Chapter 3

Chapter 1: the phenomena.
Chapter 2: measuring intrinsic properties, e.g. viscosity and elasticity.

Chapter 3

Chapter 1: the phenomena.
Chapter 2: measuring intrinsic properties, e.g. viscosity and elasticity.

Now need to encapsulate those properties in governing equations.

Conservation equations - true all materials

Conservation of momentum (Cauchy):

$$
\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \sigma+\rho \mathbf{g}
$$

Conservation equations - true all materials

Conservation of momentum (Cauchy):

$$
\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \sigma+\rho \mathbf{g}
$$

- Often inertia (LHS) is negligible.

Conservation equations - true all materials

Conservation of momentum (Cauchy):

$$
\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \sigma+\rho \mathbf{g}
$$

- Often inertia (LHS) is negligible.
- Usually incompressible (plus conservation of mass):

$$
\nabla \cdot \mathbf{u}=0
$$

so add pressure to stress, often omitted below.

Conservation equations - true all materials

Conservation of momentum (Cauchy):

$$
\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \sigma+\rho \mathbf{g}
$$

- Often inertia (LHS) is negligible.
- Usually incompressible (plus conservation of mass):

$$
\nabla \cdot \mathbf{u}=0
$$

so add pressure to stress, often omitted below.

- Need Constitutive (material dependent) Relation between stress σ and flow \mathbf{u}.

Chapter 3

Constitutive equations
Phenomenology
'Simple' materials
Perfectly elastic material
Time derivatives
Exact approximations
Linear viscoelasticity
Second-order fluid
Semi-empirical models
Generalised Newtonian
Oldroyd-B
K-BKZ

'Simple' materials

Lagrangian description

$$
\mathbf{X} \rightarrow \mathbf{x}(\mathbf{X}, t)
$$

'Simple' materials

Lagrangian description

$$
\mathbf{X} \rightarrow \mathbf{x}(\mathbf{X}, t)
$$

Deformation of line element (for micro-lengths \ll macro-lengths)

$$
\delta \mathbf{X} \rightarrow \delta \mathbf{x}=A \cdot \delta \mathbf{X}, \quad A_{i J}=\frac{\partial x_{i}}{\partial X_{J}}
$$

A has rotation and stretch, see later.

'Simple' materials

Lagrangian description

$$
\mathbf{X} \rightarrow \mathbf{x}(\mathbf{X}, t)
$$

Deformation of line element (for micro-lengths \ll macro-lengths)

$$
\delta \mathbf{X} \rightarrow \delta \mathbf{x}=A \cdot \delta \mathbf{X}, \quad A_{i J}=\frac{\partial x_{i}}{\partial X_{J}}
$$

A has rotation and stretch, see later.
Local and casual dependency

$$
\sigma(t)=\sigma\{A(\tau)\}_{\tau \leq t}
$$

'Simple' materials

Lagrangian description

$$
\mathbf{X} \rightarrow \mathbf{x}(\mathbf{X}, t)
$$

Deformation of line element (for micro-lengths \ll macro-lengths)

$$
\delta \mathbf{X} \rightarrow \delta \mathbf{x}=A \cdot \delta \mathbf{X}, \quad A_{i J}=\frac{\partial x_{i}}{\partial X_{J}}
$$

A has rotation and stretch, see later.
Local and casual dependency

$$
\sigma(t)=\sigma\{A(\tau)\}_{\tau \leq t}
$$

This functional dependence not useful,

'Simple' materials

Lagrangian description

$$
\mathbf{X} \rightarrow \mathbf{x}(\mathbf{X}, t)
$$

Deformation of line element (for micro-lengths \ll macro-lengths)

$$
\delta \mathbf{X} \rightarrow \delta \mathbf{x}=A \cdot \delta \mathbf{X}, \quad A_{i J}=\frac{\partial x_{i}}{\partial X_{J}}
$$

A has rotation and stretch, see later.
Local and casual dependency

$$
\sigma(t)=\sigma\{A(\tau)\}_{\tau \leq t}
$$

This functional dependence not useful, except for fast elastic limit and slow viscous limits (each with single parameter)

Material Frame Indifference

'Tensorial correct' or result independent of observer,

Material Frame Indifference

'Tensorial correct' or result independent of observer, so same stresses if add translation and rotation

$$
\mathbf{x}^{\prime}=\mathbf{a}(t)+Q(t) \mathbf{x}
$$

Material Frame Indifference

'Tensorial correct' or result independent of observer, so same stresses if add translation and rotation

$$
\mathbf{x}^{\prime}=\mathbf{a}(t)+Q(t) \mathbf{x}
$$

so in new frame

$$
\sigma^{\prime}=\sigma\left\{Q(\tau) A(\tau) Q^{T}(0)\right\}_{\tau \leq t} \equiv Q(t) \sigma\{A(\tau)\}_{\tau \leq t} Q^{T}(t)
$$

Material Frame Indifference

'Tensorial correct' or result independent of observer, so same stresses if add translation and rotation

$$
\mathbf{x}^{\prime}=\mathbf{a}(t)+Q(t) \mathbf{x}
$$

so in new frame

$$
\sigma^{\prime}=\sigma\left\{Q(\tau) A(\tau) Q^{T}(0)\right\}_{\tau \leq t} \equiv Q(t) \sigma\{A(\tau)\}_{\tau \leq t} Q^{T}(t)
$$

Require $\sigma\{A\}$ to obey this identity for all $Q(t)$.

