Chapter 7: Microstructural studies for rheology

Chapter 7: Microstructural studies for rheology

- To calculate the flow of complex fluids, need governing equations,

Chapter 7: Microstructural studies for rheology

- To calculate the flow of complex fluids, need governing equations,
- in particular, the constitutive equation relating stress to flow and its history.

Chapter 7: Microstructural studies for rheology

- To calculate the flow of complex fluids, need governing equations,
- in particular, the constitutive equation relating stress to flow and its history.
- Either 'ad hoc', such as Oldroyd-B differential equation and BKZ integral equation,

Chapter 7: Microstructural studies for rheology

- To calculate the flow of complex fluids, need governing equations,
- in particular, the constitutive equation relating stress to flow and its history.
- Either 'ad hoc', such as Oldroyd-B differential equation and BKZ integral equation,
- Or look at microstructure for highly idealised systems and derive their constitutive equations.

Chapter 7: Microstructural studies for rheology

- To calculate the flow of complex fluids, need governing equations,
- in particular, the constitutive equation relating stress to flow and its history.
- Either 'ad hoc', such as Oldroyd-B differential equation and BKZ integral equation,
- Or look at microstructure for highly idealised systems and derive their constitutive equations.
- Most will be suspensions of small particles in Newtonian viscous solvent.

Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

Micro \& macro views

- Separation of length scales
- Micro \leftrightarrow Macro connections
- Case of Newtonian solvent
- Homogenisation

Separation of length scales

Essential

Micro $\quad \ell \ll L$ Macro
Micro $=$ particle $1 \mu \mathrm{~m} \quad$ Macro $=$ flow, 1 cm

Separation of length scales

Essential

$$
\begin{gathered}
\text { Micro } \ell \ll L \quad \text { Macro } \\
\text { Micro }=\text { particle } 1 \mu \mathrm{~m} \quad \text { Macro }=\text { flow, } 1 \mathrm{~cm}
\end{gathered}
$$

- Micro and Macro time scales similar

Separation of length scales

Essential

$$
\begin{gathered}
\text { Micro } \ell \ll L \quad \text { Macro } \\
\text { Micro }=\text { particle } 1 \mu \mathrm{~m} \quad \text { Macro }=\text { flow, } 1 \mathrm{~cm}
\end{gathered}
$$

- Micro and Macro time scales similar
- Need ℓ small for small micro-Reynolds number

$$
R e_{\ell}=\frac{\rho \gamma \ell^{2}}{\mu} \ll 1,
$$

Separation of length scales

Essential

$$
\begin{gathered}
\text { Micro } \quad \ell \ll L \quad \text { Macro } \\
\text { Micro }=\text { particle } 1 \mu \mathrm{~m} \quad \text { Macro }=\text { flow, } 1 \mathrm{~cm}
\end{gathered}
$$

- Micro and Macro time scales similar
- Need ℓ small for small micro-Reynolds number $R e_{\ell}=\frac{\rho \gamma \ell^{2}}{\mu} \ll 1$, otherwise possible macro-flow boundary layers $\ll \ell$

Separation of length scales

Essential

$$
\begin{gathered}
\text { Micro } \ell \ll L \quad \text { Macro } \\
\text { Micro }=\text { particle } 1 \mu \mathrm{~m} \quad \text { Macro }=\text { flow, } 1 \mathrm{~cm}
\end{gathered}
$$

- Micro and Macro time scales similar
- Need ℓ small for small micro-Reynolds number $R e_{\ell}=\frac{\rho \gamma \ell^{2}}{\mu} \ll 1$,
otherwise possible macro-flow boundary layers $\ll \ell$
But macro-Reynolds number $R e_{L}=\frac{\rho \gamma L^{2}}{\mu}$ can be large

Separation of length scales

Essential

$$
\begin{gathered}
\text { Micro } \ell \ll L \quad \text { Macro } \\
\text { Micro }=\text { particle } 1 \mu \mathrm{~m} \quad \text { Macro }=\text { flow, } 1 \mathrm{~cm}
\end{gathered}
$$

