
Chapter 7: Microstructural studies for rheology

I To calculate the flow of complex fluids, need governing

equations,

I in particular, the constitutive equation relating stress to flow

and its history.

I Either ‘ad hoc’, such as Oldroyd-B differential equation and

BKZ integral equation,

I Or look at microstructure for highly idealised systems and

derive their constitutive equations.

I Most will be suspensions of small particles in Newtonian
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Microstructural studies for rheology

I Micro & macro views

I Einstein viscosity

I Rotations

I Deformations

I Interactions

I Polymers

I Others



Micro & macro views

I Separation of length scales

I Micro ↔ Macro connections

I Case of Newtonian solvent

I Homogenisation



Separation of length scales

Essential
Micro `� L Macro

Micro = particle 1µm Macro = flow, 1cm

I Micro and Macro time scales similar

I Need ` small for small micro-Reynolds number

Re` = ργ`2

µ � 1,

otherwise possible macro-flow boundary layers 6� `

But macro-Reynolds number ReL = ργL2

µ can be large

I If ` ≮ L, then non-local rheology
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1. Macro→micro connection

I Particles passively move with macro-flow u

I Particles actively rotate, deform & interact with

macro-shear ∇u

both needing Re` � 1.



1. Macro→micro connection

I Particles passively move with macro-flow u

I Particles actively rotate, deform & interact with

macro-shear ∇u

both needing Re` � 1.



1. Macro→micro connection

I Particles passively move with macro-flow u

I Particles actively rotate, deform & interact with

macro-shear ∇u

both needing Re` � 1.



2. Micro→macro connection

Macro = continuum = average/smear-out micro details

E.g. average over representative volume V with `� V 1/3 � L

σ =
1

V

∫
V
σ dV

Also ensemble averaging and homogenisation

To be used in averaged = macro momentum equation

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ · σ + F

NB micro-Reynolds stresses (ρu)′u′ small for Re` � 1.
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Reduction for suspension with Newtonian viscous solvent

Write:
σ = −pI + 2µe + σ+

with pressure p, solvent viscosity µ, strain-rate e,
and σ+ non-zero only inside particles.

Average:
σ = −pI + 2µe + σ+

with

σ+ =
1

V

∫
V
σ+ dV = n

〈∫
particle

σ+ dV

〉
types of particle

with n number of particles per unit volume
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Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles e = 0, so σ+ = σ.

Also σij = ∂k(σikxj)− xj∂kσik , ignoring gravity ∂kσik = 0,
so ∫

particle
σ+ dV =

∫
particle

σ ·n x dA

so only need σ on surface of particle. (Detailed cases soon.)

Hence

σ = −pI + 2µe + n

∫
particle

σ ·n x dA

Integral called ‘stresslet’, is the force-dipole strength of the particle.
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Homogenisation: asymptotics for `� L

Easier transport problem to exhibit method

∇ · k · ∇T = Q

with k & Q varying on macroscale x and microscale ξ = x/ε,

Multiscale asymptotic expansion

T (x ; ε) ∼ T0(x , ξ) + εT1(x , ξ) + ε2T2(x , ξ)
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Homogenisation 2

ε−2:
∂ξk∂ξT0 = 0

i.e. T0 = T (x)

Thus T varies only slowly at leading order, with microscale making
small perturbations.
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Homogenisation 3

ε−1:
∂ξk∂ξT1 = −∂ξk∂xT0

Solution T1 is linear in forcing ∂xT0, details depending on k(ξ):

T1(x , ξ) = A(ξ)∂xT0
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Homogenisation 4

ε0:
∂ξk∂ξT2 = Q − ∂xk∂xT0 − ∂ξk∂xT1 − ∂xk∂ξT1

Secularity: 〈RHS〉 = 0 else T2 = O(ξ2) which contradicts
asymptoticity. (Periodicity not necessary.)
Hence

0 = 〈Q〉 − ∂x〈k〉∂xT0 − ∂x〈k
∂A

∂ξ
〉∂xT0

Hence macro description

∇k∗∇T = Q∗ with k∗ =

〈
k + k

∂A

∂ξ

〉
and Q∗ = 〈Q〉
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Homogenisation 5

NB: Leading order T0 uniform at microlevel, with therefore no
local heat transport

NB: Micro problem forced by ∇T0. Need to solve

∇ · k∇ · Tmicro = 0

Tmicro → x · ∇T0

Solution
Tmicro = (x + εA)∇T0

Hence heat flux

〈q〉 = 〈k∇Tmicro〉 = 〈k + εk∇A〉∇T0
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Einstein viscosity

Simplest – can show all details.

Highly idealised – many generalisations

I Spheres – no orientation problems

I Rigid – no deformation problems

I Dilute and Inert – no interactions problems

Micro problem

I Isolated rigid sphere

I force-free and couple-free

I in a general linear shearing flow ∇U
I Stokes flow
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Stokes problem for Einstein viscosity

∇ · u = 0 in r > a

0 = −∇p + µ∇2u in r > a

u = V + ω × x on r = a with V , ω consts

u→ U + x · ∇U as r →∞

F =

∫
r=a

σ ·n dA = 0, G =

∫
r=a

x× σ ·n dA = 0

Split general linear shearing flow ∇U into symmetric strain-rate E
and antisymmetric vorticity Ω, i.e.

x · ∇U = E · x + Ω× x

NB: Stokes problem is linear and instantaneous Student Ex
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Solution of Stokes problem for Einstein viscosity

I F = 0 gives V = U, i.e. translates with macro flow S.Ex

I G = 0 gives ω = Ω, i.e. rotates with macro flow S.Ex

Then S.Ex

u = U + E · x + Ω× x− E · xa
5

r5
− x

5(x · E · x)

2r2

(
a3

r3
− a5

r5

)
p = −5µ

(x · E · x)a3

r5

Evaluate viscous stress on particle Student Ex

σ ·n
∣∣
r=a

=
5µ

2a
E · x

Evaluate particle contribution to macro/average stress∫
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Result for Einstein viscosity (1905)

σ = −pI + 2µE + 5µEφ with volume fraction φ = n
4π

3
a3

Hence effective viscosity

µ∗ = µ

(
1 +

5

2
φ

)

I Result independent of type of flow – shear, extensional

I Result independent of particle size – OK polydisperse

I Einstein used another averaging of dissipation
which would not give normal stresses with σ : E = 0,
which arbitrarily cancelled divergent integrals (hydrodynamics
is long-ranged)
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Microstructural studies for rheology

I Micro & macro views

I Einstein viscosity

I Rotations

I Deformations

I Interactions

I Polymers

I Others