Perfectly elastic material

Instantaneous, no history.

Perfectly elastic material

Instantaneous, no history.
Decompose deformation A into first a stretch U followed by a rotation R,

$$
A=R U, \quad \text { with } \quad R^{T} R=I, \quad \text { by finding } A: \quad U^{2}=A^{T} A
$$

Perfectly elastic material

Instantaneous, no history.
Decompose deformation A into first a stretch U followed by a rotation R,

$$
A=R U, \quad \text { with } \quad R^{T} R=I, \quad \text { by finding } A: \quad U^{2}=A^{T} A
$$

The set $Q=R^{T}$ in Material Frame Indifference

$$
\sigma\{A\}=R(t) f(U(t)) R^{T}
$$

Perfectly elastic material

Instantaneous, no history.
Decompose deformation A into first a stretch U followed by a rotation R,

$$
A=R U, \quad \text { with } \quad R^{T} R=I, \quad \text { by finding } A: \quad U^{2}=A^{T} A
$$

The set $Q=R^{T}$ in Material Frame Indifference

$$
\sigma\{A\}=R(t) f(U(t)) R^{T}
$$

In incompressible material with isotropic in rest state,

$$
f\left(U^{2}\right)=U^{2} f_{1}+U^{-2} f_{2}, \quad f_{i} \text { scalar functions of invariants of } U,
$$

SO

$$
\sigma=A A^{T} f_{1}+A^{-1 T} A^{-1} f_{2}
$$

Perfectly elastic material 2

Alternatively for incompressible with isotropic in rest state, use an elastic potential energy w,

Perfectly elastic material 2

Alternatively for incompressible with isotropic in rest state, use an elastic potential energy w,
a function of eigenvalues λ_{i} of U in invariant combinations

$$
\alpha=\frac{1}{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right), \beta=\frac{1}{2}\left(\lambda_{1}^{-2}+\lambda_{2}^{-2}+\lambda_{3}^{-2}\right), \gamma=\lambda_{1} \lambda_{2} \lambda_{3} \equiv 1
$$

Perfectly elastic material 2

Alternatively for incompressible with isotropic in rest state, use an elastic potential energy w,
a function of eigenvalues λ_{i} of U in invariant combinations
$\alpha=\frac{1}{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right), \beta=\frac{1}{2}\left(\lambda_{1}^{-2}+\lambda_{2}^{-2}+\lambda_{3}^{-2}\right), \gamma=\lambda_{1} \lambda_{2} \lambda_{3} \equiv 1$
Virtual work and σ co-diagonal with U gives

$$
\sigma_{1}=\frac{1}{\lambda_{2} \lambda_{3}}\left(\frac{\partial w}{\partial \lambda_{1}}=\lambda_{1} \frac{\partial w}{\partial \alpha}-\lambda_{1}^{-3} \frac{\partial w}{\partial \beta}\right)
$$

Perfectly elastic material 2

Alternatively for incompressible with isotropic in rest state, use an elastic potential energy w,
a function of eigenvalues λ_{i} of U in invariant combinations
$\alpha=\frac{1}{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right), \beta=\frac{1}{2}\left(\lambda_{1}^{-2}+\lambda_{2}^{-2}+\lambda_{3}^{-2}\right), \gamma=\lambda_{1} \lambda_{2} \lambda_{3} \equiv 1$
Virtual work and σ co-diagonal with U gives

$$
\sigma_{1}=\frac{1}{\lambda_{2} \lambda_{3}}\left(\frac{\partial w}{\partial \lambda_{1}}=\lambda_{1} \frac{\partial w}{\partial \alpha}-\lambda_{1}^{-3} \frac{\partial w}{\partial \beta}\right)
$$

so

$$
\sigma=\frac{1}{\gamma} \frac{\partial w}{\partial \alpha} A A^{T}-\frac{1}{\gamma} \frac{\partial w}{\partial \beta} A^{-1 T} A^{-1}
$$

Perfectly elastic material 2

Alternatively for incompressible with isotropic in rest state, use an elastic potential energy w,
a function of eigenvalues λ_{i} of U in invariant combinations
$\alpha=\frac{1}{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right), \beta=\frac{1}{2}\left(\lambda_{1}^{-2}+\lambda_{2}^{-2}+\lambda_{3}^{-2}\right), \gamma=\lambda_{1} \lambda_{2} \lambda_{3} \equiv 1$
Virtual work and σ co-diagonal with U gives

$$
\sigma_{1}=\frac{1}{\lambda_{2} \lambda_{3}}\left(\frac{\partial w}{\partial \lambda_{1}}=\lambda_{1} \frac{\partial w}{\partial \alpha}-\lambda_{1}^{-3} \frac{\partial w}{\partial \beta}\right)
$$

so

$$
\sigma=\frac{1}{\gamma} \frac{\partial w}{\partial \alpha} A A^{T}-\frac{1}{\gamma} \frac{\partial w}{\partial \beta} A^{-1 T} A^{-1}
$$

Better for data fitting - Ogden model: $w\left(\lambda_{1}^{n}+\lambda_{2}^{n}+\lambda_{3}^{n}\right)$

Time derivatives

To express history dependence will use time derivatives and integrals.