- Micro and Macro time scales similar
- Need ℓ small for small micro-Reynolds number $R e_{\ell}=\frac{\rho \gamma \ell^{2}}{\mu} \ll 1$,
otherwise possible macro-flow boundary layers $\ll \ell$
But macro-Reynolds number $R e_{L}=\frac{\rho \gamma L^{2}}{\mu}$ can be large
- If $\ell \nless L$, then non-local rheology

Two-scale problem $\ell \ll L$

- Solve microstructure - tough, must idealise

Two-scale problem $\ell \ll L$

- Solve microstructure - tough, must idealise
- Extract macro-observables - easy

Two-scale problem $\ell \ll L$

- Solve microstructure - tough, must idealise
- Extract macro-observables - easy

Here: suspension of particles in Newtonian viscous solvent

1. Macro \rightarrow micro connection

- Particles passively move with macro-flow u

1. Macro \rightarrow micro connection

- Particles passively move with macro-flow u
- Particles actively rotate, deform \& interact with macro-shear $\nabla \mathbf{u}$

1. Macro \rightarrow micro connection

- Particles passively move with macro-flow u
- Particles actively rotate, deform \& interact with macro-shear $\nabla \mathbf{u}$
both needing $R e_{\ell} \ll 1$.

2. Micro \rightarrow macro connection

Macro $=$ continuum $=$ average $/$ smear-out micro details

2. Micro \rightarrow macro connection

Macro $=$ continuum $=$ average $/$ smear-out micro details
E.g. average over representative volume V with $\ell \ll V^{1 / 3} \ll L$

$$
\bar{\sigma}=\frac{1}{V} \int_{V} \sigma d V
$$

2. Micro \rightarrow macro connection

Macro $=$ continuum $=$ average $/$ smear-out micro details
E.g. average over representative volume V with $\ell \ll V^{1 / 3} \ll L$

$$
\bar{\sigma}=\frac{1}{V} \int_{V} \sigma d V
$$

Also ensemble averaging and homogenisation

2. Micro \rightarrow macro connection

Macro $=$ continuum $=$ average $/$ smear-out micro details
E.g. average over representative volume V with $\ell \ll V^{1 / 3} \ll L$

$$
\bar{\sigma}=\frac{1}{V} \int_{V} \sigma d V
$$

Also ensemble averaging and homogenisation
To be used in averaged $=$ macro momentum equation

$$
\bar{\rho}\left[\frac{\partial \overline{\mathbf{u}}}{\partial t}+\overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}}\right]=\nabla \cdot \bar{\sigma}+\bar{F}
$$

2. Micro \rightarrow macro connection

Macro $=$ continuum $=$ average $/$ smear-out micro details
E.g. average over representative volume V with $\ell \ll V^{1 / 3} \ll L$

$$
\bar{\sigma}=\frac{1}{V} \int_{V} \sigma d V
$$

Also ensemble averaging and homogenisation
To be used in averaged $=$ macro momentum equation

$$
\bar{\rho}\left[\frac{\partial \overline{\mathbf{u}}}{\partial t}+\overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}}\right]=\nabla \cdot \bar{\sigma}+\bar{F}
$$

NB micro-Reynolds stresses $\overline{(\rho \mathbf{u})^{\prime} \mathbf{u}^{\prime}}$ small for $R e_{\ell} \ll 1$.

Reduction for suspension with Newtonian viscous solvent

Write:

$$
\sigma=-p l+2 \mu e+\sigma^{+}
$$

with pressure p, solvent viscosity μ, strain-rate e, and σ^{+}non-zero only inside particles.

Reduction for suspension with Newtonian viscous solvent

Write:

$$
\sigma=-p l+2 \mu e+\sigma^{+}
$$

with pressure p, solvent viscosity μ, strain-rate e, and σ^{+}non-zero only inside particles.

Average:

$$
\bar{\sigma}=-\bar{p} I+2 \mu \bar{e}+\overline{\sigma^{+}}
$$

Reduction for suspension with Newtonian viscous solvent

Write:

$$
\sigma=-p l+2 \mu e+\sigma^{+}
$$

with pressure p, solvent viscosity μ, strain-rate e, and σ^{+}non-zero only inside particles.

