Lecture 1: the phenomena.

Now need the intrinsic properties of the material, e.g. viscosity, elasticity.

Lecture 2

Rheometry

Simple shear devices

Steady shear viscosity

Normal stresses

Oscillating shear

Extensional viscosity

Scalings

Nondimensional parameter

Conceptual device for simple shear

Conceptual device for simple shear

Shear rate $\dot{\gamma} = \frac{V}{h}$

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma} = \frac{V}{h}$

Tangential shear stress $\sigma_{xy} = \frac{F}{A}$

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma} = \frac{V}{h}$

Tangential shear stress $\sigma_{xy} = \frac{F}{A}$

Shear viscosity $\mu = \frac{\sigma_{xy}}{\dot{\gamma}} = \frac{Fh}{AV}$

Conceptual device for simple shear

Fixed plate

Shear rate $\dot{\gamma} = \frac{V}{h}$

Tangential shear stress $\sigma_{xy} = \frac{F}{A}$

Shear viscosity $\mu = \frac{\sigma_{xy}}{\dot{\gamma}} = \frac{Fh}{AV}$

- works for heavy tars

Viscometric flows: one layer of fluid slides over another

Viscometric flows: one layer of fluid slides over another Need $\nabla(u^2)$ orthogonal to **u**, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u} = 0$

Viscometric flows: one layer of fluid slides over another Need $\nabla(u^2)$ orthogonal to **u**, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u} = 0$

Capillary tube – use for low μ and for high $\dot{\gamma}$

Viscometric flows: one layer of fluid slides over another Need $\nabla(u^2)$ orthogonal to **u**, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u} = 0$

Capillary tube – use for low μ and for high $\dot{\gamma}$

Pressure drop Δp

Viscometric flows: one layer of fluid slides over another Need $\nabla(u^2)$ orthogonal to **u**, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u} = 0$

Capillary tube – use for low μ and for high $\dot{\gamma}$

Pressure drop Δp

$$\mu = \frac{\pi a^4 \Delta p}{8 Q L}$$

Viscometric flows: one layer of fluid slides over another Need $\nabla(u^2)$ orthogonal to **u**, i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u} = 0$

Capillary tube – use for low μ and for high $\dot{\gamma}$

Pressure drop Δp

$$\mu = \frac{\pi a^4 \Delta p}{8 Q L}$$

Student Exercise

 $\label{eq:countrol} \begin{array}{l} \mbox{Couette experiments in Paris for viscosity of gases, device found in Loire garage.} \end{array}$

Unstable if rotate inner too fast.

Inner rotating at angular velocity Ω . Torque T.

 $\label{eq:countrol} \begin{array}{l} \mbox{Couette experiments in Paris for viscosity of gases, device found in Loire garage.} \end{array}$

Unstable if rotate inner too fast.

Inner rotating at angular velocity Ω . Torque T.

$$\mu = \frac{T(b^2 - a^2)}{4\pi\Omega a b^2 L}$$

 $\label{eq:countrol} \begin{array}{l} \mbox{Couette experiments in Paris for viscosity of gases, device found in Loire garage.} \end{array}$

Unstable if rotate inner too fast.

Inner rotating at angular velocity Ω . Torque T.

$$\mu = \frac{T(b^2 - a^2)}{4\pi\Omega a b^2 L}$$

Student Exercise

Cone-and-plate. Typically angle $\alpha = 2^{\circ}$.

Cone-and-plate. Typically angle $\alpha = 2^{\circ}$.

Has shear rate independent of position – useful if $\mu(\dot{\gamma})$.

Cone-and-plate. Typically angle $\alpha = 2^{\circ}$.

Has shear rate independent of position – useful if $\mu(\dot{\gamma})$.

Angular velocity of top cone Ω . Torque (on lower plate) T.

$$\mu = \frac{\mathbf{3T}\alpha}{2\pi\Omega R^3}$$

Cone-and-plate. Typically angle $\alpha=2^{\circ}.$

Has shear rate independent of position – useful if $\mu(\dot{\gamma})$.