Time derivatives

To express history dependence will use time derivatives and integrals.
But problem: In new frame

$$
\sigma^{\prime}=Q \sigma Q^{T}
$$

Time derivatives

To express history dependence will use time derivatives and integrals.
But problem: In new frame

$$
\sigma^{\prime}=Q \sigma Q^{T}
$$

so its time derivative

$$
\dot{\sigma}^{\prime}=Q \dot{\sigma} Q^{T}+\dot{Q} \sigma Q^{T}+Q \sigma \dot{Q}^{T}
$$

Time derivatives

To express history dependence will use time derivatives and integrals.
But problem: In new frame

$$
\sigma^{\prime}=Q \sigma Q^{T}
$$

so its time derivative

$$
\dot{\sigma}^{\prime}=Q \dot{\sigma} Q^{T}+\dot{Q} \sigma Q^{T}+Q \sigma \dot{Q}^{T}
$$

is different in different frames.

Time derivatives

To express history dependence will use time derivatives and integrals.
But problem: In new frame

$$
\sigma^{\prime}=Q \sigma Q^{T}
$$

so its time derivative

$$
\dot{\sigma}^{\prime}=Q \dot{\sigma} Q^{T}+\dot{Q} \sigma Q^{T}+Q \sigma \dot{Q}^{T}
$$

is different in different frames.
Now flow transforms

$$
u^{\prime}=Q u+\dot{Q} x+\dot{a}
$$

Time derivatives

To express history dependence will use time derivatives and integrals.
But problem: In new frame

$$
\sigma^{\prime}=Q \sigma Q^{T}
$$

so its time derivative

$$
\dot{\sigma}^{\prime}=Q \dot{\sigma} Q^{T}+\dot{Q} \sigma Q^{T}+Q \sigma \dot{Q}^{T}
$$

is different in different frames.
Now flow transforms

$$
u^{\prime}=Q u+\dot{Q} x+\dot{a}
$$

so velocity gradients transform

$$
\frac{\partial u^{\prime}}{\partial x^{\prime}}=Q \frac{\partial u}{\partial x} Q^{T}+\dot{Q} Q^{T} \quad\left(\text { watch indices, } \equiv \nabla u^{T}\right)
$$

Time derivatives

To express history dependence will use time derivatives and integrals.
But problem: In new frame

$$
\sigma^{\prime}=Q \sigma Q^{T}
$$

so its time derivative

$$
\dot{\sigma}^{\prime}=Q \dot{\sigma} Q^{T}+\dot{Q} \sigma Q^{T}+Q \sigma \dot{Q}^{T}
$$

is different in different frames.
Now flow transforms

$$
u^{\prime}=Q u+\dot{Q} x+\dot{a}
$$

so velocity gradients transform

$$
\frac{\partial u^{\prime}}{\partial x^{\prime}}=Q \frac{\partial u}{\partial x} Q^{T}+\dot{Q} Q^{T} \quad\left(\text { watch indices, } \equiv \nabla u^{T}\right)
$$

SO
strain-rate $E^{\prime}=Q E Q^{T}, \quad$ vorticity (tensor) $\Omega^{\prime}=Q \Omega Q^{T}-\dot{Q} Q^{T}$

Co-rotational (Jaumann) time derivative

Hence co-rotational (Jaumann) time derivative

$$
\stackrel{\circ}{\sigma} \equiv \frac{D \sigma}{D t}-\Omega^{T} \cdot \sigma-\sigma \cdot \Omega
$$

Co-rotational (Jaumann) time derivative

Hence co-rotational (Jaumann) time derivative

$$
\stackrel{\circ}{\sigma} \equiv \frac{D \sigma}{D t}-\Omega^{T} \cdot \sigma-\sigma \cdot \Omega
$$

has transformation

$$
\stackrel{\circ^{\prime}}{\sigma^{\prime}}=Q \stackrel{\circ}{\sigma} Q^{T}
$$

Co-rotational (Jaumann) time derivative

Hence co-rotational (Jaumann) time derivative

$$
\stackrel{\circ}{\sigma} \equiv \frac{D \sigma}{D t}-\Omega^{T} \cdot \sigma-\sigma \cdot \Omega
$$

has transformation

$$
\stackrel{\circ^{\prime}}{\sigma^{\prime}}=Q \stackrel{\circ}{\sigma} Q^{T}
$$

Student Exercise

This is the rate of change of σ seen by an observer rotating with the vorticity, and so is universal.

Co-rotational (Jaumann) time derivative

Hence co-rotational (Jaumann) time derivative

$$
\stackrel{\circ}{\sigma} \equiv \frac{D \sigma}{D t}-\Omega^{T} \cdot \sigma-\sigma \cdot \Omega
$$

has transformation

$$
\stackrel{\circ^{\prime}}{\sigma^{\prime}}=Q \stackrel{\circ}{\sigma} Q^{T}
$$

Student Exercise

This is the rate of change of σ seen by an observer rotating with the vorticity, and so is universal.

Recall rotation frames

$$
\stackrel{\circ}{\mathrm{x}}=\dot{\mathrm{x}}+\Omega \mathrm{x}
$$

Co-deformational time derivative

Can add multiple of $E \sigma+\sigma E$ to co-rotational derivative.