Average:

$$
\bar{\sigma}=-\bar{p} I+2 \mu \bar{e}+\overline{\sigma^{+}}
$$

with

$$
\overline{\sigma^{+}}=\frac{1}{V} \int_{V} \sigma^{+} d V=n\left\langle\int_{\text {particle }} \sigma^{+} d V\right\rangle_{\text {types of particle }}
$$

with n number of particles per unit volume

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.
Also $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)-x_{j} \partial_{k} \sigma_{i k}$,

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.
Also $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)-x_{j} \partial_{k} \sigma_{i k}$, ignoring gravity $\partial_{k} \sigma_{i k}=0$,

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.
Also $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)-x_{j} \partial_{k} \sigma_{i k}$, ignoring gravity $\partial_{k} \sigma_{i k}=0$,
so

$$
\int_{\text {particle }} \sigma^{+} d V=\int_{\text {particle }} \sigma \cdot n \times d A
$$

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.
Also $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)-x_{j} \partial_{k} \sigma_{i k}$, ignoring gravity $\partial_{k} \sigma_{i k}=0$,
SO

$$
\int_{\text {particle }} \sigma^{+} d V=\int_{\text {particle }} \sigma \cdot n \times d A
$$

so only need σ on surface of particle. (Detailed cases soon.)

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.
Also $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)-x_{j} \partial_{k} \sigma_{i k}$, ignoring gravity $\partial_{k} \sigma_{i k}=0$,
SO

$$
\int_{\text {particle }} \sigma^{+} d V=\int_{\text {particle }} \sigma \cdot n \times d A
$$

so only need σ on surface of particle. (Detailed cases soon.)
Hence

$$
\bar{\sigma}=-\bar{p} I+2 \mu \bar{e}+n \int_{\text {particle }} \sigma \cdot n \times d A
$$

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles $e=0$, so $\sigma^{+}=\sigma$.
Also $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)-x_{j} \partial_{k} \sigma_{i k}$, ignoring gravity $\partial_{k} \sigma_{i k}=0$,
so

$$
\int_{\text {particle }} \sigma^{+} d V=\int_{\text {particle }} \sigma \cdot n \times d A
$$

so only need σ on surface of particle. (Detailed cases soon.)
Hence

$$
\bar{\sigma}=-\bar{p} I+2 \mu \bar{e}+n \int_{\text {particle }} \sigma \cdot n \times d A
$$

Integral called 'stresslet', is the force-dipole strength of the particle.

Homogenisation: asymptotics for $\ell \ll L$

Homogenisation: asymptotics for $\ell \ll L$

Easier transport problem to exhibit method

$$
\nabla \cdot k \cdot \nabla T=Q
$$

with $k \& Q$ varying on macroscale x and microscale $\xi=x / \epsilon$,

Homogenisation: asymptotics for $\ell \ll L$

Easier transport problem to exhibit method

$$
\nabla \cdot k \cdot \nabla T=Q
$$

with $k \& Q$ varying on macroscale x and microscale $\xi=x / \epsilon$,
Multiscale asymptotic expansion

$$
T(x ; \epsilon) \sim T_{0}(x, \xi)+\epsilon T_{1}(x, \xi)+\epsilon^{2} T_{2}(x, \xi)
$$

Homogenisation 2

ϵ^{-2} :

$$
\partial_{\xi} k \partial_{\xi} T_{0}=0
$$

Homogenisation 2

ϵ^{-2} :

$$
\begin{gathered}
\partial_{\xi} k \partial_{\xi} T_{0}=0 \\
\text { i.e. } \quad T_{0}=T(x)
\end{gathered}
$$

Homogenisation 2

ϵ^{-2} :

$$
\begin{gathered}
\partial_{\xi} k \partial_{\xi} T_{0}=0 \\
\text { i.e. } \quad T_{0}=T(x)
\end{gathered}
$$

Thus T varies only slowly at leading order, with microscale making small perturbations.

