Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

Rotations

- Rotation of particles
- Macro stress
- Uni-axial straining
- Extensional viscosity rods
- Extensional viscosity disks
- Simple shear
- Shear viscosity
- Anisotropy
- Brownian rotations
- Macro stress
- Viscosities
- Closures

Rotation of particles - rigid and dilute

Spheroid: axes a, b, b, aspect ratio $r=\frac{a}{b}$.

disk $r<1$

Rotation of particles - rigid and dilute

Spheroid: axes a, b, b, aspect ratio $r=\frac{a}{b}$.

disk $r<1$
Direction of axis $\mathbf{p}(t)$, unit vector.

Rotation of particles - rigid and dilute

Spheroid: axes a, b, b, aspect ratio $r=\frac{a}{b}$.

disk $r<1$
Direction of axis $\mathbf{p}(t)$, unit vector.
Stokes flow by Oberbeck (1876). See Lamb. Uses ellipsoidal harmonic function in place of spherical harmonic $1 / r$

$$
\int_{s(\mathbf{x})}^{\infty} \frac{d s^{\prime}}{\prod_{i=1}^{3}\left(a_{i}^{2}+s^{\prime}\right)^{1 / 2}}, \quad \text { where } \quad \sum_{i=1}^{3} \frac{x_{i}^{2}}{a_{i}^{2}+s(\mathbf{x})}=1
$$

Rotation of particles

Microstructural evolution equation

$$
\frac{D \mathbf{p}}{D t}=\Omega \times \mathbf{p}+\frac{r^{2}-1}{r^{2}+1}[\mathbf{E} \cdot \mathbf{p}-\mathbf{p}(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p})]
$$

Rotation of particles

Microstructural evolution equation

$$
\frac{D \mathbf{p}}{D t}=\Omega \times \mathbf{p}+\frac{r^{2}-1}{r^{2}+1}[\mathbf{E} \cdot \mathbf{p}-\mathbf{p}(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p})]
$$

Straining less efficient at rotation by $\frac{r^{2}-1}{r^{2}+1}$.

Rotation of particles

Microstructural evolution equation

$$
\frac{D \mathbf{p}}{D t}=\Omega \times \mathbf{p}+\frac{r^{2}-1}{r^{2}+1}[\mathbf{E} \cdot \mathbf{p}-\mathbf{p}(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p})]
$$

Straining less efficient at rotation by $\frac{r^{2}-1}{r^{2}+1}$.

Long rods $\quad \frac{r^{2}-1}{r^{2}+1} \rightarrow+1$ i.e. Upper Convective Derivative $\stackrel{\nabla}{A}$

Rotation of particles

Microstructural evolution equation

$$
\frac{D \mathbf{p}}{D t}=\Omega \times \mathbf{p}+\frac{r^{2}-1}{r^{2}+1}[\mathbf{E} \cdot \mathbf{p}-\mathbf{p}(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p})]
$$

Straining less efficient at rotation by $\frac{r^{2}-1}{r^{2}+1}$.

Long rods $\frac{r^{2}-1}{r^{2}+1} \rightarrow+1$ i.e. Upper Convective Derivative $\stackrel{\nabla}{A}$
Flat disks $\frac{r^{2}-1}{r^{2}+1} \rightarrow-1$ i.e. Lower Convective Derivative $\quad \stackrel{\triangle}{A}$

Rotation of particles

Student Exercise

Show that

$$
\mathbf{p}(t)=\frac{\mathbf{q}(t)}{|\mathbf{q}(t)|} \quad \text { with } \quad \dot{\mathbf{q}}=\Omega \times \mathbf{q}+\frac{r^{2}-1}{r^{2}+1} \mathbf{E} \cdot \mathbf{q}
$$

satisfies

$$
\frac{D \mathbf{p}}{D t}=\Omega \times \mathbf{p}+\frac{r^{2}-1}{r^{2}+1}[\mathbf{E} \cdot \mathbf{p}-\mathbf{p}(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p})]
$$

Rotation of particles

Student Exercise

Show that

$$
\mathbf{p}(t)=\frac{\mathbf{q}(t)}{|\mathbf{q}(t)|} \quad \text { with } \quad \dot{\mathbf{q}}=\Omega \times \mathbf{q}+\frac{r^{2}-1}{r^{2}+1} \mathbf{E} \cdot \mathbf{q}
$$

satisfies

$$
\frac{D \mathbf{p}}{D t}=\Omega \times \mathbf{p}+\frac{r^{2}-1}{r^{2}+1}[\mathbf{E} \cdot \mathbf{p}-\mathbf{p}(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p})]
$$

Hence find $\mathbf{p}(t)$ for axisymmetric extensional flow and for simple shear, starting from an arbitrary initial $\mathbf{p}(0)$.