Co-deformational time derivative

Can add multiple of $E \sigma+\sigma E$ to co-rotational derivative. Hence (upper) co-deformational (Oldroyd-B) derivative

$$
\stackrel{\nabla}{\sigma} \equiv \frac{D \sigma}{D t}-\nabla u^{T} \cdot \sigma-\sigma \cdot \nabla u
$$

Co-deformational time derivative

Can add multiple of $E \sigma+\sigma E$ to co-rotational derivative. Hence (upper) co-deformational (Oldroyd-B) derivative

$$
\stackrel{\nabla}{\sigma} \equiv \frac{D \sigma}{D t}-\nabla u^{T} \cdot \sigma-\sigma \cdot \nabla u
$$

has transformation

$$
\stackrel{\nabla^{\prime}}{\sigma^{\prime}}=Q Q^{\nabla} Q^{T}
$$

Co-deformational time derivative

Can add multiple of $E \sigma+\sigma E$ to co-rotational derivative. Hence (upper) co-deformational (Oldroyd-B) derivative

$$
\stackrel{\nabla}{\sigma} \equiv \frac{D \sigma}{D t}-\nabla u^{T} \cdot \sigma-\sigma \cdot \nabla u
$$

has transformation

$$
\stackrel{\nabla^{\prime}}{\sigma^{\prime}}=Q \stackrel{\nabla}{\sigma} Q^{T}
$$

Recall stretching material line element

$$
\dot{\delta \ell}=\delta \ell \cdot \nabla u
$$

Co-deformational time derivative

Can add multiple of $E \sigma+\sigma E$ to co-rotational derivative. Hence (upper) co-deformational (Oldroyd-B) derivative

$$
\stackrel{\nabla}{\sigma} \equiv \frac{D \sigma}{D t}-\nabla u^{T} \cdot \sigma-\sigma \cdot \nabla u
$$

has transformation

$$
\stackrel{\nabla^{\prime}}{\sigma^{\prime}}=Q Q^{\nabla} Q^{T}
$$

Recall stretching material line element

$$
\dot{\delta \ell}=\delta \ell \cdot \nabla u
$$

so for second-order tensor

$$
\delta \dot{\delta} \delta \ell=\nabla u^{T} \cdot \delta \ell \delta \ell+\delta \ell \delta \ell \cdot \nabla u
$$

Linear viscoelasticity

The most general linear response for all materials isotropic in rest state.

Linear viscoelasticity

The most general linear response for all materials isotropic in rest state.

Linearise in low stretch: $A^{T} A \approx 1$

$$
\sigma(t)=R(t) \int_{0}^{\infty} G(s) \dot{A^{T} A}(t-s) d s R^{T}(t)
$$

Linear viscoelasticity

The most general linear response for all materials isotropic in rest state.
Linearise in low stretch: $A^{T} A \approx 1$

$$
\sigma(t)=R(t) \int_{0}^{\infty} G(s) \dot{A^{T} A}(t-s) d s R^{T}(t)
$$

The $R(t) \ldots R^{T}(t)$ is a co-rotational integral, but usually dropped in linearisation.

Linear viscoelasticity

The most general linear response for all materials isotropic in rest state.
Linearise in low stretch: $A^{T} A \approx 1$

$$
\sigma(t)=R(t) \int_{0}^{\infty} G(s) \dot{A^{T} A}(t-s) d s R^{T}(t)
$$

The $R(t) \ldots R^{T}(t)$ is a co-rotational integral, but usually dropped in linearisation.

Memory kernel $G(s)$ is the Fourier transform of $G^{*}(\omega)$ of oscillating shear flow.

Linear viscoelasticity

The most general linear response for all materials isotropic in rest state.
Linearise in low stretch: $A^{T} A \approx 1$

$$
\sigma(t)=R(t) \int_{0}^{\infty} G(s) \dot{A^{T} A}(t-s) d s R^{T}(t)
$$

The $R(t) \ldots R^{T}(t)$ is a co-rotational integral, but usually dropped in linearisation.

Memory kernel $G(s)$ is the Fourier transform of $G^{*}(\omega)$ of oscillating shear flow.
For a Newtonian viscous fluid $G(s)=\delta(s)$ and for an elastic solid $G(s)=1$.

Linear viscoelasticity 2

Student Exercise: If $G(t)$ has a single exponential decay,

$$
G(t)=G_{0} e^{-t / \tau}
$$

show that a polar plot of $\operatorname{Re}\left(G^{*}\right)$ versus $\operatorname{Im}\left(G^{*}\right)$ as (real) ω varies is part of a circle.