Homogenisation 3

ϵ^{-1} :

$$
\partial_{\xi} k \partial_{\xi} T_{1}=-\partial_{\xi} k \partial_{x} T_{0}
$$

Homogenisation 3

ϵ^{-1} :

$$
\partial_{\xi} k \partial_{\xi} T_{1}=-\partial_{\xi} k \partial_{x} T_{0}
$$

Solution T_{1} is linear in forcing $\partial_{x} T_{0}$, details depending on $k(\xi)$:

Homogenisation 3

ϵ^{-1} :

$$
\partial_{\xi} k \partial_{\xi} T_{1}=-\partial_{\xi} k \partial_{x} T_{0}
$$

Solution T_{1} is linear in forcing $\partial_{x} T_{0}$, details depending on $k(\xi)$:

$$
T_{1}(x, \xi)=A(\xi) \partial_{x} T_{0}
$$

Homogenisation 4

ϵ^{0} :

$$
\partial_{\xi} k \partial_{\xi} T_{2}=Q-\partial_{x} k \partial_{x} T_{0}-\partial_{\xi} k \partial_{x} T_{1}-\partial_{x} k \partial_{\xi} T_{1}
$$

Homogenisation 4

$\epsilon^{0}:$

$$
\partial_{\xi} k \partial_{\xi} T_{2}=Q-\partial_{x} k \partial_{x} T_{0}-\partial_{\xi} k \partial_{x} T_{1}-\partial_{x} k \partial_{\xi} T_{1}
$$

Secularity: $\langle\mathrm{RHS}\rangle=0$ else $T_{2}=O\left(\xi^{2}\right)$ which contradicts asymptoticity. (Periodicity not necessary.)

Homogenisation 4

$\epsilon^{0}:$

$$
\partial_{\xi} k \partial_{\xi} T_{2}=Q-\partial_{x} k \partial_{x} T_{0}-\partial_{\xi} k \partial_{x} T_{1}-\partial_{x} k \partial_{\xi} T_{1}
$$

Secularity: $\langle\mathrm{RHS}\rangle=0$ else $T_{2}=O\left(\xi^{2}\right)$ which contradicts asymptoticity. (Periodicity not necessary.)
Hence

$$
0=\langle Q\rangle-\partial_{x}\langle k\rangle \partial_{x} T_{0}-\partial_{x}\left\langle k \frac{\partial A}{\partial \xi}\right\rangle \partial_{x} T_{0}
$$

Homogenisation 4

$\epsilon^{0}:$

$$
\partial_{\xi} k \partial_{\xi} T_{2}=Q-\partial_{x} k \partial_{x} T_{0}-\partial_{\xi} k \partial_{x} T_{1}-\partial_{x} k \partial_{\xi} T_{1}
$$

Secularity: $\langle\mathrm{RHS}\rangle=0$ else $T_{2}=O\left(\xi^{2}\right)$ which contradicts asymptoticity. (Periodicity not necessary.)
Hence

$$
0=\langle Q\rangle-\partial_{x}\langle k\rangle \partial_{x} T_{0}-\partial_{x}\left\langle k \frac{\partial A}{\partial \xi}\right\rangle \partial_{x} T_{0}
$$

Hence macro description

$$
\nabla k^{*} \nabla T=Q^{*} \quad \text { with } \quad k^{*}=\left\langle k+k \frac{\partial A}{\partial \xi}\right\rangle \quad \text { and } \quad Q^{*}=\langle Q\rangle
$$

Homogenisation 5

NB: Leading order T_{0} uniform at microlevel, with therefore no local heat transport

Homogenisation 5

NB: Leading order T_{0} uniform at microlevel, with therefore no local heat transport

NB: Micro problem forced by ∇T_{0}. Need to solve

$$
\begin{gathered}
\nabla \cdot k \nabla \cdot T_{\text {micro }}=0 \\
T_{\text {micro }} \rightarrow x \cdot \nabla T_{0}
\end{gathered}
$$

Homogenisation 5

NB: Leading order T_{0} uniform at microlevel, with therefore no local heat transport