Micro \rightarrow macro link: stress

$$
\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+2 \mu \phi[A(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \mathbf{p} \mathbf{p}+B(\mathbf{p p} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{p p})+C \mathbf{E}]
$$

with A, B, C material constants depending on shape but not size

Micro \rightarrow macro link: stress

$$
\bar{\sigma}=-\bar{p} I+2 \mu \mathbf{E}+2 \mu \phi[A(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \mathbf{p} \mathbf{p}+B(\mathbf{p p} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{p p})+C \mathbf{E}]
$$

with A, B, C material constants depending on shape but not size

$$
\begin{array}{cccc}
& A & B & C \\
r \rightarrow \infty & \frac{r^{2}}{2\left(\ln 2 r-\frac{3}{2}\right)} & \frac{6 \ln 2 r-11}{r^{2}} & 2 \\
r \rightarrow 0 & \frac{10}{3 \pi r} & -\frac{8}{3 \pi r} & \frac{8}{3 \pi r}
\end{array}
$$

Rotation in uni-axial straining

$$
\mathbf{U}=E\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

Rotation in uni-axial straining

$$
\mathbf{U}=E\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

rotates to

Rotation in uni-axial straining

$$
\mathbf{U}=E\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

rotates to

Aligns with stretching direction \rightarrow maximum dissipation

Rotation in uni-axial straining

$$
\mathbf{U}=E\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

rotates to

Aligns with stretching direction \rightarrow maximum dissipation

rotates to

Rotation in uni-axial straining

$$
\mathbf{U}=E\left(x,-\frac{1}{2} y,-\frac{1}{2} z\right)
$$

rotates to

Aligns with stretching direction \rightarrow maximum dissipation

rotates to

Aligns with inflow direction \rightarrow maximum dissipation

Effective extensional viscosity for rods

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Effective extensional viscosity for rods

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Large at $\phi \ll 1$ if $r \gg 1$.

Effective extensional viscosity for rods

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Large at $\phi \ll 1$ if $r \gg 1$.
Now $\phi=\frac{4 \pi}{3} a b^{2}$ and $r=\frac{a}{b}$, so

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\frac{4 \pi n a^{3}}{9(\ln 2 r-1.5)}\right)
$$

Effective extensional viscosity for rods

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Large at $\phi \ll 1$ if $r \gg 1$.
Now $\phi=\frac{4 \pi}{3} a b^{2}$ and $r=\frac{a}{b}$, so

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\frac{4 \pi n a^{3}}{9(\ln 2 r-1.5)}\right)
$$

so same as sphere of radius a its largest dimension (except for factor $1.2(\ln 2 r-1.5))$.

Effective extensional viscosity for rods

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Large at $\phi \ll 1$ if $r \gg 1$.
Now $\phi=\frac{4 \pi}{3} a b^{2}$ and $r=\frac{a}{b}$, so

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\frac{4 \pi n a^{3}}{9(\ln 2 r-1.5)}\right)
$$

so same as sphere of radius a its largest dimension (except for factor $1.2(\ln 2 r-1.5))$.
Hence 5 ppm of PEO can have a big effect in drag reduction.

Effective extensional viscosity for rods

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Large at $\phi \ll 1$ if $r \gg 1$.
Now $\phi=\frac{4 \pi}{3} a b^{2}$ and $r=\frac{a}{b}$, so

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\frac{4 \pi n a^{3}}{9(\ln 2 r-1.5)}\right)
$$

so same as sphere of radius a its largest dimension (except for factor $1.2(\ln 2 r-1.5))$.
Hence 5 ppm of PEO can have a big effect in drag reduction.
Dilute requires $n a^{3} \ll 1$,

Effective extensional viscosity for rods

$$
\mu_{\text {ext }}^{*}=\mu\left(1+\phi \frac{r^{2}}{3(\ln 2 r-1.5)}\right)
$$

Large at $\phi \ll 1$ if $r \gg 1$.
Now $\phi=\frac{4 \pi}{3} a b^{2}$ and $r=\frac{a}{b}$, so

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\frac{4 \pi n a^{3}}{9(\ln 2 r-1.5)}\right)
$$

so same as sphere of radius a its largest dimension (except for factor $1.2(\ln 2 r-1.5))$.
Hence 5 ppm of PEO can have a big effect in drag reduction.
Dilute requires $n a^{3} \ll 1$, but extension by Batchelor to semi-dilute $\phi \ll 1 \ll \phi r^{2}$

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\frac{4 \pi n a^{3}}{9 \ln \phi^{-1 / 2}}\right)
$$

Effective extensional viscosity for disks

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{10}{3 \pi r}\right)=\mu\left(1+\frac{10 n b^{3}}{9}\right)
$$

where for disks b is the largest dimension

Effective extensional viscosity for disks

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{10}{3 \pi r}\right)=\mu\left(1+\frac{10 n b^{3}}{9}\right)
$$

where for disks b is the largest dimension
(always the largest for Stokes flow).

Effective extensional viscosity for disks

$$
\mu_{\mathrm{ext}}^{*}=\mu\left(1+\phi \frac{10}{3 \pi r}\right)=\mu\left(1+\frac{10 n b^{3}}{9}\right)
$$

where for disks b is the largest dimension
(always the largest for Stokes flow).
No semi-dilute theory, yet.