Linear viscoelasticity 3

Scalar form for simple shear flow

$$
\sigma(t)=\int_{0}^{\infty} G(s) \dot{\gamma}(t-s) d s
$$

Linear viscoelasticity 3

Scalar form for simple shear flow

$$
\sigma(t)=\int_{0}^{\infty} G(s) \dot{\gamma}(t-s) d s
$$

Hence steady shear viscosity (plug in $\dot{\gamma}=$ const)

$$
\mu(0)=\int_{0}^{\infty} G(s) d s
$$

Linear viscoelasticity 3

Scalar form for simple shear flow

$$
\sigma(t)=\int_{0}^{\infty} G(s) \dot{\gamma}(t-s) d s
$$

Hence steady shear viscosity (plug in $\dot{\gamma}=$ const)

$$
\mu(0)=\int_{0}^{\infty} G(s) d s
$$

Hence recoil after stop steady shear flow $\dot{\gamma}_{0}$

$$
-\dot{\gamma}_{0} \frac{\int_{0}^{\infty} s G(s) d s}{\int_{0}^{\infty} G(s) d s}
$$

Second-order fluid

For weak and slowly varying flows,

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

$$
\sigma=-p I+2 \mu E-2 \alpha \stackrel{\nabla}{E}+\beta E \cdot E
$$

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

$$
\sigma=-p I+2 \mu E-2 \alpha \stackrel{\nabla}{E}+\beta E \cdot E
$$

where

$$
\mu=\int_{0}^{\infty} G(s) d s, \quad \alpha=\int_{0}^{\infty} s G(s) d s
$$

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

$$
\sigma=-p I+2 \mu E-2 \alpha \stackrel{\nabla}{E}+\beta E \cdot E
$$

where

$$
\mu=\int_{0}^{\infty} G(s) d s, \quad \alpha=\int_{0}^{\infty} s G(s) d s
$$

from 'retarded motion' expansion.

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

$$
\sigma=-p I+2 \mu E-2 \alpha \stackrel{\nabla}{E}+\beta E \cdot E
$$

where

$$
\mu=\int_{0}^{\infty} G(s) d s, \quad \alpha=\int_{0}^{\infty} s G(s) d s
$$

from 'retarded motion' expansion.
Hence Cox-Mertz is correct in the limit $\dot{\gamma} \rightarrow 0, \omega \rightarrow 0$.

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

$$
\sigma=-p I+2 \mu E-2 \alpha \stackrel{\nabla}{E}+\beta E \cdot E
$$

where

$$
\mu=\int_{0}^{\infty} G(s) d s, \quad \alpha=\int_{0}^{\infty} s G(s) d s
$$

from 'retarded motion' expansion.
Hence Cox-Mertz is correct in the limit $\dot{\gamma} \rightarrow 0, \omega \rightarrow 0$.
Good for dithering Stokes flow, where accumulation of small effects over a long time can produce a significant change.

Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

$$
\sigma=-p I+2 \mu E-2 \alpha \stackrel{\nabla}{E}+\beta E \cdot E
$$

where

$$
\mu=\int_{0}^{\infty} G(s) d s, \quad \alpha=\int_{0}^{\infty} s G(s) d s
$$

from 'retarded motion' expansion.
Hence Cox-Mertz is correct in the limit $\dot{\gamma} \rightarrow 0, \omega \rightarrow 0$.
Good for dithering Stokes flow, where accumulation of small effects over a long time can produce a significant change.

Dangerous in stability analyses and numerical studies, where bad behaviour can occur outside limitation of weak and slowly varying.

Second-order fluid 2

Student Exercises

Second-order fluid 2

Student Exercises

In simple shear

Second-order fluid 2

Student Exercises

In simple shear

- constant viscosity μ

Second-order fluid 2

Student Exercises

In simple shear

- constant viscosity μ
- Normal stress difference $N_{1}=2 \alpha \dot{\gamma}^{2}, N_{2}=-\frac{1}{4} \beta \dot{\gamma}^{2}$

Second-order fluid 2

Student Exercises

In simple shear

- constant viscosity μ
- Normal stress difference $N_{1}=2 \alpha \dot{\gamma}^{2}, N_{2}=-\frac{1}{4} \beta \dot{\gamma}^{2}$

In (axisymmetric pure) extensional flow

- $\mu_{\mathrm{ext}}=\mu+\left(\alpha+\frac{1}{4} \beta\right) \dot{\epsilon}$

Second-order fluid 2

Student Exercises

In simple shear

- constant viscosity μ
- Normal stress difference $N_{1}=2 \alpha \dot{\gamma}^{2}, N_{2}=-\frac{1}{4} \beta \dot{\gamma}^{2}$

In (axisymmetric pure) extensional flow

- $\mu_{\mathrm{ext}}=\mu+\left(\alpha+\frac{1}{4} \beta\right) \dot{\epsilon}$
- but must keep last term small

Generalised Newtonian

Newtonian viscous fluid, except viscosity depends on shear-rate $\dot{\gamma}$,

$$
\sigma=-p l+2 \mu(\dot{\gamma}) E \quad \text { where } \dot{\gamma}=\sqrt{2 E: E}
$$

Generalised Newtonian

Newtonian viscous fluid, except viscosity depends on shear-rate $\dot{\gamma}$,

$$
\sigma=-p l+2 \mu(\dot{\gamma}) E \quad \text { where } \dot{\gamma}=\sqrt{2 E: E}
$$

Depends on instantaneous flow, i.e. no elastic part and no history.

