No lecture Thursday 17 February 2011
Next lecture Tuesday 22 February

Chapter 6

Numerics

Discretisation
Finite Elements
Spectral
Finite Differences

Pressure

Fractional time-step
FE pressure problems
Elliptic and hyperbolic
Elliptic part
Hyperbolic
Bench marks
Numerical problems

Discretisation

- Finite Elements
- good for complex geometry
- need good elliptic solver on unstructured grid
- commercial code : Polyflow

Discretisation

- Finite Elements
- good for complex geometry
- need good elliptic solver on unstructured grid
- commercial code : Polyflow
- Spectral
- very accurate
- only for periodic geometry
- wavy-wall tube, turbulent drag reduction

Discretisation

- Finite Elements
- good for complex geometry
- need good elliptic solver on unstructured grid
- commercial code: Polyflow
- Spectral
- very accurate
- only for periodic geometry
- wavy-wall tube, turbulent drag reduction
- Finite differences
- simple, so good for understanding underlying difficulties
- only for simple geometry (but mappable)

Finite Elements

- Divide domain into elements - triangles, quadrilaterals

Finite Elements

- Divide domain into elements - triangles, quadrilaterals
- Represent unknowns by simple functions over elements

$$
\mathbf{u}(\mathbf{x})=\sum^{N} \mathbf{f}_{i} \phi_{i}(\mathbf{x})
$$

Finite Elements

- Divide domain into elements - triangles, quadrilaterals
- Represent unknowns by simple functions over elements

$$
\mathbf{u}(\mathbf{x})=\sum^{N} \mathbf{f}_{i} \phi_{i}(\mathbf{x})
$$

E.G. for a triangle $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$,
$\phi_{1}(\mathbf{x})=1$ at vertex $\mathbf{x}=\mathbf{x}_{1}$ and vanishing at \mathbf{x}_{2} and \mathbf{x}_{3}

$$
\phi_{1}(\mathbf{x})=\frac{\left(\mathbf{x}-\mathbf{x}_{2}\right) \times\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right) \cdot \hat{\mathbf{z}}}{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \times\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right) \cdot \hat{\mathbf{z}}}
$$

Finite Elements 2

- Substitute into momentum/mass/stress equation and project (Galerkin)

$$
\int\left(\rho \frac{D u}{D t}-\nabla \cdot \sigma\right) \cdot \phi_{s}(\mathbf{x}) d V=0, \quad s=1,2, . ., N
$$

Finite Elements 2

- Substitute into momentum/mass/stress equation and project (Galerkin)

$$
\int\left(\rho \frac{D u}{D t}-\nabla \cdot \sigma\right) \cdot \phi_{s}(\mathbf{x}) d V=0, \quad s=1,2, . ., N
$$

- Typical finite elements have less pressure modes than velocity, and sometimes more stress than velocity

Spectral

- Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$
f(x)=\sum^{N} f_{n} e^{i n x}
$$

Spectral

- Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$
f(x)=\sum^{N} f_{n} e^{i n x}
$$

- Possible problems with boundary conditions.

Spectral

- Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$
f(x)=\sum^{N} f_{n} e^{i n x}
$$

- Possible problems with boundary conditions.
- Then differentiation

$$
f^{\prime}(x)=\sum^{N} f_{n} i n e^{i n x}+O\left(e^{-N}\right) \quad \text { good }
$$

Spectral

- Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$
f(x)=\sum^{N} f_{n} e^{i n x}
$$

- Possible problems with boundary conditions.
- Then differentiation

$$
f^{\prime}(x)=\sum^{N} f_{n} i n e^{i n x}+O\left(e^{-N}\right) \quad \text { good }
$$

- but products

$$
f(x) g(x)=\sum_{n}^{N} \sum_{k}^{N} f_{k} g_{n-k} e^{i n x} \quad \text { bad }
$$

Spectral

- Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$
f(x)=\sum^{N} f_{n} e^{i n x}
$$

- Possible problems with boundary conditions.
- Then differentiation

$$
f^{\prime}(x)=\sum^{N} f_{n} i n e^{i n x}+O\left(e^{-N}\right) \quad \text { good }
$$

- but products

$$
f(x) g(x)=\sum_{n}^{N} \sum_{k}^{N} f_{k} g_{n-k} e^{i n x} \quad \text { bad }
$$

- So use pseudo-spectral - evaluate products in real space and derivatives in Fourier space.

