorname{trace} A} \quad \text { keeps } \quad A<L^{2}
\end{aligned}
$$

FENE modification

Finite Extension Nonlinear Elasticity

$$
\begin{aligned}
& \frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{f}{\tau}(A-\mathbf{I}) \\
& \sigma=-p \mathbf{I}+2 \mu_{0} E+G f A \\
& f=\frac{L^{2}}{L^{2}-\operatorname{trace} A} \quad \text { keeps } \quad A<L^{2}
\end{aligned}
$$

FENE modification

Finite Extension Nonlinear Elasticity

$$
\begin{aligned}
& \frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{f}{\tau}(A-\mathbf{I}) \\
& \sigma=-p \mathbf{I}+2 \mu_{0} E+G f A \\
& f=\frac{L^{2}}{L^{2}-\operatorname{trace} A} \quad \text { keeps } \quad A<L^{2}
\end{aligned}
$$

Will use FENE, and if safe Oldroyd-B, in following strong flows

FENE flow past a sphere

Oldroyd-B gave decrease is drag

FENE

De
Chilcott \& Rallison 1988 JNNFM

Experiments M1

Tirtaatmadja, Uhlherr \& Sridhar 1990 JNNFM

FENE gives drag increase

...FENE flow past sphere

FENE drag increase from long wake of high stress

Chilcott \& Rallison 1988 JNNFM

Cressely \& Hocquart 1980 Opt Act
"Birefringent strand"
. . . birefringent strands

Boundary layers of high stress.
Crude model: $\mu_{\text {ext }}$ in wake, μ_{0} elsewhere.

. . . birefringent strands

Can apply to all flows with stagnation points, e.g.

Harlen, Rallison \& Chilcott 1990 JNNFM

Also cusps at rear stagnation point of bubbles.

Analysis of birefringent strand in exit channel

Analysis of birefringent strand in exit channel

Lubrication flow

$$
u(x, y)=U(x) \frac{a-y}{a}+(Q-U a) \frac{3 y(a-y)}{a^{2}}
$$

Analysis of birefringent strand in exit channel

Lubrication flow

$$
u(x, y)=U(x) \frac{a-y}{a}+(Q-U a) \frac{3 y(a-y)}{a^{2}}
$$

Force balance on strand

$$
\left[\mu \frac{\partial u}{\partial y}\right]_{0-}^{0+}+\frac{\partial}{\partial x}\left(\delta \mu_{\mathrm{ext}} \frac{\partial U}{\partial x}\right)
$$

Analysis of birefringent strand in exit channel

Lubrication flow

$$
u(x, y)=U(x) \frac{a-y}{a}+(Q-U a) \frac{3 y(a-y)}{a^{2}}
$$

Force balance on strand

$$
\left[\mu \frac{\partial u}{\partial y}\right]_{0-}^{0+}+\frac{\partial}{\partial x}\left(\delta \mu_{\mathrm{ext}} \frac{\partial U}{\partial x}\right)
$$

Solving (Student Exercise)

$$
U(x)=\frac{3 Q}{2 a}\left(1-e^{-\sqrt{\frac{8 \mu}{\delta \mu_{\mathrm{exta}}}} x}\right)
$$

Birefringent pipes

Very low extension rate in the strand can fail to stretch the microstruture, so relax, producing birefringent "pipes".

Harlen, H, Rallison (1992) JNNFM 44

Formation of a cusp at rear stagnation point of a bubble

FENE contraction flow

Oldroyd-B gave decrease is pressure drop

FENE $L=5$

Szabo, Rallison \& Hinch 1997 JNNFM

Experiments

Cartalos \& Piau 1992 JNNFM

FENE gives increase in pressure drop

FENE contraction flow

Increase in pressure drop from long upstream vortex

FENE $L=5$

Experiments

Cartalos \& Piau 1992 JNNFM
... a champagne-glass model

Bowl:
... a champagne-glass model

Bowl:

- Sink flow $u=\frac{Q}{2 \pi r^{2}}$
... a champagne-glass model

Bowl:

- Sink flow $u=\frac{Q}{2 \pi r^{2}}$
- Stretching starts at $\frac{1}{\tau}=E=\frac{\partial u}{\partial r}$, i.e. at $r_{E}=(Q \tau)^{1 / 3}$
... a champagne-glass model

Bowl:

- Sink flow $u=\frac{Q}{2 \pi r^{2}}$
- Stretching starts at $\frac{1}{\tau}=E=\frac{\partial u}{\partial r}$, i.e. at $r_{E}=(Q \tau)^{1 / 3}$
- Then deforms as $A \propto u^{2} \propto r^{-4}$
... a champagne-glass model

