Experiments

Materials

Observations

Practical problems

What is a complete rheological description? Use complex flows?

What is a complete rheological description? Use complex flows?

Must document many details of preparation, e.g. molecular weight distribution, for others to reproduce results.

What is a complete rheological description? Use complex flows?

Must document many details of preparation, e.g. molecular weight distribution, for others to reproduce results.

Standard materials

i. IUPAC-LDPE – J.Meissner 1975 Pure & Applied Chemistry

ii. The M1 fluid T.Sridhar (1990) JNNEM 35 0.244% polyisobutylene ($M = 3.8 \, 10^6$) in polybutene + 7% kerosene

ii. The M1 fluid T.Sridhar (1990) JNNFM 35 0.244% polyisobutylene ($M = 3.8 \, 10^6$) in polybutene + 7% kerosene Cold solution easier to handle than hot melts

ii. The M1 fluid T.Sridhar (1990) JNNFM 35 0.244% polyisobutylene ($M = 3.8 \, 10^6$) in polybutene + 7% kerosene

Cold solution easier to handle than hot melts

Steady shear

Laun & Hingham (1990) JNNFM 35

ii. The M1 fluid T.Sridhar (1990) JNNFM 35 0.244% polyisobutylene ($M = 3.8 \, 10^6$) in polybutene + 7% kerosene

Cold solution easier to handle than hot melts

Steady shear

Laun & Hingham (1990) JNNFM 35

Boger fluid: $\mu(\dot{\gamma}) \approx {\rm const},$ $N_1 \propto \dot{\gamma}^2$

Standard Materials 2 - M1 continued

Laun & Hingham (1990) JNNFM 35

Standard Materials 3 – M1 continued

Extensional viscosity

M1 data collected by Keiller (1992) JNNFM 42

Standard Materials 3 – M1 continued

Extensional viscosity

M1 data collected by Keiller (1992) JNNFM 42

Confusion, but very large stresses

iii. The S1 fluid N.Hudson (1994) JNNFM 525% polyisobutylene in decalin

Standard Materials 4 - S1

iii. The S1 fluid N.Hudson (1994) JNNFM 525% polyisobutylene in decalin

Shear

Ooi & Sridhar (1994) JNNFM 52

Shear-thinning

Standard Materials 5

Extension of S1, A1 & M1 Ooi & Sridhar (1994) JNNFM 52

as function of time

Standard Materials 5

Extension of S1, A1 & M1 Ooi & Sridhar (1994) JNNFM 52

as function of time

- all solutions of similar high molecular weight polymer

► Volume flow, Visualisation, LVA, PIV, NMR

- ► Volume flow, Visualisation, LVA, PIV, NMR
- Forces and couples

- Volume flow, Visualisation, LVA, PIV, NMR
- Forces and couples
- ► ∆p
 - but large entry loss
 - hole errors in pressure taps from N_1

- Volume flow, Visualisation, LVA, PIV, NMR
- Forces and couples
- ► ∆p
 - but large entry loss
 - hole errors in pressure taps from N_1
- Birefringence: assume stress-optical law

$$\sigma = C\Delta n$$

Observed birefringence

Martyn, Nakason & Coates (2000) JNNFM 91

(b) slit wall shear rate = 255 s^{-1}

Observed birefringence

Martyn, Nakason & Coates (2000) JNNFM 91

(b) slit wall shear rate = 255 s ⁻

deduced stress contours

Start up of extensional flow at different strain-rates

Sridhar (2000) JNNFM 90

Start up of extensional flow at different strain-rates

Sridhar (2000) JNNFM 90

Failure of stress-optical law

Start up of extensional flow at different strain-rates

Sridhar (2000) JNNFM 90

Failure of stress-optical law

- bond alignment vs overall deformation

• Flow instabilities \rightarrow apparent jumps in rheology

- Flow instabilities \rightarrow apparent jumps in rheology
- Wall slip pastes and polymer melts

- Flow instabilities \rightarrow apparent jumps in rheology
- Wall slip pastes and polymer melts
- Shear-banding

- Flow instabilities \rightarrow apparent jumps in rheology
- Wall slip pastes and polymer melts
- Shear-banding
- Viscous heating with $\mu(T, p, \dot{\gamma})$

- Flow instabilities \rightarrow apparent jumps in rheology
- Wall slip pastes and polymer melts
- Shear-banding
- Viscous heating with $\mu(T, p, \dot{\gamma})$
- Phase separation/crystallisation

- Flow instabilities \rightarrow apparent jumps in rheology
- Wall slip pastes and polymer melts
- Shear-banding
- Viscous heating with $\mu(T, p, \dot{\gamma})$
- Phase separation/crystallisation
- Degradation light, UV, bio, mechanical

Practical problems - wall slip

Kulikov (2001) JNNFM 98

Joshi (2000) JNNFM 94

Practical problems – $\mu(T, p, \dot{\gamma})$

Blair (2001) JNNFM

Practical problems - mechanical degradation

Drag reduction decrease in time

Kalashnikov (2002) JNNFM 103

Practical problems - mechanical degradation

Drag reduction decrease in time

Kalashnikov (2002) JNNFM 103

Theory: residence time in wall layer $t_*(Q, d, L, c, \mu_0)$.