Behaviour in simple shear

$$
\mathbf{U}=(\gamma y, 0,0)
$$

Behaviour in simple shear

$$
\mathbf{U}=(\gamma y, 0,0)
$$

rotates to

Behaviour in simple shear

Rotates to flow direction \rightarrow minimum dissipation

Behaviour in simple shear

$$
\mathbf{U}=(\gamma y, 0,0)
$$

rotates to

Rotates to flow direction \rightarrow minimum dissipation

rotates to

Behaviour in simple shear

$$
\mathbf{U}=(\gamma y, 0,0)
$$

rotates to

Rotates to flow direction \rightarrow minimum dissipation

rotates to

Rotates to lie in flow \rightarrow minimum dissipation

Behaviour in simple shear

$$
\mathbf{U}=(\gamma y, 0,0)
$$

rotates to

Rotates to flow direction \rightarrow minimum dissipation

Rotates to lie in flow \rightarrow minimum dissipation
Both Tumble: flip in $1 / \gamma$, then align for $r / \gamma \quad(\delta \theta=1 / r$ with $\dot{\theta}=\gamma / r^{2}$)

Effective shear viscosity

Jeffery orbits (1922)

$$
\begin{aligned}
\dot{\phi} & =\frac{\gamma}{r^{2}+1}\left(r^{2} \cos ^{2} \phi+\sin ^{2} \phi\right) \\
\dot{\theta} & =\frac{\gamma\left(r^{2}-1\right)}{4\left(r^{2}+1\right)} \sin 2 \theta \sin 2 \phi
\end{aligned}
$$

Effective shear viscosity

Jeffery orbits (1922)

$$
\begin{aligned}
\dot{\phi} & =\frac{\gamma}{r^{2}+1}\left(r^{2} \cos ^{2} \phi+\sin ^{2} \phi\right) \\
\dot{\theta} & =\frac{\gamma\left(r^{2}-1\right)}{4\left(r^{2}+1\right)} \sin 2 \theta \sin 2 \phi
\end{aligned}
$$

Solution with orbit constant C.

$$
\tan \phi=r \tan \omega t, \quad \omega=\frac{\gamma r}{r^{2}+1}, \quad \tan \theta=C r\left(r^{2} \cos ^{2} \phi+\sin ^{2} \phi\right)^{-1 / 2}
$$

Effective shear viscosity

Jeffery orbits (1922)

$$
\begin{aligned}
\dot{\phi} & =\frac{\gamma}{r^{2}+1}\left(r^{2} \cos ^{2} \phi+\sin ^{2} \phi\right) \\
\dot{\theta} & =\frac{\gamma\left(r^{2}-1\right)}{4\left(r^{2}+1\right)} \sin 2 \theta \sin 2 \phi
\end{aligned}
$$

Solution with orbit constant C.
$\tan \phi=r \tan \omega t, \quad \omega=\frac{\gamma r}{r^{2}+1}, \quad \tan \theta=\operatorname{Cr}\left(r^{2} \cos ^{2} \phi+\sin ^{2} \phi\right)^{-1 / 2}$

Effective shear viscosity Leal \& H (1971)

$$
\mu_{\text {shear }}^{*}=\mu\left(1+\phi\left\{\begin{array}{ll}
0.32 r / \ln r & \text { rods } \\
3.1 & \text { disks }
\end{array}\right)\right.
$$

numerical coefficients depend on distribution across orbits, C.

Remarks

Alignment gives $\quad \mu_{\text {shear }}^{*} \ll \mu_{\text {ext }}^{*}$

Remarks

Alignment gives $\quad \mu_{\text {shear }}^{*} \ll \mu_{\text {ext }}^{*}$
This material anisotropy leads to anisotropy of macro flow.

Remarks

Alignment gives $\quad \mu_{\text {shear }}^{*} \ll \mu_{\text {ext }}^{*}$
This material anisotropy leads to anisotropy of macro flow.
Important to Turbulent Drag Reduction

Remarks

Alignment gives $\quad \mu_{\text {shear }}^{*} \ll \mu_{\text {ext }}^{*}$
This material anisotropy leads to anisotropy of macro flow.
Important to Turbulent Drag Reduction

Three measures of concentration of rods

$$
\begin{cases}\phi r^{2} \doteq n a^{3} & \text { for } \quad \mu_{\mathrm{ext}}^{*} \\ \phi r \doteq n a^{2} b & \text { for } \quad \mu_{\text {shear }}^{*} \\ \phi \doteq n a b^{2} & \text { for permeability }\end{cases}
$$

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres,

$$
D_{\mathrm{rot}}=k T / 8 \pi \mu a^{3}
$$

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods

$$
D_{\mathrm{rot}}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)},
$$

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$
D_{\mathrm{rot}}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)}, \quad k T / \frac{8}{3} \mu b^{3}
$$

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$
D_{\mathrm{rot}}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)}, \quad k T / \frac{8}{3} \mu b^{3}
$$

NB largest dimension, again

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$
D_{\mathrm{rot}}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)}, \quad k T / \frac{8}{3} \mu b^{3}
$$

NB largest dimension, again
After flow is switched off, particles randomise orientation in time $1 / 6 D$

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$
D_{\mathrm{rot}}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)}, \quad k T / \frac{8}{3} \mu b^{3}
$$

NB largest dimension, again
After flow is switched off, particles randomise orientation in time $1 / 6 D \sim 1$ second for $1 \mu \mathrm{~m}$ in water.