NB: Micro problem forced by ∇T_{0}. Need to solve

$$
\begin{gathered}
\nabla \cdot k \nabla \cdot T_{\text {micro }}=0 \\
T_{\text {micro }} \rightarrow x \cdot \nabla T_{0}
\end{gathered}
$$

Solution

$$
T_{\text {micro }}=(x+\epsilon A) \nabla T_{0}
$$

Homogenisation 5

NB: Leading order T_{0} uniform at microlevel, with therefore no local heat transport

NB: Micro problem forced by ∇T_{0}. Need to solve

$$
\begin{gathered}
\nabla \cdot k \nabla \cdot T_{\text {micro }}=0 \\
T_{\text {micro }} \rightarrow x \cdot \nabla T_{0}
\end{gathered}
$$

Solution

$$
T_{\text {micro }}=(x+\epsilon A) \nabla T_{0}
$$

Hence heat flux

$$
\langle q\rangle=\left\langle k \nabla T_{\text {micro }}\right\rangle=\langle k+\epsilon k \nabla A\rangle \nabla T_{0}
$$

Micro \& macro views

- Separation of length scales
- Micro \leftrightarrow Macro connections
- Case of Newtonian solvent
- Homogenisation

Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

Einstein viscosity

Einstein viscosity

Simplest - can show all details.

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems
- Dilute and Inert - no interactions problems

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems
- Dilute and Inert - no interactions problems

Micro problem

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems
- Dilute and Inert - no interactions problems

Micro problem

- Isolated rigid sphere

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems
- Dilute and Inert - no interactions problems

Micro problem

- Isolated rigid sphere
- force-free and couple-free

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems
- Dilute and Inert - no interactions problems

Micro problem

- Isolated rigid sphere
- force-free and couple-free
- in a general linear shearing flow $\nabla \bar{U}$

Einstein viscosity

Simplest - can show all details.
Highly idealised - many generalisations

- Spheres - no orientation problems
- Rigid - no deformation problems
- Dilute and Inert - no interactions problems

Micro problem

- Isolated rigid sphere
- force-free and couple-free
- in a general linear shearing flow $\nabla \bar{U}$
- Stokes flow

Stokes problem for Einstein viscosity

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \quad \text { in } \quad r>a \\
& 0=-\nabla p+\mu \nabla^{2} \mathbf{u} \text { in } \quad r>a
\end{aligned}
$$

Stokes problem for Einstein viscosity

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \quad \text { in } \quad r>a \\
0=-\nabla p+\mu \nabla^{2} \mathbf{u} \quad \text { in } \quad r>a
\end{gathered}
$$

$$
\mathbf{u}=\mathbf{V}+\omega \times \mathbf{x} \quad \text { on } \quad r=a \quad \text { with } \quad V, \omega \text { consts }
$$

$$
\mathbf{u} \rightarrow \bar{U}+\mathbf{x} \cdot \nabla \bar{U} \quad \text { as } \quad r \rightarrow \infty
$$

Stokes problem for Einstein viscosity

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \quad \text { in } \quad r>a \\
0=-\nabla p+\mu \nabla^{2} \mathbf{u} \quad \text { in } \quad r>a
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{u}=\mathbf{V}+\omega \times \mathbf{x} \quad \text { on } \quad r=a \quad \text { with } \quad V, \omega \text { consts } \\
\mathbf{u} \rightarrow \bar{U}+\mathbf{x} \cdot \nabla \bar{U} \quad \text { as } r \rightarrow \infty
\end{gathered}
$$

$$
\mathbf{F}=\int_{r=a} \sigma \cdot n d A=0, \quad \mathbf{G}=\int_{r=a} \mathbf{x} \times \sigma \cdot n d A=0
$$