Bowl:

- Sink flow $u=\frac{Q}{2 \pi r^{2}}$
- Stretching starts at $\frac{1}{\tau}=E=\frac{\partial u}{\partial r}$, i.e. at $r_{E}=(Q \tau)^{1 / 3}$
- Then deforms as $A \propto u^{2} \propto r^{-4}$
- So fully stretched at $A \approx L^{2}$, at $r_{L}=r_{E} / L^{1 / 2}$

... a champagne-glass model

Bowl:

- Sink flow $u=\frac{Q}{2 \pi r^{2}}$
- Stretching starts at $\frac{1}{\tau}=E=\frac{\partial u}{\partial r}$, i.e. at $r_{E}=(Q \tau)^{1 / 3}$
- Then deforms as $A \propto u^{2} \propto r^{-4}$
- So fully stretched at $A \approx L^{2}$, at $r_{L}=r_{E} / L^{1 / 2}$
- Hence fully stretched only if $D e=\frac{Q \tau}{d^{3}}>L^{3 / 2}$.
. . . a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$,
... a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$, so $\mu_{\mathrm{ext}}=\mu_{0}+G \tau L^{2} \gg \mu_{0}=\mu_{\text {shear }}$
... a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$, so $\mu_{\text {ext }}=\mu_{0}+G \tau L^{2} \gg \mu_{0}=\mu_{\text {shear }}$
- Balance $\mu_{\mathrm{ext}} \frac{\partial^{2} u}{\partial r^{2}}=\mu_{\text {shear }} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$
... a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$, so $\mu_{\text {ext }}=\mu_{0}+G \tau L^{2} \gg \mu_{0}=\mu_{\text {shear }}$
- Balance $\mu_{\text {ext }} \frac{\partial^{2} u}{\partial r^{2}}=\mu_{\text {shear }} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$
- By small cone angle $\Delta \theta=\sqrt{\frac{\mu_{\text {shear }}}{\mu_{\text {ext }}}}$
... a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$, so $\mu_{\text {ext }}=\mu_{0}+G \tau L^{2} \gg \mu_{0}=\mu_{\text {shear }}$
- Balance $\mu_{\text {ext }} \frac{\partial^{2} u}{\partial r^{2}}=\mu_{\text {shear }} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$
- By small cone angle $\Delta \theta=\sqrt{\frac{\mu_{\text {shear }}}{\mu_{\text {ext }}}}$
- Length of cone $\left(r_{L}-r_{c}\right) / \Delta \theta$.

. . . a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$, so $\mu_{\text {ext }}=\mu_{0}+G \tau L^{2} \gg \mu_{0}=\mu_{\text {shear }}$
- Balance $\mu_{\text {ext }} \frac{\partial^{2} u}{\partial r^{2}}=\mu_{\text {shear }} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$
- By small cone angle $\Delta \theta=\sqrt{\frac{\mu_{\text {shear }}}{\mu_{\text {ext }}}}$
- Length of cone $\left(r_{L}-r_{c}\right) / \Delta \theta$.
- Start up possible.

. . . a champagne-glass model

Stem:

- Fully stretched, $A \approx L^{2}$, so $\mu_{\text {ext }}=\mu_{0}+G \tau L^{2} \gg \mu_{0}=\mu_{\text {shear }}$
- Balance $\mu_{\text {ext }} \frac{\partial^{2} u}{\partial r^{2}}=\mu_{\text {shear }} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$
- By small cone angle $\Delta \theta=\sqrt{\frac{\mu_{\text {shear }}}{\mu_{\text {ext }}}}$
- Length of cone $\left(r_{L}-r_{c}\right) / \Delta \theta$.
- Start up possible.

Flow anisotropy from material anisotropy: $\mu_{\text {ext }} \gg \mu_{\text {shear }}$

Fast flows with no relaxation

If $\nabla \mathbf{u} \gg \frac{1}{\tau}$

$$
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I})
$$

Fast flows with no relaxation

If $\nabla \mathbf{u} \gg \frac{1}{\tau}$

$$
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I})
$$

Recall material line elements

$$
\frac{d}{d t} \delta \ell=\delta \ell \cdot \nabla \mathbf{u}
$$

Fast flows with no relaxation

If $\nabla \mathbf{u} \gg \frac{1}{\tau}$

$$
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I})
$$

Recall material line elements

$$
\frac{d}{d t} \delta \ell=\delta \ell \cdot \nabla \mathbf{u}
$$

So $\delta \ell$ stretches when \mathbf{u} increases, in steady flow $\delta \ell \propto \mathbf{u}$