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$
D_{\text {rot }}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)}, \quad k T / \frac{8}{3} \mu b^{3}
$$

NB largest dimension, again
After flow is switched off, particles randomise orientation in time $1 / 6 D \sim 1$ second for $1 \mu \mathrm{~m}$ in water.

State of alignment: probability density $P(\mathbf{p}, t)$ in orientation space $=$ unit sphere $|\mathbf{p}|=1$.

Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$
D_{\text {rot }}=k T / 8 \pi \mu a^{3}, \quad k T / \frac{8 \pi \mu a^{2}}{3(\ln 2 r-1.5)}, \quad k T / \frac{8}{3} \mu b^{3}
$$

NB largest dimension, again
After flow is switched off, particles randomise orientation in time $1 / 6 D \sim 1$ second for $1 \mu \mathrm{~m}$ in water.

State of alignment: probability density $P(\mathbf{p}, t)$ in orientation space $=$ unit sphere $|\mathbf{p}|=1$.
Fokker-Plank equation

$$
\frac{\partial P}{\partial t}+\nabla \cdot(\dot{\mathbf{p}} P)=D_{\mathrm{rot}} \nabla^{2} P
$$

$\dot{\mathbf{p}}(\mathbf{p})$ earlier deterministic.

Average stress over distribution P

Averaged stress

$$
\begin{aligned}
\sigma=-p l+2 \mu E+ & 2 \mu \phi[A E:\langle\mathbf{p p p p}\rangle \\
& \left.+B(E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E)+C E+F D_{\mathrm{rot}}\langle\mathbf{p p}\rangle\right]
\end{aligned}
$$

Average stress over distribution P

Averaged stress

$$
\begin{aligned}
\sigma=-p I+2 \mu E+ & 2 \mu \phi[A E:\langle\mathbf{p p p p}\rangle \\
& \left.+B(E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E)+C E+F D_{\mathrm{rot}}\langle\mathbf{p p}\rangle\right]
\end{aligned}
$$

Last $F D_{\text {rot }}$ term is entropic stress.

Average stress over distribution P

Averaged stress

$$
\begin{aligned}
\sigma=-p I+2 \mu E+ & 2 \mu \phi[A E:\langle\mathbf{p p p p}\rangle \\
& \left.+B(E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E)+C E+F D_{\mathrm{rot}}\langle\mathbf{p p}\rangle\right]
\end{aligned}
$$

Last $F D_{\text {rot }}$ term is entropic stress.
Extra material constant $F=3 r^{2} /(\ln 2 r-0.5)$ for rods and $12 / \pi r$ for disks.

Average stress over distribution P

Averaged stress

$$
\begin{aligned}
\sigma=-p I+2 \mu E+ & 2 \mu \phi[A E:\langle\mathbf{p p p p}\rangle \\
& \left.+B(E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E)+C E+F D_{\mathrm{rot}}\langle\mathbf{p p}\rangle\right]
\end{aligned}
$$

Last $F D_{\text {rot }}$ term is entropic stress.
Extra material constant $F=3 r^{2} /(\ln 2 r-0.5)$ for rods and $12 / \pi r$ for disks.
Averaging

$$
\langle\mathbf{p} \mathbf{p}\rangle=\int_{|\mathbf{p}|=1} \mathbf{p p} P d p
$$

Average stress over distribution P

Averaged stress

$$
\begin{aligned}
\sigma=-p I+2 \mu E+ & 2 \mu \phi[A E:\langle\mathbf{p p p p}\rangle \\
& \left.+B(E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E)+C E+F D_{\mathrm{rot}}\langle\mathbf{p p}\rangle\right]
\end{aligned}
$$

Last $F D_{\text {rot }}$ term is entropic stress.
Extra material constant $F=3 r^{2} /(\ln 2 r-0.5)$ for rods and $12 / \pi r$ for disks.
Averaging

$$
\langle\mathbf{p} \mathbf{p}\rangle=\int_{|\mathbf{p}|=1} \mathbf{p p} P d p
$$

Solve Fokker-Plank: numerical, weak and strong Brownian rotations

Extensional and shear viscosities

The closure problem

- Second moment of Fokker-Plank equation

$$
\begin{aligned}
& \frac{D}{D t}\langle\mathbf{p p}\rangle-\Omega \cdot\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle \cdot \Omega \\
= & \frac{r^{2}-1}{r^{2}+1}[E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E-2\langle\mathbf{p p p p}\rangle: E]-6 D_{\mathrm{rot}}\left[\langle\mathbf{p p}\rangle-\frac{1}{3} I\right]
\end{aligned}
$$

Hence this and stress need $\langle\mathbf{p p p p}\rangle$, so an infinite hierarchy.