Spectral 2

- Galerkin or collocation to satisfy governing equations

Spectral 2

- Galerkin or collocation to satisfy governing equations
- Fast Transforms useful

Spectral 2

- Galerkin or collocation to satisfy governing equations
- Fast Transforms useful
- Smooth OK, discontinuities bad (hidden at boundaries?)

Spectral 2

- Galerkin or collocation to satisfy governing equations
- Fast Transforms useful
- Smooth OK, discontinuities bad (hidden at boundaries?)
- Aliasing - chop top $\frac{1}{3}$ of spectrum

Finite Differences

- Simple

Finite Differences

- Simple
- Needs coordinate grid
- gives organised labelling
- consider conformal map

Finite Differences

- Simple
- Needs coordinate grid
- gives organised labelling
- consider conformal map
- Differentiation - central $2^{\text {nd }}$ order

$$
f^{\prime \prime} \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Finite Differences

- Simple
- Needs coordinate grid
- gives organised labelling
- consider conformal map
- Differentiation - central $2^{\text {nd }}$ order

$$
f^{\prime \prime} \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

- Conservative, e.g.

$$
\nabla^{4} \psi=\nabla \times \nabla \cdot\left(\nabla+\nabla^{T}\right) \nabla \times \psi \neq \nabla^{2} \nabla^{2} \psi
$$

Fractional time-step

Pressure ensures incompressibility

Fractional time-step

Pressure ensures incompressibility
Half step to u^{*} using no-slip BC

$$
\frac{u^{*}-u^{n}}{\Delta t}=-(u \cdot \nabla u)^{n}+\nabla \cdot \sigma^{n}
$$

Fractional time-step

Pressure ensures incompressibility
Half step to u^{*} using no-slip BC

$$
\frac{u^{*}-u^{n}}{\Delta t}=-(u \cdot \nabla u)^{n}+\nabla \cdot \sigma^{n}
$$

Project to incompressible

$$
u^{n+1}=u^{*}-\Delta t \nabla p^{n+1}, \quad \text { so } \quad \nabla \cdot u^{n+1}=0
$$

Fractional time-step

Pressure ensures incompressibility
Half step to u^{*} using no-slip BC

$$
\frac{u^{*}-u^{n}}{\Delta t}=-(u \cdot \nabla u)^{n}+\nabla \cdot \sigma^{n}
$$

Project to incompressible

$$
u^{n+1}=u^{*}-\Delta t \nabla p^{n+1}, \quad \text { so } \quad \nabla \cdot u^{n+1}=0
$$

i.e. solve

$$
\Delta t \nabla^{2} p^{n+1}=\nabla \cdot u^{*}
$$

Fractional time-step

Pressure ensures incompressibility
Half step to u^{*} using no-slip BC

$$
\frac{u^{*}-u^{n}}{\Delta t}=-(u \cdot \nabla u)^{n}+\nabla \cdot \sigma^{n}
$$

Project to incompressible

$$
u^{n+1}=u^{*}-\Delta t \nabla p^{n+1}, \quad \text { so } \quad \nabla \cdot u^{n+1}=0
$$

i.e. solve

$$
\Delta t \nabla^{2} p^{n+1}=\nabla \cdot u^{*}
$$

Also pressure update $O\left(\Delta t^{2}\right)$

FD pressure problems

Spurious pressure modes

$$
\begin{array}{llll}
+ & - & + & \\
- & & & " \nabla p=0 " \\
+ & - & - & \\
+ & - & + &
\end{array}
$$

FD pressure problems

Spurious pressure modes

$$
\begin{array}{llll}
+ & - & + & \\
- & & & " \nabla p=0 " \\
+ & - & + &
\end{array}
$$

Avoided by staggered grid

FE pressure problems

- Spurious pressure modes with " $\nabla p=0$ " - no staggered FE

$$
\text { One } \Delta \text { has } 1 p+3 u+3 v
$$

FE pressure problems

- Spurious pressure modes with " $\nabla p=0$ " - no staggered FE
- Locking

One Δ has $1 p+3 u+3 v$

All grid has $18 p+4 u+4 v$
if no-slip bc

FE pressure problems

- Spurious pressure modes with " $\nabla p=0$ " - no staggered FE
- Locking

$$
\text { One } \Delta \text { has } 1 p+3 u+3 v
$$

All grid has $18 p+4 u+4 v$ if no-slip bc

Use 'bubble elements' with extra u, v at centre of triangles

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma=-p l+2 \mu E+\sigma^{\text {elastic }}
$$

where μ can be arbitrary and $\sigma^{\text {elastic }}$ the remainder.

