Lecture 2

Lecture 1: the phenomena.
Now need the intrinsic properties of the material, e.g. viscosity, elasticity.

Lecture 2

Rheometry

Simple shear devices
Steady shear viscosity
Normal stresses
Oscillating shear
Extensional viscosity
Scalings
Nondimensional parameter

Simple shear devices

Conceptual device for simple shear

Fixed plate

Simple shear devices

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma}=\frac{V}{h}$

Simple shear devices

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma}=\frac{V}{h}$
Tangential shear stress $\sigma_{x y}=\frac{F}{A}$

Simple shear devices

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma}=\frac{V}{h}$
Tangential shear stress $\sigma_{x y}=\frac{F}{A}$
Shear viscosity $\mu=\frac{\sigma_{x y}}{\dot{\gamma}}=\frac{F h}{A V}$

Simple shear devices

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma}=\frac{V}{h}$
Tangential shear stress $\sigma_{x y}=\frac{F}{A}$
Shear viscosity $\mu=\frac{\sigma_{x y}}{\dot{\gamma}}=\frac{F h}{A V}$

- works for heavy tars

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another
Need $\nabla\left(u^{2}\right)$ orthogonal to \mathbf{u}, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u}=0$

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another
Need $\nabla\left(u^{2}\right)$ orthogonal to \mathbf{u}, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u}=0$
Capillary tube - use for low μ and for high $\dot{\gamma}$

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another
Need $\nabla\left(u^{2}\right)$ orthogonal to \mathbf{u}, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u}=0$
Capillary tube - use for low μ and for high $\dot{\gamma}$

Pressure drop $\Delta \mathrm{p}$

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another
Need $\nabla\left(u^{2}\right)$ orthogonal to \mathbf{u}, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u}=0$
Capillary tube - use for low μ and for high $\dot{\gamma}$

Pressure drop $\Delta \mathrm{p}$

$$
\mu=\frac{\pi a^{4} \Delta p}{8 Q L}
$$

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another
Need $\nabla\left(u^{2}\right)$ orthogonal to \mathbf{u}, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u}=0$
Capillary tube - use for low μ and for high $\dot{\gamma}$

Pressure drop $\Delta \mathrm{p}$

$$
\mu=\frac{\pi a^{4} \Delta p}{8 Q L}
$$

Simple shear devices 3

Couette experiments in Paris for viscosity of gases, device found in Loire garage.
Unstable if rotate inner too fast.

Inner rotating at angular velocity Ω. Torque T.

Simple shear devices 3

Couette experiments in Paris for viscosity of gases, device found in Loire garage.
Unstable if rotate inner too fast.

Inner rotating at angular velocity Ω. Torque T.

$$
\mu=\frac{T\left(b^{2}-a^{2}\right)}{4 \pi \Omega a b^{2} L}
$$

Simple shear devices 3

Couette experiments in Paris for viscosity of gases, device found in Loire garage.
Unstable if rotate inner too fast.

Inner rotating at angular velocity Ω. Torque T.

$$
\mu=\frac{T\left(b^{2}-a^{2}\right)}{4 \pi \Omega a b^{2} L}
$$

Simple shear devices 4

Cone-and-plate. Typically angle $\alpha=2^{\circ}$.

Simple shear devices 4

Cone-and-plate. Typically angle $\alpha=2^{\circ}$.

Has shear rate independent of position - useful if $\mu(\dot{\gamma})$.

Simple shear devices 4

Cone-and-plate. Typically angle $\alpha=2^{\circ}$.

Has shear rate independent of position - useful if $\mu(\dot{\gamma})$.
Angular velocity of top cone Ω. Torque (on lower plate) T.

$$
\mu=\frac{3 T \alpha}{2 \pi \Omega R^{3}}
$$

Simple shear devices 4

Cone-and-plate. Typically angle $\alpha=2^{\circ}$.

Has shear rate independent of position - useful if $\mu(\dot{\gamma})$.
Angular velocity of top cone Ω. Torque (on lower plate) T.

$$
\mu=\frac{3 T \alpha}{2 \pi \Omega R^{3}}
$$

Steady shear viscosity

- μ in Pas
- air 10^{-5}
- water 10^{-3}
- golden syrup 10^{2}
- molten polymer $10^{3 \rightarrow 5}$
- molten glass $10^{12 \rightarrow 15}$

Steady shear viscosity

- μ in Pas
- air 10^{-5}
- water 10^{-3}
- golden syrup 10^{2}
- molten polymer $10^{3 \rightarrow 5}$
- molten glass $10^{12 \rightarrow 15}$
- $\dot{\gamma}$ in s^{-1}
- sedimenting fines 10^{-5},
- chewing food 10 ,
- mixing 10^{2},
- painting 10^{3},
- lubrication $10^{3 \rightarrow 7}$.