The closure problem

- Second moment of Fokker-Plank equation

$$
\begin{aligned}
& \frac{D}{D t}\langle\mathbf{p p}\rangle-\Omega \cdot\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle \cdot \Omega \\
= & \frac{r^{2}-1}{r^{2}+1}[E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E-2\langle\mathbf{p p p p}\rangle: E]-6 D_{\mathrm{rot}}\left[\langle\mathbf{p p}\rangle-\frac{1}{3} I\right]
\end{aligned}
$$

Hence this and stress need $\langle\mathbf{p p p p}\rangle$, so an infinite hierarchy.

- Simple 'ad hoc' closure

$$
\langle\mathbf{p p p p}\rangle: E=\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle: E
$$

The closure problem

- Second moment of Fokker-Plank equation

$$
\begin{aligned}
& \frac{D}{D t}\langle\mathbf{p p}\rangle-\Omega \cdot\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle \cdot \Omega \\
= & \frac{r^{2}-1}{r^{2}+1}[E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E-2\langle\mathbf{p p p p}\rangle: E]-6 D_{\mathrm{rot}}\left[\langle\mathbf{p p}\rangle-\frac{1}{3} I\right]
\end{aligned}
$$

Hence this and stress need $\langle\mathbf{p p p p}\rangle$, so an infinite hierarchy.

- Simple 'ad hoc' closure

$$
\langle\mathbf{p p p p}\rangle: E=\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle: E
$$

- Better: correct in weak and strong limits

$$
=\frac{1}{5}\left[6\langle\mathbf{p p}\rangle \cdot E \cdot\langle\mathbf{p p}\rangle-\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle: E-2 I\left(\langle\mathbf{p} \mathbf{p}\rangle^{2}: E-\langle\mathbf{p p}\rangle: E\right)\right]
$$

The closure problem

- Second moment of Fokker-Plank equation

$$
\begin{aligned}
& \frac{D}{D t}\langle\mathbf{p p}\rangle-\Omega \cdot\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle \cdot \Omega \\
= & \frac{r^{2}-1}{r^{2}+1}[E \cdot\langle\mathbf{p p}\rangle+\langle\mathbf{p p}\rangle \cdot E-2\langle\mathbf{p p p p}\rangle: E]-6 D_{\mathrm{rot}}\left[\langle\mathbf{p p}\rangle-\frac{1}{3} I\right]
\end{aligned}
$$

Hence this and stress need $\langle\mathbf{p p p p}\rangle$, so an infinite hierarchy.

- Simple 'ad hoc' closure

$$
\langle\mathbf{p p p p}\rangle: E=\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle: E
$$

- Better: correct in weak and strong limits

$$
=\frac{1}{5}\left[6\langle\mathbf{p p}\rangle \cdot E \cdot\langle\mathbf{p p}\rangle-\langle\mathbf{p p}\rangle\langle\mathbf{p p}\rangle: E-2 I\left(\langle\mathbf{p p}\rangle^{2}: E-\langle\mathbf{p p}\rangle: E\right)\right]
$$

- New idea Brownian fields: simulate many random walks in orientation space for each point of the complex flow.

Rotations

- Rotation of particles
- Macro stress
- Uni-axial straining
- Extensional viscosity rods
- Extensional viscosity disks
- Simple shear
- Shear viscosity
- Anisotropy
- Brownian rotations
- Macro stress
- Viscosities
- Closures

Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

Deformations

- Emulsions
- Rupture
- Theories
- Numerical
- Flexible thread
- Double layer

Emulsions - deformable microstructure

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)
- Newtonian viscous drop $\mu_{\text {int }}$, solvent $\mu_{\text {ext }}$

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)
- Newtonian viscous drop $\mu_{\text {int }}$, solvent $\mu_{\text {ext }}$

$$
\text { Rupture if } \mu_{\mathrm{ext}}>\frac{T}{E a} \text { (normally) }
$$

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)
- Newtonian viscous drop $\mu_{\text {int }}$, solvent $\mu_{\text {ext }}$

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)
- Newtonian viscous drop $\mu_{\text {int }}$, solvent $\mu_{\text {ext }}$

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)
- Newtonian viscous drop $\mu_{\text {int }}$, solvent $\mu_{\text {ext }}$

Rupture if $\mu_{\mathrm{ext}}>\frac{T}{E a}$ (normally)

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute - single drop, volume $\frac{4 \pi}{3} a^{3}$
- $T=$ surface tension (in rheology σ and γ not possible)
- Newtonian viscous drop $\mu_{\text {int }}$, solvent $\mu_{\text {ext }}$

Rupture if $\mu_{\text {ext }}>\frac{T}{E a}$ (normally)

Irreversible reduction in size to $a_{*}=T / \mu_{\mathrm{ext}} E$, as coalescence very slow.