Generalised Newtonian

Newtonian viscous fluid, except viscosity depends on shear-rate $\dot{\gamma}$,

$$
\sigma=-p I+2 \mu(\dot{\gamma}) E \quad \text { where } \dot{\gamma}=\sqrt{2 E: E}
$$

Depends on instantaneous flow, i.e. no elastic part and no history. 'Ad hoc' models to fit experimental data

Generalised Newtonian

Newtonian viscous fluid, except viscosity depends on shear-rate $\dot{\gamma}$,

$$
\sigma=-p I+2 \mu(\dot{\gamma}) E \quad \text { where } \dot{\gamma}=\sqrt{2 E: E}
$$

Depends on instantaneous flow, i.e. no elastic part and no history. 'Ad hoc' models to fit experimental data

- Power-law

$$
\mu=k \dot{\gamma}^{n-1}, \quad \text { i.e. stress } \sigma \propto \dot{\gamma}^{n}
$$

Generalised Newtonian

Newtonian viscous fluid, except viscosity depends on shear-rate $\dot{\gamma}$,

$$
\sigma=-p I+2 \mu(\dot{\gamma}) E \quad \text { where } \dot{\gamma}=\sqrt{2 E: E}
$$

Depends on instantaneous flow, i.e. no elastic part and no history. 'Ad hoc' models to fit experimental data

- Power-law

$$
\mu=k \dot{\gamma}^{n-1}, \quad \text { i.e. stress } \sigma \propto \dot{\gamma}^{n}
$$

- Carreau, Yasuda \& Cross

$$
\mu=\mu_{\infty}+\left(\mu_{0}-\mu_{\infty}\right)\left(1+(\tau \dot{\gamma})^{a}\right)^{(n-1) / a}
$$

with plateaux at high and low $\dot{\gamma}$.

Generalised Newtonian

More 'ad hoc' models.

Generalised Newtonian

More 'ad hoc' models.
Yield fluids which only flow if σ exceeds a yield value σ_{Y}.

Generalised Newtonian

More 'ad hoc' models.
Yield fluids which only flow if σ exceeds a yield value σ_{Y}.

- Bingham

$$
\mu= \begin{cases}\infty, \text { so } E=0 & \text { if } \sigma<\sigma_{Y} \\ \mu_{0}+\sigma_{Y} / \dot{\gamma} & \text { if } \sigma>\sigma_{Y}\end{cases}
$$

Generalised Newtonian

More 'ad hoc' models.
Yield fluids which only flow if σ exceeds a yield value σ_{Y}.

- Bingham

$$
\mu= \begin{cases}\infty, \text { so } E=0 & \text { if } \sigma<\sigma_{Y} \\ \mu_{0}+\sigma_{Y} / \dot{\gamma} & \text { if } \sigma>\sigma_{Y}\end{cases}
$$

- Herchel-Buckley

$$
\mu= \begin{cases}\infty, \text { so } E=0 & \text { if } \sigma<\sigma_{Y} \\ \mu_{0} \dot{\gamma}^{n-1}+\sigma_{Y} / \dot{\gamma} & \text { if } \sigma>\sigma_{Y}\end{cases}
$$

Oldroyd-B model fluid

History dependence through time differentials.

Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

$$
\sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0}\left(E+\lambda_{2} \stackrel{\nabla}{E}\right) \quad \text { with } 0 \leq \lambda_{2} \leq \lambda_{1}
$$

Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

$$
\sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0}\left(E+\lambda_{2} \stackrel{\nabla}{E}\right) \quad \text { with } 0 \leq \lambda_{2} \leq \lambda_{1}
$$

Three constants

- a viscosity μ_{0},
- a relaxation time λ_{1} and
- a retardation time λ_{2}.

Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

$$
\sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0}\left(E+\lambda_{2} \stackrel{\nabla}{E}\right) \quad \text { with } 0 \leq \lambda_{2} \leq \lambda_{1}
$$

Three constants

- a viscosity μ_{0},
- a relaxation time λ_{1} and
- a retardation time λ_{2}.

Special cases

Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

$$
\sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0}\left(E+\lambda_{2} \stackrel{\nabla}{E}\right) \quad \text { with } 0 \leq \lambda_{2} \leq \lambda_{1}
$$

Three constants

- a viscosity μ_{0},
- a relaxation time λ_{1} and
- a retardation time λ_{2}.

Special cases

- Maxwell UCM $\lambda_{2}=0$

Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

$$
\sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0}\left(E+\lambda_{2} \stackrel{\nabla}{E}\right) \quad \text { with } 0 \leq \lambda_{2} \leq \lambda_{1}
$$

Three constants

- a viscosity μ_{0},
- a relaxation time λ_{1} and
- a retardation time λ_{2}.

Special cases

- Maxwell UCM $\lambda_{2}=0$
- Newtonian $\lambda_{1}=\lambda_{2}$

Oldroyd-B model fluid 2

Student Exercises

Oldroyd-B model fluid 2

Student Exercises
In simple shear

Oldroyd-B model fluid 2

Student Exercises
In simple shear

- constant viscosity $\mu=\mu_{0}$

Oldroyd-B model fluid 2

Student Exercises

In simple shear

- constant viscosity $\mu=\mu_{0}$
- Normal stress difference $N_{1}=2 \mu_{0}\left(\lambda_{1}-\lambda_{2}\right) \dot{\gamma}^{2}, N_{2}=0$

Oldroyd-B model fluid 2

Student Exercises

In simple shear

- constant viscosity $\mu=\mu_{0}$
- Normal stress difference $N_{1}=2 \mu_{0}\left(\lambda_{1}-\lambda_{2}\right) \dot{\gamma}^{2}, N_{2}=0$