Angular velocity of top cone Ω . Torque (on lower plate) T.

$$\mu = \frac{3\,\mathsf{T}\,\alpha}{2\pi\Omega\,\mathsf{R}^3}$$

Student Exercise

Steady shear viscosity

• μ in Pas

- ▶ air 10⁻⁵
- water 10^{-3}
- ▶ golden syrup 10²
- molten polymer $10^{3 \rightarrow 5}$
- molten glass $10^{12 \rightarrow 15}$

Steady shear viscosity

- μ in Pas
 - ▶ air 10⁻⁵
 - ▶ water 10⁻³
 - golden syrup 10²
 - molten polymer $10^{3 \rightarrow 5}$
 - ▶ molten glass $10^{12 \rightarrow 15}$
- ▶ $\dot{\gamma}$ in s⁻¹
 - sedimenting fines 10^{-5} ,
 - chewing food 10,
 - mixing 10²,
 - ▶ painting 10³,
 - Iubrication $10^{3 \rightarrow 7}$.

Steady shear viscosity

- μ in Pas
 - ▶ air 10⁻⁵
 - water 10^{-3}
 - golden syrup 10²
 - molten polymer $10^{3 \rightarrow 5}$
 - molten glass $10^{12 \rightarrow 15}$
- ▶ $\dot{\gamma}$ in s⁻¹
 - sedimenting fines 10^{-5} ,
 - chewing food 10,
 - mixing 10²,
 - ▶ painting 10³,
 - Iubrication $10^{3 \rightarrow 7}$.

Typically has range of power-law shear-thinning

$$\mu(\dot{\gamma}) = k \dot{\gamma}^{n-1}$$

n: 0.6 molten polymer, 0.3 toothpaste, 0.1 grease.

Two polymer solutions and an aluminium soap solution

Two polymer solutions and an aluminium soap solution

Decades of power-law shear-thinning

$$\mathbf{u} = (\dot{\gamma}y, 0, 0) \qquad \begin{cases} N_1 = \sigma_{xx} - \sigma_{yy} \\ N_2 = \sigma_{zz} - \sigma_{yy} \end{cases}$$

Stress differences to eliminate incompressibility's isotropic pressure

$$\mathbf{u} = (\dot{\gamma}y, 0, 0) \qquad \begin{cases} N_1 = \sigma_{xx} - \sigma_{yy} \\ N_2 = \sigma_{zz} - \sigma_{yy} \end{cases}$$

Stress differences to eliminate incompressibility's isotropic pressure First normal stress difference from axial thrust on plate F.

Axial thrust on plate F.

$$N_1 = \frac{2F}{\pi R^2}$$

Student Exercise

Plot $\Psi_1 = N_1/\dot{\gamma}^2$, as $\propto \dot{\gamma}^2$ at low $\dot{\gamma}$ (indpt sign/direction).

Plot $\Psi_1 = N_1/\dot{\gamma}^2$, as $\propto \dot{\gamma}^2$ at low $\dot{\gamma}$ (indpt sign/direction).

Two polymer solutions and an aluminium soap solution

Plot $\Psi_1 = N_1/\dot{\gamma}^2$, as $\propto \dot{\gamma}^2$ at low $\dot{\gamma}$ (indpt sign/direction).

Two polymer solutions and an aluminium soap solution

Decades of power-law behaviour.

Plot $\Psi_1 = N_1/\dot{\gamma}^2$, as $\propto \dot{\gamma}^2$ at low $\dot{\gamma}$ (indpt sign/direction).

Two polymer solutions and an aluminium soap solution

Decades of power-law behaviour.

At low $\dot{\gamma}$, $N \ll \sigma_{xy}$, but at high can be 100×.

 N_2 normally small and negative.

Pressure variation over disk

- Pressure variation over disk
- Axial thrusts from plate-plate if know N_1

- Pressure variation over disk
- Axial thrusts from plate-plate if know N_1
- Rod climbing if know N_1 .

- Pressure variation over disk
- Axial thrusts from plate-plate if know N_1
- Rod climbing if know N₁.
- Bowing of free surface in Tanner's tilted trough

Shear:

$$\gamma = \gamma_0 e^{i\omega t}$$
 (real part understood)

Small amplitude: $\gamma_0 < 0.1$.

Shear:

$$\gamma = \gamma_0 e^{i\omega t}$$
 (real part understood)

Small amplitude: $\gamma_0 < 0.1$.