Rupture in shear flow

Experiments: de Bruijn (1989) (=own), Grace (1982)
Theories: Barthes-Biesel (1972), Rallison (1981), Hinch \& Acrivos (1980)

Rupture difficult if $\mu_{\text {int }} \ll \mu_{\text {ext }}$

Too slippery.

Rupture difficult if $\mu_{\mathrm{int}} \ll \mu_{\mathrm{ext}}$

Too slippery. Become long and thin. Rupture if

$$
\mu_{\mathrm{ext}} E>\frac{T}{a}\left\{0.54\left(\mu_{\mathrm{ext}} / \mu_{\mathrm{int}}\right)^{2 / 3} \quad\right. \text { simple shear }
$$

Rupture difficult if $\mu_{\text {int }} \ll \mu_{\text {ext }}$

Too slippery. Become long and thin. Rupture if

$$
\mu_{\mathrm{ext}} E>\frac{T}{a} \begin{cases}0.54\left(\mu_{\mathrm{ext}} / \mu_{\mathrm{int}}\right)^{2 / 3} & \text { simple shear } \\ 0.14\left(\mu_{\mathrm{ext}} / \mu_{\mathrm{int}}\right)^{1 / 6} & \text { extension }\end{cases}
$$

Rupture difficult if $\mu_{\mathrm{int}} \ll \mu_{\mathrm{ext}}$

Too slippery. Become long and thin. Rupture if

$$
\mu_{\mathrm{ext}} E>\frac{T}{a} \begin{cases}0.54\left(\mu_{\mathrm{ext}} / \mu_{\mathrm{int}}\right)^{2 / 3} & \text { simple shear } \\ 0.14\left(\mu_{\mathrm{ext}} / \mu_{\mathrm{int}}\right)^{1 / 6} & \text { extension }\end{cases}
$$

but tip-streaming with mobile surfactants (makes rigid end-cap)

$$
\mu_{\mathrm{ext}} E>\frac{T}{a} 0.56
$$

Rupture difficult is simple shear if $\mu_{\text {int }}>3 \mu_{\text {ext }}$

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\left.\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}\right)$,

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\left.\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}\right)$,
- then rotates with vorticity,

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}$),
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,

Rupture difficult is simple shear if $\mu_{\text {int }}>3 \mu_{\text {ext }}$

- If internal very viscous ($\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}$),
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,
- hence deforms little.

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\left.\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}\right)$,
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,
- hence deforms little.
- If internal fairly viscous ($\mu_{\mathrm{int}} \gtrsim 3 \mu_{\mathrm{ext}}$),

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\left.\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}\right)$,
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,
- hence deforms little.
- If internal fairly viscous ($\mu_{\mathrm{int}} \gtrsim 3 \mu_{\mathrm{ext}}$),
- then deforms more,

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\left.\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}\right)$,
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,
- hence deforms little.
- If internal fairly viscous ($\left.\mu_{\text {int }} \gtrsim 3 \mu_{\text {ext }}\right)$,
- then deforms more,
- if deformed, rotates more slowly in stretching quadrant,

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}$),
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,
- hence deforms little.
- If internal fairly viscous ($\mu_{\mathrm{int}} \gtrsim 3 \mu_{\mathrm{ext}}$),
- then deforms more,
- if deformed, rotates more slowly in stretching quadrant,
- if more deformed, rotates more slowly, so deforms even more, etc etc

Rupture difficult is simple shear if $\mu_{\mathrm{int}}>3 \mu_{\mathrm{ext}}$

- If internal very viscous ($\left.\mu_{\mathrm{int}} \gg \mu_{\mathrm{ext}}\right)$,
- then rotates with vorticity,
- rotating with vorticity, sees alternative stretching and compression,
- hence deforms little.
- If internal fairly viscous ($\mu_{\mathrm{int}} \gtrsim 3 \mu_{\mathrm{ext}}$),
- then deforms more,
- if deformed, rotates more slowly in stretching quadrant,
- if more deformed, rotates more slowly, so deforms even more, etc etc
- until can rupture when $\mu_{\mathrm{int}} \leq 3 \mu_{\mathrm{ext}}$

Theoretical studies: small deformations

Small ellipsoidal deformation

$$
r=a(1+\mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x}+\quad \text { higher orders })
$$

Theoretical studies: small deformations

Small ellipsoidal deformation

$$
r=a(1+\mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x}+\quad \text { higher orders })
$$

Stokes flow with help of computerised algebra manipulator

$$
\begin{aligned}
\frac{D \mathbf{A}}{D t}-\Omega \cdot \mathbf{A}+\mathbf{A} \cdot \Omega=2 k_{1} \mathbf{E}+ & k_{5}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& -\frac{T}{\mu_{\text {ext } a}}\left(k_{2} \mathbf{A}+k_{6}(\mathbf{A} \cdot \mathbf{A})+\ldots\right)
\end{aligned}
$$