Fast flows with no relaxation

If $\nabla \mathbf{u} \gg \frac{1}{\tau}$

$$
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I})
$$

Recall material line elements

$$
\frac{d}{d t} \delta \ell=\delta \ell \cdot \nabla \mathbf{u}
$$

So $\delta \ell$ stretches when \mathbf{u} increases, in steady flow $\delta \ell \propto \mathbf{u}$
Suggests steady solution $(g(\psi)$ from matching to slower region)

$$
A=g(\psi) \mathbf{u u}, \quad \text { so } \sigma=-p \mathbf{I}+2 \mu_{0} E+G g \mathbf{u} \mathbf{u}
$$

Fast flows with no relaxation

If $\nabla \mathbf{u} \gg \frac{1}{\tau}$

$$
\frac{D A}{D t}=A \cdot \nabla \mathbf{u}+\nabla \mathbf{u}^{T} \cdot A-\frac{1}{\tau}(A-\mathbf{I})
$$

Recall material line elements

$$
\frac{d}{d t} \delta \ell=\delta \ell \cdot \nabla \mathbf{u}
$$

So $\delta \ell$ stretches when \mathbf{u} increases, in steady flow $\delta \ell \propto \mathbf{u}$
Suggests steady solution $(g(\psi)$ from matching to slower region)

$$
A=g(\psi) \mathbf{u u}, \quad \text { so } \sigma=-p \mathbf{I}+2 \mu_{0} E+G g \mathbf{u} \mathbf{u}
$$

Tensions in streamlines again

Fast flows with no relaxation 2

Momemtum, ignoring viscous stress

$$
0=-\nabla p+G g^{1 / 2} \mathbf{u} \cdot \nabla g^{1 / 2} \mathbf{u}
$$

Euler equation!!

Fast flows with no relaxation 2

Momemtum, ignoring viscous stress

$$
0=-\nabla p+G g^{1 / 2} \mathbf{u} \cdot \nabla g^{1 / 2} \mathbf{u}
$$

Euler equation!!

Anti-Bernoulli

$$
p-\frac{1}{2} G g u^{2}=\text { const }
$$

Dollet, Aubouy \& Graner 2005 PRL

Fast flows with no relaxation 3

Potential flows $g^{1 / 2} \mathbf{u}=\nabla \phi$

Fast flows with no relaxation 3

Potential flows $g^{1 / 2} \mathbf{u}=\nabla \phi$
Flow around sharp 270° corner:

$$
\phi=r^{2 / 3} \cos \frac{2}{3} \theta, \quad \sigma \propto r^{-2 / 3} \quad \psi=r^{14 / 9} \sin ^{7 / 3} \frac{2}{3} \theta
$$

Fast flows with no relaxation 3

Potential flows $g^{1 / 2} \mathbf{u}=\nabla \phi$
Flow around sharp 270° corner:

$$
\phi=r^{2 / 3} \cos \frac{2}{3} \theta, \quad \sigma \propto r^{-2 / 3} \quad \psi=r^{14 / 9} \sin ^{7 / 3} \frac{2}{3} \theta
$$

Fast flows with no relaxation 4

The matching for ψ

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right)
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta .
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta .
$$

$\left\{\right.$ In fast core, $D e \geq 1 \quad A_{r r}=g u^{2}=r^{-2 / 3}$
Near bndry, $D e \leq 1 \quad A_{r r}=1+2 \gamma^{2}$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta
$$

$\left\{\right.$ In fast core, $D e \geq 1 \quad A_{r r}=g u^{2}=r^{-2 / 3}$
Near bndry, $D e \leq 1 \quad A_{r r}=1+2 \gamma^{2}$
Match: $\left\{\begin{array}{l}\gamma=r^{-1 / 3} \\ 1=D e=\frac{u}{r}\end{array}\right.$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta
$$