In (axisymmetric pure) extensional flow

Oldroyd-B model fluid 2

Student Exercises

In simple shear

- constant viscosity $\mu=\mu_{0}$
- Normal stress difference $N_{1}=2 \mu_{0}\left(\lambda_{1}-\lambda_{2}\right) \dot{\gamma}^{2}, N_{2}=0$

In (axisymmetric pure) extensional flow

$$
\mu_{\mathrm{ext}}=\mu_{0} \frac{1-\lambda_{2} \dot{\epsilon}-2 \lambda_{1} \lambda_{2} \dot{\epsilon}^{2}}{\left(1-2 \lambda_{1} \dot{\epsilon}\right)\left(1+\lambda_{1} \epsilon\right)}
$$

Oldroyd-B model fluid 2

Student Exercises

In simple shear

- constant viscosity $\mu=\mu_{0}$
- Normal stress difference $N_{1}=2 \mu_{0}\left(\lambda_{1}-\lambda_{2}\right) \dot{\gamma}^{2}, N_{2}=0$

In (axisymmetric pure) extensional flow

$$
\mu_{\mathrm{ext}}=\mu_{0} \frac{1-\lambda_{2} \dot{\epsilon}-2 \lambda_{1} \lambda_{2} \dot{\epsilon}^{2}}{\left(1-2 \lambda_{1} \dot{\epsilon}\right)\left(1+\lambda_{1} \epsilon\right)}
$$

- becomes negative just above $\dot{\epsilon}=1 / 2 \lambda_{1}$!!!!!

Variants of Oldroyd-B

- White-Metzner to incorporate shear-thinning $\mu(\dot{\gamma})$

$$
\sigma+\frac{\mu(\dot{\gamma})}{G} \stackrel{\nabla}{\sigma}=2 \mu(\dot{\gamma}) E
$$

Variants of Oldroyd-B

- White-Metzner to incorporate shear-thinning $\mu(\dot{\gamma})$

$$
\sigma+\frac{\mu(\dot{\gamma})}{G} \stackrel{\nabla}{\sigma}=2 \mu(\dot{\gamma}) E
$$

- Giesekus for positive extensional viscosity

$$
\sigma+\frac{\alpha \lambda_{1}}{\mu_{0}} \sigma^{2}+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0} E
$$

Variants of Oldroyd-B

- White-Metzner to incorporate shear-thinning $\mu(\dot{\gamma})$

$$
\sigma+\frac{\mu(\dot{\gamma})}{G} \stackrel{\nabla}{\sigma}=2 \mu(\dot{\gamma}) E
$$

- Giesekus for positive extensional viscosity

$$
\sigma+\frac{\alpha \lambda_{1}}{\mu_{0}} \sigma^{2}+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0} E
$$

- PTT-exponential Phan-Thien \& Tanner

$$
\left.\sigma+\left[\exp \left(\frac{\lambda_{1}}{\mu_{0}} \operatorname{trace} \sigma\right)-1\right]\right] \sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0} E
$$

Variants of Oldroyd-B

- White-Metzner to incorporate shear-thinning $\mu(\dot{\gamma})$

$$
\sigma+\frac{\mu(\dot{\gamma})}{G} \stackrel{\nabla}{\sigma}=2 \mu(\dot{\gamma}) E
$$

- Giesekus for positive extensional viscosity

$$
\sigma+\frac{\alpha \lambda_{1}}{\mu_{0}} \sigma^{2}+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0} E
$$

- PTT-exponential Phan-Thien \& Tanner

$$
\left.\sigma+\left[\exp \left(\frac{\lambda_{1}}{\mu_{0}} \operatorname{trace} \sigma\right)-1\right]\right] \sigma+\lambda_{1} \stackrel{\nabla}{\sigma}=2 \mu_{0} E
$$

- Multi-mode versions of above

Molecular reformulation of Oldroyd-B

also for better numerics

Microstructure A :

$$
\stackrel{\nabla}{A}+\frac{f}{\tau}(A-I)=0
$$

Molecular reformulation of Oldroyd-B

also for better numerics

Microstructure A :

$$
\stackrel{\nabla}{A}+\frac{f}{\tau}(A-I)=0
$$

Stress σ :

$$
\sigma=-p l+2 \mu_{0} E+G f(A-I)
$$

Oldroyd-B $f=1$

Molecular reformulation of Oldroyd-B

also for better numerics

Microstructure A :

$$
\stackrel{\nabla}{A}+\frac{f}{\tau}(A-I)=0
$$

Stress σ :

$$
\sigma=-p l+2 \mu_{0} E+G f(A-I)
$$

Oldroyd-B $f=1$
FENE modification, for nice behaviour in extensional flow

$$
f=\frac{L^{2}}{L^{2}-\operatorname{trace} A}
$$

K-BKZ model fluid

Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals

K-BKZ model fluid

Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals
Merging of linear viscoelasticity and nonlinear elasticity

$$
\sigma=\int_{0}^{\infty} \dot{G}(s)\left[\frac{\partial w}{\partial \alpha}\left(\tilde{A} \tilde{A}^{T}-l\right)-\frac{\partial w}{\partial \beta}\left(\tilde{A}^{-1 T} \tilde{A}^{-1}-l\right)\right] d s
$$