Theoretical studies: small deformations

Small ellipsoidal deformation

$$
r=a(1+\mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x}+\quad \text { higher orders })
$$

Stokes flow with help of computerised algebra manipulator

$$
\begin{aligned}
\frac{D \mathbf{A}}{D t}-\Omega \cdot \mathbf{A}+\mathbf{A} \cdot \Omega=2 k_{1} \mathbf{E}+ & k_{5}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& \quad-\frac{T}{\mu_{\mathrm{ext} a}}\left(k_{2} \mathbf{A}+k_{6}(\mathbf{A} \cdot \mathbf{A})+\ldots\right) \\
\sigma=-p I+2 \mu_{\mathrm{ext}} \mathbf{E}+2 \mu_{\mathrm{ext}} \phi[& k_{3} \mathbf{E}+ \\
& +k_{7}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& -\frac{T}{\mu_{\mathrm{ext} \mathrm{a}}}\left(k_{4} \mathbf{A}+k_{8}(\mathbf{A} \cdot \mathbf{A})+\ldots\right]
\end{aligned}
$$

Theoretical studies: small deformations

Small ellipsoidal deformation

$$
r=a(1+\mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x}+\quad \text { higher orders })
$$

Stokes flow with help of computerised algebra manipulator

$$
\begin{aligned}
\frac{D \mathbf{A}}{D t}-\Omega \cdot \mathbf{A}+\mathbf{A} \cdot \Omega=2 k_{1} \mathbf{E}+ & k_{5}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& \quad-\frac{T}{\mu_{\mathrm{ext} a}}\left(k_{2} \mathbf{A}+k_{6}(\mathbf{A} \cdot \mathbf{A})+\ldots\right) \\
\sigma=-p I+2 \mu_{\mathrm{ext}} \mathbf{E}+2 \mu_{\mathrm{ext}} \phi[& k_{3} \mathbf{E}+ \\
& +k_{7}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& -\frac{T}{\mu_{\mathrm{ext} \mathrm{a}}}\left(k_{4} \mathbf{A}+k_{8}(\mathbf{A} \cdot \mathbf{A})+\ldots\right]
\end{aligned}
$$

with k_{n} depending on viscosity ratio, $\lambda=\mu_{\mathrm{int}} / \mu_{\mathrm{ext}}$,

$$
\begin{array}{ll}
k_{1}=\frac{5}{2(2 \lambda+3)}, & k_{2}=\frac{40(\lambda+1)}{(2 \lambda+3)(19 \lambda+16)} \\
k_{3}=\frac{5(\lambda-1)}{3(2 \lambda+3)}, & k_{4}=\frac{4}{2 \lambda+3}
\end{array}
$$

Theoretical studies: small deformations

Small ellipsoidal deformation

$$
r=a(1+\mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x}+\quad \text { higher orders })
$$

Stokes flow with help of computerised algebra manipulator

$$
\begin{aligned}
\frac{D \mathbf{A}}{D t}-\Omega \cdot \mathbf{A}+\mathbf{A} \cdot \Omega=2 k_{1} \mathbf{E}+ & k_{5}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& \quad-\frac{T}{\mu_{\mathrm{ext} a}}\left(k_{2} \mathbf{A}+k_{6}(\mathbf{A} \cdot \mathbf{A})+\ldots\right) \\
\sigma=-p I+2 \mu_{\mathrm{ext}} \mathbf{E}+2 \mu_{\mathrm{ext}} \phi[& k_{3} \mathbf{E} \\
& +k_{7}(\mathbf{A} \cdot \mathbf{E}+\mathbf{E} \cdot \mathbf{A})+\ldots \\
& -\frac{T}{\mu_{\mathrm{ext} \mathrm{a}}}\left(k_{4} \mathbf{A}+k_{8}(\mathbf{A} \cdot \mathbf{A})+\ldots\right]
\end{aligned}
$$

with k_{n} depending on viscosity ratio, $\lambda=\mu_{\mathrm{int}} / \mu_{\mathrm{ext}}$,

$$
\begin{array}{ll}
k_{1}=\frac{5}{2(2 \lambda+3)}, & k_{2}=\frac{40(\lambda+1)}{(2 \lambda+3)(19 \lambda+16)} \\
k_{3}=\frac{5(\lambda-1)}{3(2 \lambda+3)}, & k_{4}=\frac{4}{2 \lambda+3}
\end{array}
$$

k_{1} inefficiency of rotating by straining

Inefficiency of rotating by straining

Student Exercise

Consider the constitutive equation

$$
\begin{gathered}
\sigma=-p I+2 \mu_{0} E+G A \\
\frac{D A}{D t}-\Omega \cdot A+A \cdot \Omega-\alpha(E \cdot A+A \cdot E)=-\frac{1}{\tau}(A-I), \\
\text { in flow } \quad u=(\Omega+E) \cdot x
\end{gathered}
$$

Solve for σ in steady simple shear, finding the shear viscosity and normal stress differences.