Steady shear viscosity

- μ in Pas
- air 10^{-5}
- water 10^{-3}
- golden syrup 10^{2}
- molten polymer $10^{3 \rightarrow 5}$
- molten glass $10^{12 \rightarrow 15}$
- $\dot{\gamma}$ in s^{-1}
- sedimenting fines 10^{-5},
- chewing food 10 ,
- mixing 10^{2},
- painting 10^{3},
- lubrication $10^{3 \rightarrow 7}$.

Typically has range of power-law shear-thinning

$$
\mu(\dot{\gamma})=k \dot{\gamma}^{n-1}
$$

n: 0.6 molten polymer, 0.3 toothpaste, 0.1 grease

Steady shear viscosity 2

Two polymer solutions and an aluminium soap solution

Steady shear viscosity 2

Two polymer solutions and an aluminium soap solution

Decades of power-law shear-thinning

Normal stresses

$$
\mathbf{u}=(\dot{\gamma} y, 0,0) \quad\left\{\begin{array}{l}
N_{1}=\sigma_{x x}-\sigma_{y y} \\
N_{2}=\sigma_{z z}-\sigma_{y y}
\end{array}\right.
$$

Stress differences to eliminate incompressibility's isotropic pressure

Normal stresses

$$
\mathbf{u}=(\dot{\gamma} y, 0,0) \quad\left\{\begin{array}{l}
N_{1}=\sigma_{x x}-\sigma_{y y} \\
N_{2}=\sigma_{z z}-\sigma_{y y}
\end{array}\right.
$$

Stress differences to eliminate incompressibility's isotropic pressure
First normal stress difference from axial thrust on plate F.

Axial thrust on plate F.

$$
N_{1}=\frac{2 F}{\pi R^{2}}
$$

Normal stresses 2

Plot $\Psi_{1}=N_{1} / \dot{\gamma}^{2}$, as $\propto \dot{\gamma}^{2}$ at low $\dot{\gamma}$ (indpt sign/direction).

Normal stresses 2

Plot $\Psi_{1}=N_{1} / \dot{\gamma}^{2}$, as $\propto \dot{\gamma}^{2}$ at low $\dot{\gamma}$ (indpt sign/direction).
Two polymer solutions and an aluminium soap solution

Normal stresses 2

Plot $\Psi_{1}=N_{1} / \dot{\gamma}^{2}$, as $\propto \dot{\gamma}^{2}$ at low $\dot{\gamma}$ (indpt sign/direction).
Two polymer solutions and an aluminium soap solution

Decades of power-law behaviour.

Normal stresses 2

Plot $\Psi_{1}=N_{1} / \dot{\gamma}^{2}$, as $\propto \dot{\gamma}^{2}$ at low $\dot{\gamma}$ (indpt sign/direction).
Two polymer solutions and an aluminium soap solution

Decades of power-law behaviour.
At low $\dot{\gamma}, N \ll \sigma_{x y}$, but at high can be $100 \times$.

Normal stresses 3

N_{2} normally small and negative.

Normal stresses 3

N_{2} normally small and negative.

- Pressure variation over disk

Normal stresses 3

N_{2} normally small and negative.

- Pressure variation over disk
- Axial thrusts from plate-plate if know N_{1}

Normal stresses 3

N_{2} normally small and negative.

- Pressure variation over disk
- Axial thrusts from plate-plate if know N_{1}
- Rod climbing if know N_{1}.

Normal stresses 3

N_{2} normally small and negative.

- Pressure variation over disk
- Axial thrusts from plate-plate if know N_{1}
- Rod climbing if know N_{1}.
- Bowing of free surface in Tanner's tilted trough

Oscillating shear

Shear:

$$
\gamma=\gamma_{0} e^{i \omega t} \quad \text { (real part understood) }
$$

Small amplitude: $\gamma_{0}<0.1$.

Oscillating shear

Shear:

$$
\gamma=\gamma_{0} e^{i \omega t} \quad(\text { real part understood })
$$

Small amplitude: $\gamma_{0}<0.1$.
Stress σ in terms of a complex elastic modulus G^{*} or complex (dynamic) viscosity μ^{*} :

$$
\sigma=G^{*} \gamma=\mu^{*} \dot{\gamma}=\mu^{*} i \omega \gamma
$$

Oscillating shear

Shear:

$$
\gamma=\gamma_{0} e^{i \omega t} \quad(\text { real part understood })
$$

Small amplitude: $\gamma_{0}<0.1$.
Stress σ in terms of a complex elastic modulus G^{*} or complex (dynamic) viscosity μ^{*} :

$$
\sigma=G^{*} \gamma=\mu^{*} \dot{\gamma}=\mu^{*} i \omega \gamma
$$

Storage modulus G^{\prime} and loss modulus $G^{\prime \prime}$.

$$
G^{*}=G^{\prime}+i G^{\prime \prime}
$$

Oscillating shear 2

Oscillating because wider range of frequencies, 10^{-3} to $10^{5} \mathrm{~s}^{-1}$, than steady shear rates.