Stress σ in terms of a complex elastic modulus G^* or complex (dynamic) viscosity μ^* :

$$\sigma = \mathbf{G}^* \gamma = \boldsymbol{\mu}^* \dot{\gamma} = \boldsymbol{\mu}^* i \boldsymbol{\omega} \gamma$$

Shear:

$$\gamma = \gamma_0 e^{i\omega t}$$
 (real part understood)

Small amplitude: $\gamma_0 < 0.1$.

Stress σ in terms of a complex elastic modulus G^* or complex (dynamic) viscosity μ^* :

$$\sigma = \mathbf{G}^* \gamma = \mu^* \dot{\gamma} = \mu^* i \omega \gamma$$

Storage modulus G' and loss modulus G''.

$$\mathbf{G}^* = \mathbf{G}' + i\mathbf{G}''$$

Low ω : viscous response

$$\mu' = G''/\omega \to \text{const}$$
, G' smaller.

Low ω : viscous response

$$\mu' = G''/\omega \to \text{const}$$
, G' smaller.

High ω : elastic response

$$G' = \mu'' \omega \to \text{const}$$
, G'' smaller.

Low ω : viscous response

$$\mu' = G''/\omega \to \text{const}$$
, G' smaller.

High ω : elastic response

$$G' = \mu'' \omega \to \text{const}$$
, G'' smaller.

Power law behaviour at intermediate ω – probes small scale structure.

Other unsteady shear flows in modern computer controlled rheometers.

- Switch on stress, measure transient creep
- Switch off stress, measure transient recoil
- Switch on flow, measure build up of stress
- Switch off flow, measure relaxation of stress

Other unsteady shear flows in modern computer controlled rheometers.

- Switch on stress, measure transient creep
- Switch off stress, measure transient recoil
- Switch on flow, measure build up of stress
- Switch off flow, measure relaxation of stress

Student Exercise: Connection between these and $G^*(\omega)$?

Dynamic viscosity $\mu^* = \mu' - i\mu''$

Polyethylene melt (IUPAC Sample A)

Dynamic viscosity $\mu^* = \mu' - i\mu''$

Polyethylene melt (IUPAC Sample A)

At low $\omega,\,\mu'$ tends to a constant, and μ'' is smaller by a factor of ω

Uni-axial (axisymmetric) pure straining motion

$$\mathbf{u} = \dot{\epsilon} \left(x, -\frac{1}{2}y, -\frac{1}{2}z \right)$$

Uni-axial (axisymmetric) pure straining motion

$$\mathbf{u} = \dot{\epsilon} \left(x, -\frac{1}{2}y, -\frac{1}{2}z \right)$$

Calculate an extensional viscosity

$$\mu_{\text{ext}} = \frac{\sigma_{xx} - \frac{1}{2}\sigma_{yy} - \frac{1}{2}\sigma_{zz}}{3\dot{\epsilon}}$$

Uni-axial (axisymmetric) pure straining motion

$$\mathbf{u} = \dot{\epsilon} \left(x, -\frac{1}{2}y, -\frac{1}{2}z \right)$$

Calculate an extensional viscosity

$$\mu_{\text{ext}} = \frac{\sigma_{xx} - \frac{1}{2}\sigma_{yy} - \frac{1}{2}\sigma_{zz}}{3\dot{\epsilon}}$$

Without 3 have confusing Trouton Viscosity.

Uni-axial (axisymmetric) pure straining motion

$$\mathbf{u} = \dot{\epsilon}(x, -\frac{1}{2}y, -\frac{1}{2}z)$$

Calculate an extensional viscosity

$$\mu_{\text{ext}} = \frac{\sigma_{xx} - \frac{1}{2}\sigma_{yy} - \frac{1}{2}\sigma_{zz}}{3\dot{\epsilon}}$$

Without 3 have confusing Trouton Viscosity.

Cannot be steady in time and constant in space, so devices are not perfect.

Spinline

Spinline

Measure tension T & area A(x) gives stress $\sigma_{xx}(x) = T/A$. Velocity change & length gives strain-rate $\dot{\epsilon} = (v_2 - v_1)/L$.

Filament stretching - Cogswell, Meissner, Sridhar

BG-1 Boger fluid: $\dot{\epsilon} = 1.0$, 3.0 and 5.0.

Solid sphere hits free surface producing a Worthington jet

Needs theory to interpret splash height.

More devices - uniaxial

More devices - uniaxial

Moscow capillary squeezing – cheap, uncontrolled strain rate

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good **u**, how to measure σ ?