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma=-p l+2 \mu E+\sigma^{\text {elastic }}
$$

where μ can be arbitrary and $\sigma^{\text {elastic }}$ the remainder.
Then instantaneous Stokes flow driven by elastic stress

$$
-\nabla p+\mu \nabla^{2} u=-\nabla \cdot \sigma^{\text {elastic }}
$$

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma=-p l+2 \mu E+\sigma^{\text {elastic }}
$$

where μ can be arbitrary and $\sigma^{\text {elastic }}$ the remainder.
Then instantaneous Stokes flow driven by elastic stress

$$
-\nabla p+\mu \nabla^{2} u=-\nabla \cdot \sigma^{\text {elastic }}
$$

Need fast elliptic solver

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma=-p l+2 \mu E+\sigma^{\text {elastic }}
$$

where μ can be arbitrary and $\sigma^{\text {elastic }}$ the remainder.
Then instantaneous Stokes flow driven by elastic stress

$$
-\nabla p+\mu \nabla^{2} u=-\nabla \cdot \sigma^{\text {elastic }}
$$

Need fast elliptic solver

- conjugate gradients

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma=-p l+2 \mu E+\sigma^{\text {elastic }}
$$

where μ can be arbitrary and $\sigma^{\text {elastic }}$ the remainder.
Then instantaneous Stokes flow driven by elastic stress

$$
-\nabla p+\mu \nabla^{2} u=-\nabla \cdot \sigma^{\text {elastic }}
$$

Need fast elliptic solver

- conjugate gradients
- multigrid

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma=-p l+2 \mu E+\sigma^{\text {elastic }}
$$

where μ can be arbitrary and $\sigma^{\text {elastic }}$ the remainder.
Then instantaneous Stokes flow driven by elastic stress

$$
-\nabla p+\mu \nabla^{2} u=-\nabla \cdot \sigma^{\text {elastic }}
$$

Need fast elliptic solver

- conjugate gradients
- multigrid
- domain decomposition

Elliptic part 2

- Possible $\mu(x)$

Elliptic part 2

- Possible $\mu(x)$
- Possible anisotropic μ, e.g. FENE $A I+I A$

Elliptic part 2

- Possible $\mu(x)$
- Possible anisotropic μ, e.g. FENE $A I+I A$
- Fast relaxed modes

$$
\mu=\mu_{0}+\sum_{\tau_{i} \ll \dot{\gamma}^{-1}} G_{i} \tau_{i}
$$

Hyperbolic part

Stress equation is hyperbolic PDE

$$
\frac{D \sigma}{D t}=F(\sigma, \nabla u) \quad \text { minor difficulty }
$$

Hyperbolic part

Stress equation is hyperbolic PDE

$$
\frac{D \sigma}{D t}=F(\sigma, \nabla u) \quad \text { minor difficulty }
$$

or streamwise integral equation (but DE better)

$$
\sigma(t)=\int^{t} G(t-s) A^{T} A_{t s} D t
$$

Hyperbolic part

Stress equation is hyperbolic PDE

$$
\frac{D \sigma}{D t}=F(\sigma, \nabla u) \quad \text { minor difficulty }
$$

or streamwise integral equation (but DE better)

$$
\sigma(t)=\int^{t} G(t-s) A^{T} A_{t s} D t
$$

Finite Differences

- second-order with 'flux-limiters', e.g. MINMOD

Hyperbolic part

Stress equation is hyperbolic PDE

$$
\frac{D \sigma}{D t}=F(\sigma, \nabla u) \quad \text { minor difficulty }
$$

or streamwise integral equation (but DE better)

$$
\sigma(t)=\int^{t} G(t-s) A^{T} A_{t s} D t
$$

Finite Differences

- second-order with 'flux-limiters', e.g. MINMOD
- use characteristics $=$ streamlines

Hyperbolic part 2

Finite Elements

- PUPG - Streamline Upwinding Petrov Galerkin:

$$
\int(\text { stress equation }) \cdot(\phi+h \hat{u} \cdot \nabla \phi) d V=0
$$