$\left\{\right.$ In fast core, $D e \geq 1 \quad A_{r r}=g u^{2}=r^{-2 / 3}$
Near bndry, $D e \leq 1 \quad A_{r r}=1+2 \gamma^{2}$
Match: $\left\{\begin{array}{l}\gamma=r^{-1 / 3} \\ 1=D e=\frac{u}{r}\end{array}\right.$
Now near the boundary

$$
r=u=\gamma r \theta, \quad \text { so } \theta=r^{1 / 3}
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

so

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta
$$

$\left\{\begin{array}{ll}\text { In fast core, } D e \geq 1 & A_{r r}=g u^{2}=r^{-2 / 3} \\ \text { Near bndry, } D e \leq 1 & A_{r r}=1+2 \gamma^{2}\end{array} \quad\right.$ Match: $\left\{\begin{array}{l}\gamma=r^{-1 / 3} \\ 1=D e=\frac{u}{r}\end{array}\right.$
Now near the boundary

$$
r=u=\gamma r \theta, \quad \text { so } \theta=r^{1 / 3}, \quad \text { so } \psi=\gamma(r \theta)^{2}=r^{7 / 3}=\left(r^{2 / 3} \theta\right)^{7 / 3}
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta
$$

$\left\{\begin{array}{ll}\text { In fast core, } D e \geq 1 & A_{r r}=g u^{2}=r^{-2 / 3} \\ \text { Near bndry, } D e \leq 1 & A_{r r}=1+2 \gamma^{2}\end{array} \quad\right.$ Match: $\left\{\begin{array}{l}\gamma=r^{-1 / 3} \\ 1=D e=\frac{u}{r}\end{array}\right.$
Now near the boundary

$$
r=u=\gamma r \theta, \quad \text { so } \theta=r^{1 / 3}, \quad \text { so } \psi=\gamma(r \theta)^{2}=r^{7 / 3}=\left(r^{2 / 3} \theta\right)^{7 / 3}
$$

Hence elsewhere

$$
\psi=C r^{14 / 9} \sin ^{7 / 3} \frac{2}{3} \theta
$$

Fast flows with no relaxation 4

The matching for ψ

$$
g^{1 / 2}(\psi) \nabla \times(0,0, \psi)=g^{1 / 2} \mathbf{u}=\nabla \phi=\nabla \times\left(0,0, \frac{3}{2} r^{2 / 3} \sin \frac{2}{3} \theta\right)
$$

SO

$$
\psi=f\left(r^{3 / 2} \sin \frac{2}{3} \theta\right) \sim f\left(r^{2 / 3} \theta\right) \quad \text { at small } \theta
$$

$\left\{\begin{array}{ll}\text { In fast core, } D e \geq 1 & A_{r r}=g u^{2}=r^{-2 / 3} \\ \text { Near bndry, } D e \leq 1 & A_{r r}=1+2 \gamma^{2}\end{array} \quad\right.$ Match: $\left\{\begin{array}{l}\gamma=r^{-1 / 3} \\ 1=D e=\frac{u}{r}\end{array}\right.$
Now near the boundary

$$
r=u=\gamma r \theta, \quad \text { so } \theta=r^{1 / 3}, \quad \text { so } \psi=\gamma(r \theta)^{2}=r^{7 / 3}=\left(r^{2 / 3} \theta\right)^{7 / 3}
$$

Hence elsewhere

$$
\psi=C r^{14 / 9} \sin ^{7 / 3} \frac{2}{3} \theta
$$

Details of the boundary layers - very difficult

Deforming with the flow

While line elements parallel to the flow are stretched $\propto u$, perpendicular elements are squashed $\propto 1 / u$, plus some shear.

Deforming with the flow

While line elements parallel to the flow are stretched $\propto u$, perpendicular elements are squashed $\propto 1 / u$, plus some shear. Hence try

$$
A=\lambda \mathbf{u} \mathbf{u}+\mu(\mathbf{u v}+\mathbf{v u})+\nu \mathbf{v} \mathbf{v}
$$

with

$$
\mathbf{u} \cdot \mathbf{v}=0 \quad \text { and } \quad v=1 / u
$$

Deforming with the flow

While line elements parallel to the flow are stretched $\propto u$, perpendicular elements are squashed $\propto 1 / u$, plus some shear. Hence try

$$
A=\lambda \mathbf{u} \mathbf{u}+\mu(\mathbf{u v}+\mathbf{v u})+\nu \mathbf{v} \mathbf{v}
$$

with

$$
\mathbf{u} \cdot \mathbf{v}=0 \quad \text { and } \quad v=1 / u
$$

Oldroyd-B becomes Student Exercise

$$
\begin{array}{lr}
\mathbf{u} \cdot \nabla \lambda=\frac{2 \gamma}{u^{2}} \mu-\frac{1}{\tau}\left(\lambda-\frac{1}{u^{2}}\right) \\
\mathbf{u} \cdot \nabla \mu=\frac{\gamma}{u^{2}} \nu & -\frac{1}{\tau} \mu \\
\mathbf{u} \cdot \nabla \nu= & -\frac{1}{\tau}\left(\nu-u^{2}\right)
\end{array}
$$

with

$$
\gamma=\mathbf{v} \cdot\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right) \cdot \mathbf{u}=-u^{2} \nabla \cdot \mathbf{v}
$$