Oscillating shear 2

Oscillating because wider range of frequencies, 10^{-3} to $10^{5} \mathrm{~s}^{-1}$, than steady shear rates.

Low ω : viscous response

$$
\mu^{\prime}=G^{\prime \prime} / \omega \rightarrow \text { const }, \quad G^{\prime} \quad \text { smaller. }
$$

Oscillating shear 2

Oscillating because wider range of frequencies, 10^{-3} to $10^{5} \mathrm{~s}^{-1}$, than steady shear rates.

Low ω : viscous response

$$
\mu^{\prime}=G^{\prime \prime} / \omega \rightarrow \text { const }, \quad G^{\prime} \quad \text { smaller. }
$$

High ω : elastic response

$$
G^{\prime}=\mu^{\prime \prime} \omega \rightarrow \text { const }, \quad G^{\prime \prime} \quad \text { smaller } .
$$

Oscillating shear 2

Oscillating because wider range of frequencies, 10^{-3} to $10^{5} \mathrm{~s}^{-1}$, than steady shear rates.

Low ω : viscous response

$$
\mu^{\prime}=G^{\prime \prime} / \omega \rightarrow \text { const }, \quad G^{\prime} \quad \text { smaller. }
$$

High ω : elastic response

$$
G^{\prime}=\mu^{\prime \prime} \omega \rightarrow \text { const }, \quad G^{\prime \prime} \quad \text { smaller } .
$$

Power law behaviour at intermediate ω - probes small scale structure.

Oscillating shear 3

Other unsteady shear flows in modern computer controlled rheometers.

- Switch on stress, measure transient creep
- Switch off stress, measure transient recoil
- Switch on flow, measure build up of stress
- Switch off flow, measure relaxation of stress

Oscillating shear 3

Other unsteady shear flows in modern computer controlled rheometers.

- Switch on stress, measure transient creep
- Switch off stress, measure transient recoil
- Switch on flow, measure build up of stress
- Switch off flow, measure relaxation of stress

Student Exercise: Connection between these and $G^{*}(\omega)$?

Oscillating shear 4

Dynamic viscosity $\mu^{*}=\mu^{\prime}-i \mu^{\prime \prime}$

Polyethylene melt (IUPAC Sample A)

Oscillating shear 4

Dynamic viscosity $\mu^{*}=\mu^{\prime}-i \mu^{\prime \prime}$

Polyethylene melt (IUPAC Sample A)
At low ω, μ^{\prime} tends to a constant, and $\mu^{\prime \prime}$ is smaller by a factor of ω

Extensional viscosity

Uni-axial (axisymmetric) pure straining motion

$$
\mathbf{u}=\dot{\epsilon}\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

Extensional viscosity

Uni-axial (axisymmetric) pure straining motion

$$
\mathbf{u}=\dot{\epsilon}\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

Calculate an extensional viscosity

$$
\mu_{\mathrm{ext}}=\frac{\sigma_{x x}-\frac{1}{2} \sigma_{y y}-\frac{1}{2} \sigma_{z z}}{3 \dot{\epsilon}}
$$

Extensional viscosity

Uni-axial (axisymmetric) pure straining motion

$$
\mathbf{u}=\dot{\epsilon}\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

Calculate an extensional viscosity

$$
\mu_{\mathrm{ext}}=\frac{\sigma_{x x}-\frac{1}{2} \sigma_{y y}-\frac{1}{2} \sigma_{z z}}{3 \dot{\epsilon}}
$$

Without 3 have confusing Trouton Viscosity.

Extensional viscosity

Uni-axial (axisymmetric) pure straining motion

$$
\mathbf{u}=\dot{\epsilon}\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

Calculate an extensional viscosity

$$
\mu_{\mathrm{ext}}=\frac{\sigma_{x x}-\frac{1}{2} \sigma_{y y}-\frac{1}{2} \sigma_{z z}}{3 \dot{\epsilon}}
$$

Without 3 have confusing Trouton Viscosity.
Cannot be steady in time and constant in space, so devices are not perfect.

Extensional viscosity 2

Spinline

Extensional viscosity 2

Spinline

Measure tension $T \&$ area $A(x)$ gives stress $\sigma_{x x}(x)=T / A$. Velocity change \& length gives strain-rate $\dot{\epsilon}=\left(v_{2}-v_{1}\right) / L$.

Extensional viscosity 3

Filament stretching - Cogswell, Meissner, Sridhar

BG-1 Boger fluid: $\dot{\epsilon}=1.0,3.0$ and 5.0.

Extensional viscosity 4

Solid sphere hits free surface producing a Worthington jet

Needs theory to interpret splash height.

