
Chapter 4

Some simple flow calculations

Pipe flow for a power-law fluid

Capillary rheometry

Bingham yield fluid in a Couette device

Rod-climbing

Unchanging flow field for a second-order fluid

Converging flow of rigid-rod suspension

Spinning an Oldroyd-B fluid



Pipe flow for a power-law fluid

Flux Q
radius a

length L

Pressure drop ∆p

Axial momentum

0 = −dp

dz
+

1

r

∂

∂r
(rσzr )

so

σzr =
r

R
σwall with σwall =

∆pR

2L
.

Power-law fluid

σzr = κγ̇n with γ̇ = −dw

dr
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Pipe flow for a power-law fluid 2

Integrating

w =
(σw
κR

) 1
n R

1
n
+1 − r

1
n
+1

1
n + 1

n = 1  n<1

{
Near center, low σ, so high µ

Near wall, high σ so low µ
So flattened profile

Hence volume flux

Q =
πR3

1
n + 3

(
∆pR

2Lκ

) 1
n

Also wire coating, film draining, drop spreading & peristaltic
pumping
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Lubrication application: sphere approaching a wall

Gap Sphere radius a, minimum gap d

h(r) = d

(
1 +

r2

2ad

)

Mass flux Sphere approaching at velocity W

2πrQ = πr2W

Power-law flow
dp

dr
=

κ
(
1
2 + 1

4n

)n
W nrn[

1
2d
(

1 + r2

2ad

)]1+2n
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Lubrication application: sphere approaching a wall 2

Force

Mg = κ

(
W

d

)n

ad
( a
d

) n+1
2
π2

3n+5
2

(
1 +

1

2n

)n ∫ ∞
0

r2+n

(1 + r2)1+2n

Note integrand like r−3n at large r ,
so need n > 1

3 for lubrication in gap to dominate.

Student Exercise
Find velocity of a sphere falling in a tight tube filled with
power-law fluid. Hint: ∆pπa2 = ∆ρ4πa3

3 g
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Capillary rheometry

Problem: To find µ(γ̇) even though γ̇(r).

Q =

∫ R

0
w 2πr dr

= −
∫ R

0
γ̇ πr2 dr as

dw

dr
= γ̇

= −πR
3

σ3w

∫ σw

0
γ̇(σ)σ2 dσ as σ ∝ r

Hence

γ̇wall = − 1

σ2w

d

dσw

(
σ3wQ

πR3

)
= − 1

πR3

(
3Q + σw

dQ

dσw

)
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Capillary rheometry 2

So as σw ∝ ∆p

γ̇wall = − Q

πR3

(
3 +

d lnQ

d ln ∆P

)
,

Slope of plot lnQ vs ln ∆p, = 1 if Newtonian, = 3 power-law
n = 1

3 .

Then the shear-rate dependent viscosity is found from

µw =
σw
γ̇w

=
∆pR

2Lγ̇w

Student Exercise: Similar analysis for a parallel plate rheometer.
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Bingham yield fluid in a Couette device

L

Ω

a

b

θ-momentum

0 =
1

r2
d

dr

(
r2σrθ

)
so σrθ =

T

2πLr2

Bingham fluid

γ̇ = 0 if σ < σY

σrθ = σY + µγ̇ if σ > σY
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Bingham yield fluid in a Couette device 2

Yields inside surface at

r = rY =

√
T

2πLσY

1. All yield rY > b

2. None yield rY < a

3. Partial yield a < rY < b

In a < r < rY (yielding)

γ̇ = r
d

dr

(uθ
r

)
=
σY
µ

(
rY

2

r2
− 1

)
So

uθ
r

=
σY
µ

[
1

2

(
1

a2
− 1

r2

)
− ln

r

a

]
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Bingham yield fluid in a Couette device 3

In rY < r < b (not yielding)

uθ
r

= Ω

Continuity of uθ at r = rY gives

Ω(rY (T ))

Student exercise
Similarly in pipe flow
Similar in squeeze film, although too difficult for a few lectures.
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Rod-climbing for a second-order fluid

z=h(r)

Ω

a

Flow ≈ Newtonian

uθ =
Ωa2

r
so γ̇ = r

d

dr

(uθ
r

)
= −2Ωa2

r2



Rod-climbing for a second-order fluid

z=h(r)

Ω

a

Flow ≈ Newtonian

uθ =
Ωa2

r
so γ̇ = r

d

dr

(uθ
r

)
= −2Ωa2

r2



Rod-climbing for a second-order fluid 2

Second-order fluid

σ = −pI + 2µE − 2α
O
E + βE · E

So

σθr = µγ̇

σrr = −p + 1
4βγ̇

2

σθθ = −p +
(
2α + 1

4β
)
γ̇2

σzz = −p

To find p(r) and hence h(r)
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Rod-climbing for a second-order fluid 3

Radial momentum

0 =
∂σrr
∂r

+
σrr − σθθ

r
, last term = −2αγ̇2

r
= −8αΩ2a4

r5

So (
σrr = −p + 1

4βγ̇
2
)

+ 1
2αγ̇

2 = f (z)

Vertical momentum

0 =
∂σzz
∂z
− ρg , with σzz = 0 on z = h(r)

Hence

p = −σzz = ρg (h(r)− z)

so h(r) =
1

ρg
(2α + β)

Ω2a4

r4
.