Stokes problem for Einstein viscosity

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \quad \text { in } \quad r>a \\
0=-\nabla p+\mu \nabla^{2} \mathbf{u} \quad \text { in } \quad r>a \\
\mathbf{u}=\mathbf{V}+\omega \times \mathbf{x} \quad \text { on } \quad r=a \quad \text { with } \quad V, \omega \text { consts } \\
\mathbf{u} \rightarrow \bar{U}+\mathbf{x} \cdot \nabla \bar{U} \quad \text { as } \quad r \rightarrow \infty \\
\mathbf{F}=\int_{r=a} \sigma \cdot n d A=0, \quad \mathbf{G}=\int_{r=a} \mathbf{x} \times \sigma \cdot n d A=0
\end{gathered}
$$

Split general linear shearing flow $\nabla \bar{U}$ into symmetric strain-rate \mathbf{E} and antisymmetric vorticity Ω, i.e.

$$
\mathbf{x} \cdot \nabla \bar{U}=\mathbf{E} \cdot \mathbf{x}+\Omega \times \mathbf{x}
$$

Stokes problem for Einstein viscosity

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \quad \text { in } \quad r>a \\
0=-\nabla p+\mu \nabla^{2} \mathbf{u} \quad \text { in } \quad r>a \\
\mathbf{u}=\mathbf{V}+\omega \times \mathbf{x} \quad \text { on } \quad r=a \quad \text { with } \quad V, \omega \text { consts } \\
\mathbf{u} \rightarrow \bar{U}+\mathbf{x} \cdot \nabla \bar{U} \quad \text { as } \quad r \rightarrow \infty \\
\mathbf{F}=\int_{r=a} \sigma \cdot n d A=0, \quad \mathbf{G}=\int_{r=a} \mathbf{x} \times \sigma \cdot n d A=0
\end{gathered}
$$

Split general linear shearing flow $\nabla \bar{U}$ into symmetric strain-rate \mathbf{E} and antisymmetric vorticity Ω, i.e.

$$
\mathbf{x} \cdot \nabla \bar{U}=\mathbf{E} \cdot \mathbf{x}+\Omega \times \mathbf{x}
$$

NB: Stokes problem is linear and instantaneous

Solution of Stokes problem for Einstein viscosity

- $\mathbf{F}=0$ gives $\mathbf{V}=\bar{U}$, i.e. translates with macro flow S.Ex

Solution of Stokes problem for Einstein viscosity

- $\mathbf{F}=0$ gives $\mathbf{V}=\bar{U}$, i.e. translates with macro flow S.Ex
- $\mathbf{G}=0$ gives $\omega=\Omega$, i.e. rotates with macro flow S.Ex

Solution of Stokes problem for Einstein viscosity

- $\mathbf{F}=0$ gives $\mathbf{V}=\bar{U}$, i.e. translates with macro flow S.Ex
- $\mathbf{G}=0$ gives $\omega=\Omega$, i.e. rotates with macro flow S.Ex

Then S.Ex

$$
\begin{gathered}
\mathbf{u}=\bar{U}+\mathbf{E} \cdot \mathbf{x}+\Omega \times \mathbf{x}-\mathbf{E} \cdot \mathbf{x} \frac{a^{5}}{r^{5}}-\mathbf{x} \frac{5(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})}{2 r^{2}}\left(\frac{a^{3}}{r^{3}}-\frac{a^{5}}{r^{5}}\right) \\
p=-5 \mu \frac{(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x}) a^{3}}{r^{5}}
\end{gathered}
$$

Solution of Stokes problem for Einstein viscosity

- $\mathbf{F}=0$ gives $\mathbf{V}=\bar{U}$, i.e. translates with macro flow S.Ex
- $\mathbf{G}=0$ gives $\omega=\Omega$, i.e. rotates with macro flow S.Ex

Then S.Ex

$$
\begin{gathered}
\mathbf{u}=\bar{U}+\mathbf{E} \cdot \mathbf{x}+\Omega \times \mathbf{x}-\mathbf{E} \cdot \mathbf{x} \frac{a^{5}}{r^{5}}-\mathbf{x} \frac{5(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})}{2 r^{2}}\left(\frac{a^{3}}{r^{3}}-\frac{a^{5}}{r^{5}}\right) \\
p=-5 \mu \frac{(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x}) a^{3}}{r^{5}}
\end{gathered}
$$