Hyperbolic part 2

Finite Elements

- PUPG - Streamline Upwinding Petrov Galerkin:

$$
\int(\text { stress equation }) \cdot(\phi+h \hat{u} \cdot \nabla \phi) d V=0
$$

but large numerical diffusion

Hyperbolic part 2

Finite Elements

- PUPG - Streamline Upwinding Petrov Galerkin:

$$
\int(\text { stress equation }) \cdot(\phi+h \hat{u} \cdot \nabla \phi) d V=0
$$

but large numerical diffusion

- Lagrangian FE

Hyperbolic part 2

Finite Elements

- PUPG - Streamline Upwinding Petrov Galerkin:

$$
\int(\text { stress equation }) \cdot(\phi+h \hat{u} \cdot \nabla \phi) d V=0
$$

but large numerical diffusion

- Lagrangian FE
- exact $\int \nabla u D t$

Hyperbolic part 2

Finite Elements

- PUPG - Streamline Upwinding Petrov Galerkin:

$$
\int(\text { stress equation }) \cdot(\phi+h \hat{u} \cdot \nabla \phi) d V=0
$$

but large numerical diffusion

- Lagrangian FE
- exact $\int \nabla u D t$
- needs regridding

Hyperbolic part 2

Finite Elements

- PUPG - Streamline Upwinding Petrov Galerkin:

$$
\int(\text { stress equation }) \cdot(\phi+h \hat{u} \cdot \nabla \phi) d V=0
$$

but large numerical diffusion

- Lagrangian FE
- exact $\int \nabla u D t$
- needs regridding
- no fast elliptic solver

Hyperbolic part 3

Typical erroneous treatment of hyperbolic stress equation

Continuous curve is correct solution. Others have spurious oscillations.

Bench marks

International campaign tackling bench-mark problems

Bench marks

International campaign tackling bench-mark problems

1. Sphere in a tube, 2:1 diam

Dominated by shear

Bench marks

International campaign tackling bench-mark problems

1. Sphere in a tube, 2:1 diam

Dominated by shear

2. Contraction, 4:1

Difficult sharp corner

Bench marks 2

3. Journal bearing Good for spectral

Bench marks 2

3. Journal bearing

Good for spectral
4. Wavy-wall pipe

Good for spectral

Bench marks 2

3. Journal bearing

Good for spectral
4. Wavy-wall pipe

Good for spectral

Eventually different algorithms produced the same results!

Numerical problems

- Convergence tests rarely done (well)

Numerical problems

- Convergence tests rarely done (well)
- New numerical instability

Numerical problems

- Convergence tests rarely done (well)
- New numerical instability
- Corner singularity \rightarrow mess downstream

Numerical problems

- Convergence tests rarely done (well)
- New numerical instability
- Corner singularity \rightarrow mess downstream
- Thin layers of high stress

Numerical problems

- Convergence tests rarely done (well)
- New numerical instability
- Corner singularity \rightarrow mess downstream
- Thin layers of high stress
- Limiting (maximum) value of De, e.g. sphere in a tube:
- UCM De $\max =2.17$
- O-B $D e_{\text {max }}=1.28$ Fan (2003) Jnnfm 110

Numerical problems 2

New numerical instability
Plotting $\sigma_{x x} / \sigma_{x y}$ vs $\Delta y / \Delta x$

Need $\Delta y<\Delta x \frac{\sigma_{x y}}{\sigma_{x x}}$ to resolve direction of large N_{1}

Numerical problems 3

Thin layers of high stress
Flow past a sphere in a tube

Need to resolve

Other problems

- Need FENE modification of Oldroyd-B to avoid negative viscosities

Other problems

- Need FENE modification of Oldroyd-B to avoid negative viscosities
- Smooth corners in contraction flow

Other problems

- Need FENE modification of Oldroyd-B to avoid negative viscosities
- Smooth corners in contraction flow
- Contraction \rightarrow Expansion, avoids long relaxation distance

Other problems

- Need FENE modification of Oldroyd-B to avoid negative viscosities
- Smooth corners in contraction flow
- Contraction \rightarrow Expansion, avoids long relaxation distance
- Micro-Macro Brownian fields, with same random Brownian forces in all spatial blocks, see later