Could add surface tension and inertia
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Unchanging flow field for a second-order fluid

Second-order fluid = Newtonian with small non-linear correction.

Student exercise Show

∇ ·
(

2
O
E + 4E · E

)
=

D

Dt
∇2u +∇u · ∇2u +∇(E : E )

If u(x,t) and p1(x, t) satisfy Newtonian Stokes flow

0 = −∇p1 + µ∇2u and ∇ · u = 0,

then same u(x,t) with different p2(x, t) satisfies (Giesekus)
second-order fluid equation

∇ · σ = 0

σ = −p2 + 2µE − 2α
O
E + βE · E

with

β = −4α and p2 = p1 −
α

µ

Dp1
Dt

+ αE · E Student Exercise
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Unchanging flow field for a second-order fluid 2

Similar results with no restriction of α and β

I Planar flows – Tanner & Pipkin

I unidirectional flows – Langlois, Rivlin & Pipkin



Converging flow of rigid-rod suspension

Rheology: an anisotropic viscosity in direction of rods/fibres p

σ = −pI + 2µshearE + 2µextpp(p · E · p)

In 2-D sink flow, radial flow ur = f (θ)/r and rods align radially
pr = 1.

So with pressure g(θ)/r2 the stress is

σrr = − g

r2
−2(µs+µe)

f

r2
, σrθ = µs

f ′

r2
, σθθ = − g

r2
+2µs

f

r2
.
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Converging flow of rigid-rod suspension 2

θ-momentum
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
2σrθ
r

= 0

so
g ′ = µs f

′

Radial momentum

∂σrr
∂r

+
1

r

∂σθθ
∂θ

+
σrr − σθθ

r
= 0

so

f ′′ +

(
4 + 2

µe
µs

)
f = const

A compression in θ-direction of
√

1 + µe/2µs
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Converging flow of rigid-rod suspension 3

Newtonian flow has recirculation region if angle > π

Non−Newtonian Fluid

Newtonian Fluid

Rigid-rod suspension, with the compression in θ-direction, has
recirculation region at angle = π

Anisotropy in rheology leads to anisotropy in flow

Also 3D sink flow.
Also flow round a sharp corner (rods along streamlines).
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Spinning an Oldroyd-B fluid

w

z

R

Volume flux
Q = πR2w

Tension, ignoring surface tension, gravity and inertia

F = πR2σzz

Oldroyd-B

σ = −pI + 2µE + GA

DA

Dt
= A · ∇u +∇uT · A− 1

τ
(A− I )
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Spinning an Oldroyd-B fluid 2

So

w
dArr

dz
= −Arr

dw

dz
− 1

τ
(Arr − 1)

w
dAzz

dz
= 2Azz

dw

dz
− 1

τ
(Azz − 1)

Free surface

σrr = 0, so p = −µdw
dz

+ GArr

Momentum equation

σzz = 3µ
dw

dz
+ G (Azz − Arr ) =

F

πR2
=

Fw

Q

This equation gives dw/dz which the can use in dA../dz equations
above.



Spinning an Oldroyd-B fluid 2

So

w
dArr

dz
= −Arr

dw

dz
− 1

τ
(Arr − 1)

w
dAzz

dz
= 2Azz

dw

dz
− 1

τ
(Azz − 1)

Free surface

σrr = 0, so p = −µdw
dz

+ GArr

Momentum equation

σzz = 3µ
dw

dz
+ G (Azz − Arr ) =

F

πR2
=

Fw

Q

This equation gives dw/dz which the can use in dA../dz equations
above.



Spinning an Oldroyd-B fluid 2

So

w
dArr

dz
= −Arr

dw

dz
− 1

τ
(Arr − 1)

w
dAzz

dz
= 2Azz

dw

dz
− 1

τ
(Azz − 1)

Free surface

σrr = 0, so p = −µdw
dz

+ GArr

Momentum equation

σzz = 3µ
dw

dz
+ G (Azz − Arr ) =

F

πR2
=

Fw

Q

This equation gives dw/dz which the can use in dA../dz equations
above.



Spinning an Oldroyd-B fluid 3

Newtonian limit τdw/dz � 1

Arr ∼ 1− τ dw
dw

, Azz ∼ 1 + 2τ
dw

dz

so

σzz ∼ 3(µ+ Gτ)
dw

dz
=

Fw

Q
so

w(z) ∼ w(0) exp

(
Fz

3Q(µ+ Gτ)

)



Spinning an Oldroyd-B fluid 4

Elastic limit µdw/dz ,GArr � GAzz

Fw

Q
= σzz ∼ GAzz , or Azz ∼

Fw

GQ

substitute into

w
dAzz

dz
= 2Azz

dw

dz
− 1

τ
(Azz − 1(← small))

for

w
dw

dz
= 2w

dw

dz
− 1

τ
w

with solution

w = w0 +
z

τ
, independent of F !

Need stretch to avoid relaxation
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