Extensional viscosity 5

More devices - uniaxial

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

- Film blowing: have Δp, measure $r(t)$.

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

- Film blowing: have Δp, measure $r(t)$.
- Meissner film stretch with 8 tractors

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

- Film blowing: have Δp, measure $r(t)$.
- Meissner film stretch with 8 tractors

Other

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

- Film blowing: have Δp, measure $r(t)$.
- Meissner film stretch with 8 tractors

Other

- Sphere in a tube - common for Newtonian

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

- Film blowing: have Δp, measure $r(t)$.
- Meissner film stretch with 8 tractors

Other

- Sphere in a tube - common for Newtonian
- Squeeze film

Extensional viscosity 5

More devices - uniaxial

- Moscow capillary squeezing - cheap, uncontrolled strain rate
- Four-roll mill: good \mathbf{u}, how to measure σ ?
- Opposed jets: less good \mathbf{u}, can measure Δp.

Biaxial extensions

- Film blowing: have Δp, measure $r(t)$.
- Meissner film stretch with 8 tractors

Other

- Sphere in a tube - common for Newtonian
- Squeeze film
- Sag of heap of cement

No agreement between differrent extensional devices!

M1 liquid

Temperature scaling

Plot reduced viscosity μ_{r} as function of reduced shear-rate $\dot{\gamma}_{r}$

$$
\mu_{r}=\mu(\dot{\gamma}, T) \frac{\mu\left(0, T_{*}\right)}{\mu(0, T)}, \quad \dot{\gamma}_{r}=\dot{\gamma} \frac{\mu(0, T)}{\mu\left(0, T_{*}\right)} \frac{T_{*} \rho_{*}}{T \rho}
$$

Low density polyethylene melt, reference temp 423K

Temperature scaling

Plot reduced viscosity μ_{r} as function of reduced shear-rate $\dot{\gamma}_{r}$

$$
\mu_{r}=\mu(\dot{\gamma}, T) \frac{\mu\left(0, T_{*}\right)}{\mu(0, T)}, \quad \dot{\gamma}_{r}=\dot{\gamma} \frac{\mu(0, T)}{\mu\left(0, T_{*}\right)} \frac{T_{*} \rho_{*}}{T \rho}
$$

Low density polyethylene melt, reference temp 423K $\mu(0, T)$ has activation energy around $4000^{\circ} \mathrm{K}$

Concentration scaling

Plot intrinsic viscosity $=\mu\left(c, \gamma / \gamma_{0}\right) / \mu(0,0)$

Cox-Merz 'rule'

'Ad hoc' approximation linking steady and oscillating response, based on oscillation seen if rotate with vorticity in a steady shear.

Cox-Merz 'rule'

'Ad hoc' approximation linking steady and oscillating response, based on oscillation seen if rotate with vorticity in a steady shear.

$$
\mu_{\text {steady }}(\dot{\gamma}) \approx\left|\mu_{\mathrm{osc}}(\omega=\dot{\gamma})\right|, \quad N_{1}(\dot{\gamma}) \approx 2 G^{\prime}(\omega=\dot{\gamma})
$$

Solutions of polystyrene in 1-chloronaphalene

Molecular weight scaling

At low molecular weight M, $\mu \propto M^{1}$

At high molecular weight M, $\mu \propto M^{3.4}$

Nondimensional parameter

Materials have a time constant τ

- $\mu_{\text {steady }}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1 / \tau$,
- $\mu_{\text {osc }}(\omega)$ plateau ends at $\omega=1 / \tau$

Nondimensional parameter

Materials have a time constant τ

- $\mu_{\text {steady }}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1 / \tau$,
- $\mu_{\mathrm{osc}}(\omega)$ plateau ends at $\omega=1 / \tau$

Strength of shear rate
Weissenberg $\quad W i=\dot{\gamma} \tau$

Nondimensional parameter

Materials have a time constant τ

- $\mu_{\text {steady }}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1 / \tau$,
- $\mu_{\mathrm{osc}}(\omega)$ plateau ends at $\omega=1 / \tau$

Strength of shear rate

$$
\text { Weissenberg } \quad W i=\dot{\gamma} \tau
$$

Speed of change

$$
\text { Deborah } \quad D e=\frac{U_{\tau}}{L}
$$

Nondimensional parameter

Materials have a time constant τ

- $\mu_{\text {steady }}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1 / \tau$,
- $\mu_{\text {osc }}(\omega)$ plateau ends at $\omega=1 / \tau$

Strength of shear rate

$$
\text { Weissenberg } \quad W i=\dot{\gamma} \tau
$$

Speed of change

$$
\text { Deborah } \quad D e=\frac{U_{\tau}}{L}
$$

$D e \ll 1$ - fully relaxed, liquid-like behaviour, viscosity
De>>1-little relaxed, solid-like behaviour, elasticity