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good **u**, how to measure σ ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good **u**, how to measure σ ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good **u**, how to measure σ ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

Film blowing: have Δp , measure r(t).

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good **u**, how to measure σ ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

- Film blowing: have Δp , measure r(t).
- Meissner film stretch with 8 tractors

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good **u**, how to measure σ ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

- Film blowing: have Δp , measure r(t).
- Meissner film stretch with 8 tractors

Other

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good u, how to measure σ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

- Film blowing: have Δp , measure r(t).
- Meissner film stretch with 8 tractors

Other

Sphere in a tube - common for Newtonian

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good u, how to measure σ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

- Film blowing: have Δp , measure r(t).
- Meissner film stretch with 8 tractors

Other

- Sphere in a tube common for Newtonian
- Squeeze film

More devices - uniaxial

- Moscow capillary squeezing cheap, uncontrolled strain rate
- Four-roll mill: good u, how to measure σ?
- Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

- Film blowing: have Δp , measure r(t).
- Meissner film stretch with 8 tractors

Other

- Sphere in a tube common for Newtonian
- Squeeze film
- Sag of heap of cement

No agreement between differrent extensional devices!

M1 liquid

Temperature scaling

Plot reduced viscosity μ_r as function of reduced shear-rate $\dot{\gamma}_r$

$$\mu_r = \mu(\dot{\gamma}, T) \frac{\mu(0, T_*)}{\mu(0, T)}, \qquad \dot{\gamma}_r = \dot{\gamma} \frac{\mu(0, T)}{\mu(0, T_*)} \frac{T_* \rho_*}{T \rho}$$

Low density polyethylene melt, reference temp 423K

Temperature scaling

Plot reduced viscosity μ_r as function of reduced shear-rate $\dot{\gamma}_r$

$$\mu_r = \mu(\dot{\gamma}, T) \frac{\mu(0, T_*)}{\mu(0, T)}, \qquad \dot{\gamma}_r = \dot{\gamma} \frac{\mu(0, T)}{\mu(0, T_*)} \frac{T_* \rho_*}{T \rho}$$

Low density polyethylene melt, reference temp 423K

 $\mu(0, T)$ has activation energy around 4000°K

Plot intrinsic viscosity $= \mu(c, \gamma/\gamma_0)/\mu(0, 0)$

Cox-Merz 'rule'

'Ad hoc' approximation linking steady and oscillating response, based on oscillation seen if rotate with vorticity in a steady shear.

Cox-Merz 'rule'

'Ad hoc' approximation linking steady and oscillating response, based on oscillation seen if rotate with vorticity in a steady shear.

$$\mu_{
m steady}(\dot{\gamma}) pprox |\mu_{
m osc}(\omega = \dot{\gamma})|, \qquad N_1(\dot{\gamma}) pprox 2G'(\omega = \dot{\gamma})$$

Solutions of polystyrene in 1-chloronaphalene
Molecular weight scaling

At low molecular weight M, $\mu \propto M^1$

At high molecular weight M, $\mu \propto M^{3.4}$

Materials have a time constant au

- $\mu_{
 m steady}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1/ au$,
- $\mu_{
 m osc}(\omega)$ plateau ends at $\omega=1/ au$

Materials have a time constant au

- $\mu_{
 m steady}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1/ au$,
- $\mu_{
 m osc}(\omega)$ plateau ends at $\omega=1/ au$

Strength of shear rate

Weissenberg $Wi = \dot{\gamma} \tau$

Materials have a time constant au

- $\mu_{
 m steady}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1/ au$,
- $\mu_{
 m osc}(\omega)$ plateau ends at $\omega=1/ au$

Strength of shear rate

Weissenberg $Wi = \dot{\gamma} \tau$

Speed of change

Deborah
$$De = \frac{U\tau}{L}$$

Materials have a time constant au

- $\mu_{
 m steady}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1/ au$,
- $\mu_{
 m osc}(\omega)$ plateau ends at $\omega=1/ au$

Strength of shear rate

Weissenberg $Wi = \dot{\gamma}\tau$

Speed of change

Deborah
$$De = \frac{U\tau}{L}$$

 $De \ll 1$ – fully relaxed, liquid-like behaviour, viscosity $De \gg 1$ – little relaxed, solid-like behaviour, elasticity