K-BKZ model fluid

Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals
Merging of linear viscoelasticity and nonlinear elasticity

$$
\sigma=\int_{0}^{\infty} \dot{G}(s)\left[\frac{\partial w}{\partial \alpha}\left(\tilde{A} \tilde{A}^{T}-l\right)-\frac{\partial w}{\partial \beta}\left(\tilde{A}^{-1 T} \tilde{A}^{-1}-l\right)\right] d s
$$

where the relative deformation from s to t is

$$
\tilde{A}=A(t) A^{-1}(s)
$$

K-BKZ model fluid

Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals
Merging of linear viscoelasticity and nonlinear elasticity

$$
\sigma=\int_{0}^{\infty} \dot{G}(s)\left[\frac{\partial w}{\partial \alpha}\left(\tilde{A} \tilde{A}^{T}-l\right)-\frac{\partial w}{\partial \beta}\left(\tilde{A}^{-1 T} \tilde{A}^{-1}-l\right)\right] d s
$$

where the relative deformation from s to t is

$$
\tilde{A}=A(t) A^{-1}(s)
$$

$\frac{\partial w}{\partial \alpha}$ and $\frac{\partial w}{\partial \beta}$ are usually replaced by ϕ_{1} and ϕ_{2} 'damping functions',

K-BKZ model fluid

Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals
Merging of linear viscoelasticity and nonlinear elasticity

$$
\sigma=\int_{0}^{\infty} \dot{G}(s)\left[\frac{\partial w}{\partial \alpha}\left(\tilde{A} \tilde{A}^{T}-l\right)-\frac{\partial w}{\partial \beta}\left(\tilde{A}^{-1 T} \tilde{A}^{-1}-l\right)\right] d s
$$

where the relative deformation from s to t is

$$
\tilde{A}=A(t) A^{-1}(s)
$$

$\frac{\partial w}{\partial \alpha}$ and $\frac{\partial w}{\partial \beta}$ are usually replaced by ϕ_{1} and ϕ_{2} 'damping functions', not derivatives of some w,

K-BKZ model fluid

Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals
Merging of linear viscoelasticity and nonlinear elasticity

$$
\sigma=\int_{0}^{\infty} \dot{G}(s)\left[\frac{\partial w}{\partial \alpha}\left(\tilde{A} \tilde{A}^{T}-l\right)-\frac{\partial w}{\partial \beta}\left(\tilde{A}^{-1 T} \tilde{A}^{-1}-l\right)\right] d s
$$

where the relative deformation from s to t is

$$
\tilde{A}=A(t) A^{-1}(s)
$$

$\frac{\partial w}{\partial \alpha}$ and $\frac{\partial w}{\partial \beta}$ are usually replaced by ϕ_{1} and ϕ_{2} 'damping functions', not derivatives of some w,
functions of combinations α and β eigenvalues of \tilde{A}.

K-BKZ model fluid 2

Student Exercises

K-BKZ model fluid 2

Student Exercises
In simple shear

K-BKZ model fluid 2

Student Exercises

In simple shear

$$
\mu=\int_{0}^{\infty} \dot{G}(s)\left(\phi_{1}+\phi_{2}\right) s d s
$$

$$
N_{1}=\int_{0}^{\infty} \dot{G}(s)\left(\phi_{1}+\phi_{2}\right) s^{2} d s, \quad N_{2}=-\int_{0}^{\infty} \dot{G}(s) \phi_{2} s^{2} d s
$$

K-BKZ model fluid 2

Student Exercises

In simple shear

$$
\mu=\int_{0}^{\infty} \dot{G}(s)\left(\phi_{1}+\phi_{2}\right) s d s
$$

$$
N_{1}=\int_{0}^{\infty} \dot{G}(s)\left(\phi_{1}+\phi_{2}\right) s^{2} d s, \quad N_{2}=-\int_{0}^{\infty} \dot{G}(s) \phi_{2} s^{2} d s
$$

In extensional flow

K-BKZ model fluid 2

Student Exercises

In simple shear

$$
\mu=\int_{0}^{\infty} \dot{G}(s)\left(\phi_{1}+\phi_{2}\right) s d s
$$

$$
N_{1}=\int_{0}^{\infty} \dot{G}(s)\left(\phi_{1}+\phi_{2}\right) s^{2} d s, \quad N_{2}=-\int_{0}^{\infty} \dot{G}(s) \phi_{2} s^{2} d s
$$

In extensional flow

$$
\mu_{\mathrm{ext}}=\int_{0}^{\infty} \dot{G}(s)\left[\phi_{1}\left(e^{2 \dot{\epsilon} s}-e^{-\dot{\epsilon} s}\right)+\phi_{2}\left(e^{\dot{\epsilon} s}-e^{-2 \dot{\epsilon} s}\right)\right] s d s / \dot{\epsilon}
$$

K-BKZ model fluid 3

Wagner model

$$
\phi_{2}=0 \quad \text { so } N_{2}=0
$$

and

$$
\phi_{1}=\exp (-k \sqrt{\alpha-3+\theta(\beta-\alpha)})
$$

K-BKZ model fluid 3

Wagner model

$$
\phi_{2}=0 \quad \text { so } N_{2}=0
$$

and

$$
\phi_{1}=\exp (-k \sqrt{\alpha-3+\theta(\beta-\alpha)})
$$

In shear shear

$$
\phi_{1}=\exp (-k \dot{\gamma}(t-s))
$$