Capillary squeezing - controlled by relaxation

Capillary squeezing - controlled by relaxation

Mass

$$
\dot{a}=-\frac{1}{2} E a
$$

Momentum $\quad \frac{\chi}{a}=3 \mu_{0} E+G\left(A_{z z}-A_{r r}\right)$
Microstructure $\quad \dot{A}_{z z}=2 E A_{z z}-\frac{1}{\tau}\left(A_{z z}-1\right)$

Solution $\quad a(t)=a(0) e^{-t / 3 \tau} \quad$ Student Exercise

Capillary squeezing - controlled by relaxation

Mass

$$
\dot{a}=-\frac{1}{2} E a
$$

Momentum $\quad \frac{\chi}{a}=3 \mu_{0} E+G\left(A_{z z}-A_{r r}\right)$
Microstructure $\quad \dot{A}_{z z}=2 E A_{z z}-\frac{1}{\tau}\left(A_{z z}-1\right)$

Solution

$$
a(t)=a(0) e^{-t / 3 \tau} \quad \text { Student Exercise }
$$

Need slow $E=1 / 3 \tau$ to stop $A_{z z}$ relaxing from $\chi / G a$

capillary squeezing

Oldroyd-B $\quad a(t)=a(0) e^{-t / 3 \tau} \quad$ does not break
Experiments S1 fluid

Exp: Liang \& Mackley 1994 JNNFM
Thy: Entov \& Hinch 1997 JNNFM
but filament eventually breaks in experiments

Multi-mode generalisation

$$
\dot{A}_{z z}^{i}=2\left(E=-2 \frac{\dot{a}}{a}\right) A_{z z}^{i}-\frac{1}{\tau_{i}} A_{z z}^{i}
$$

Multi-mode generalisation

$$
\dot{A}_{z z}^{i}=2\left(E=-2 \frac{\dot{a}}{a}\right) A_{z z}^{i}-\frac{1}{\tau_{i}} A_{z z}^{i}
$$

So

$$
A_{z z}^{i}=\frac{1}{a^{4}(t)} e^{-t / \tau_{i}}
$$

Multi-mode generalisation

$$
\dot{A}_{z z}^{i}=2\left(E=-2 \frac{\dot{a}}{a}\right) A_{z z}^{i}-\frac{1}{\tau_{i}} A_{z z}^{i}
$$

So

$$
A_{z z}^{i}=\frac{1}{a^{4}(t)} e^{-t / \tau_{i}}
$$

Hence momentum equation

$$
\frac{\chi}{a}=\frac{1}{a^{4}} \sum g_{i} e^{-t / \tau_{i}}
$$

Multi-mode generalisation

$$
\dot{A}_{z z}^{i}=2\left(E=-2 \frac{\dot{a}}{a}\right) A_{z z}^{i}-\frac{1}{\tau_{i}} A_{z z}^{i}
$$

So

$$
A_{z z}^{i}=\frac{1}{a^{4}(t)} e^{-t / \tau_{i}}
$$

Hence momentum equation

$$
\frac{\chi}{a}=\frac{1}{a^{4}} \sum g_{i} e^{-t / \tau_{i}}
$$

i.e.

$$
a(t)=\left(\frac{G(t)}{\chi}\right)^{1 / 3} \quad \text { with relaxation } \quad G(t)=\sum g_{i} e^{-t / \tau_{i}}
$$

Multi-mode generalisation

$$
\dot{A}_{z z}^{i}=2\left(E=-2 \frac{\dot{a}}{a}\right) A_{z z}^{i}-\frac{1}{\tau_{i}} A_{z z}^{i}
$$

So

$$
A_{z z}^{i}=\frac{1}{a^{4}(t)} e^{-t / \tau_{i}}
$$

Hence momentum equation

$$
\frac{\chi}{a}=\frac{1}{a^{4}} \sum g_{i} e^{-t / \tau_{i}}
$$

i.e.

$$
a(t)=\left(\frac{G(t)}{\chi}\right)^{1 / 3} \quad \text { with relaxation } \quad G(t)=\sum g_{i} e^{-t / \tau_{i}}
$$

Spectrum needed to fit experiments at middle times

FENE capillary squeezing

Filament breaks in with FENE $L=20$

Exp: Liang \& Mackley 1994 JNNFM
Thy: Entov \& Hinch 1997 JNNFM