Evaluate viscous stress on particle Student Ex

$$
\left.\sigma \cdot n\right|_{r=a}=\frac{5 \mu}{2 a} \mathbf{E} \cdot \mathbf{x}
$$

Solution of Stokes problem for Einstein viscosity

- $\mathbf{F}=0$ gives $\mathbf{V}=\bar{U}$, i.e. translates with macro flow S.Ex
- $\mathbf{G}=0$ gives $\omega=\Omega$, i.e. rotates with macro flow S.Ex

Then S.Ex

$$
\begin{gathered}
\mathbf{u}=\bar{U}+\mathbf{E} \cdot \mathbf{x}+\Omega \times \mathbf{x}-\mathbf{E} \cdot \mathbf{x} \frac{a^{5}}{r^{5}}-\mathbf{x} \frac{5(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})}{2 r^{2}}\left(\frac{a^{3}}{r^{3}}-\frac{a^{5}}{r^{5}}\right) \\
p=-5 \mu \frac{(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x}) a^{3}}{r^{5}}
\end{gathered}
$$

Evaluate viscous stress on particle Student Ex

$$
\left.\sigma \cdot n\right|_{r=a}=\frac{5 \mu}{2 a} \mathbf{E} \cdot \mathbf{x}
$$

Evaluate particle contribution to macro/average stress

$$
\int_{\text {particle }} \sigma \cdot n \times d A=5 \mu \mathbf{E} \frac{4 \pi}{3} a^{3}
$$

Result for Einstein viscosity (1905)

$$
\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad \text { with volume fraction } \quad \phi=n \frac{4 \pi}{3} a^{3}
$$

Result for Einstein viscosity (1905)

$$
\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad \text { with volume fraction } \quad \phi=n \frac{4 \pi}{3} a^{3}
$$

Hence effective viscosity

$$
\mu^{*}=\mu\left(1+\frac{5}{2} \phi\right)
$$

Result for Einstein viscosity (1905)

$$
\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad \text { with volume fraction } \quad \phi=n \frac{4 \pi}{3} a^{3}
$$

Hence effective viscosity

$$
\mu^{*}=\mu\left(1+\frac{5}{2} \phi\right)
$$

- Result independent of type of flow - shear, extensional

Result for Einstein viscosity (1905)

$$
\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad \text { with volume fraction } \quad \phi=n \frac{4 \pi}{3} a^{3}
$$

Hence effective viscosity

$$
\mu^{*}=\mu\left(1+\frac{5}{2} \phi\right)
$$

- Result independent of type of flow - shear, extensional
- Result independent of particle size - OK polydisperse

Result for Einstein viscosity (1905)

$\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad$ with volume fraction $\quad \phi=n \frac{4 \pi}{3} a^{3}$
Hence effective viscosity

$$
\mu^{*}=\mu\left(1+\frac{5}{2} \phi\right)
$$

- Result independent of type of flow - shear, extensional
- Result independent of particle size - OK polydisperse
- Einstein used another averaging of dissipation

Result for Einstein viscosity (1905)

$\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad$ with volume fraction $\quad \phi=n \frac{4 \pi}{3} a^{3}$
Hence effective viscosity

$$
\mu^{*}=\mu\left(1+\frac{5}{2} \phi\right)
$$

- Result independent of type of flow - shear, extensional
- Result independent of particle size - OK polydisperse
- Einstein used another averaging of dissipation which would not give normal stresses with $\sigma: E=0$,

Result for Einstein viscosity (1905)

$\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+5 \mu \mathbf{E} \phi \quad$ with volume fraction $\quad \phi=n \frac{4 \pi}{3} a^{3}$
Hence effective viscosity

$$
\mu^{*}=\mu\left(1+\frac{5}{2} \phi\right)
$$

- Result independent of type of flow - shear, extensional
- Result independent of particle size - OK polydisperse
- Einstein used another averaging of dissipation which would not give normal stresses with $\sigma: E=0$, which arbitrarily cancelled divergent integrals (hydrodynamics is long-ranged)

Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