Find the condition on the parameters for the shear stress to be a monotonic increasing function of the shear-rate (non-shear-banding).

Theoretical studies: small deformations 2

Equilibrium shapes before rupture

shear

internal circulation, tank-treading

Theoretical studies: small deformations 2

Equilibrium shapes before rupture

shear

internal circulation, tank-treading

Rheology before rupture
Small strain-hardening, small shear-thinning, $N_{1}>0, N_{2}<0$.

Theoretical studies: small deformations 2

Equilibrium shapes before rupture

shear

internal circulation, tank-treading

Rheology before rupture
Small strain-hardening, small shear-thinning, $N_{1}>0, N_{2}<0$.
Repeated rupture leaves $\mu^{*} \cong$ constant.
Einstein: independent of size of particle, just depends on ϕ.

Theoretical studies: small deformations 2

Equilibrium shapes before rupture
 $\xrightarrow{\text { shear }}$
internal circulation, tank-treading

Rheology before rupture
Small strain-hardening, small shear-thinning, $N_{1}>0, N_{2}<0$.
Repeated rupture leaves $\mu^{*} \cong$ constant.
Einstein: independent of size of particle, just depends on ϕ.
Form of constitutive equation

$$
\frac{d}{d t}(\text { state }) \quad \& \quad \sigma \quad \text { linear in } \quad \mathbf{E} \quad \& \quad \frac{T}{\mu_{\mathrm{ext}} a}
$$

Numerical studies: boundary integral method

Figure 12. Steady-state results as a function of capillary number for $\phi=10 \%$; (a) average steady-state drop deformation, (b) drop orientation, (c) shear stress contribution of drops, and (d) contribution of drops to normal stresses: first normal stress difference (solid curves), second normal stress difference (dashed curves); $\lambda=0(+), \lambda=0.2(\square), \lambda=1(\diamond), \lambda=2(\Delta), \lambda=5(*)$.

Different λ. No rupture for $\lambda=5\left(^{*}\right)$

Flexible thread - deformable microstructure

Flexible thread - deformable microstructure

Position $\mathbf{x}(s, t)$, arc length s, tension $T(s, t)$

Flexible thread - deformable microstructure

Position $\mathbf{x}(s, t)$, arc length s, tension $T(s, t)$
Slender-body theory with 2:1 drag $\perp: \|$, S.Ex

$$
\dot{\mathbf{x}}=\mathbf{x} \cdot \nabla \mathbf{U}+T^{\prime} \mathbf{x}^{\prime}+\frac{1}{2} T \mathbf{x}^{\prime \prime}
$$

Flexible thread - deformable microstructure

Position $\mathbf{x}(s, t)$, arc length s, tension $T(s, t)$
Slender-body theory with 2:1 drag $\perp: \|, \quad$ S.Ex

$$
\dot{\mathbf{x}}=\mathbf{x} \cdot \nabla \mathbf{U}+T^{\prime} \mathbf{x}^{\prime}+\frac{1}{2} T \mathbf{x}^{\prime \prime}
$$

Inextensibility $\left|\mathbf{x}^{\prime}\right| \equiv 1$ gives \quad S.Ex

$$
T^{\prime \prime}-\frac{1}{2}\left(\mathbf{x}^{\prime \prime}\right)^{2} T=-\mathbf{x}^{\prime} \cdot \nabla \mathbf{U} \cdot \mathbf{x}^{\prime} \quad \text { and } T=0 \text { at ends }
$$

Flexible thread - deformable microstructure

Position $\mathbf{x}(s, t)$, arc length s, tension $T(s, t)$
Slender-body theory with 2:1 drag $\perp: \|$, S.Ex

$$
\dot{\mathbf{x}}=\mathbf{x} \cdot \nabla \mathbf{U}+T^{\prime} \mathbf{x}^{\prime}+\frac{1}{2} T \mathbf{x}^{\prime \prime}
$$

Inextensibility $\left|\mathbf{x}^{\prime}\right| \equiv 1$ gives \quad S.Ex

Electrical double layer on isolated sphere

- another deformable microstructure

Electrical double layer on isolated sphere

- another deformable microstructure
- Charged colloidal particle.

Electrical double layer on isolated sphere

- another deformable microstructure
- Charged colloidal particle.
- Solvent ions dissociate,

Electrical double layer on isolated sphere

- another deformable microstructure
- Charged colloidal particle.
- Solvent ions dissociate,
- forming neutralising cloud around particle.

Electrical double layer on isolated sphere

- another deformable microstructure
- Charged colloidal particle.
- Solvent ions dissociate,
- forming neutralising cloud around particle.
- Screening distance Debye κ^{-1}, with $\kappa^{2}=\Sigma_{i} n_{i} z_{i}^{2} e^{2} / \epsilon k T$.

Electrical double layer on isolated sphere

- another deformable microstructure
- Charged colloidal particle.
- Solvent ions dissociate,
- forming neutralising cloud around particle.
- Screening distance Debye κ^{-1}, with $\kappa^{2}=\Sigma_{i} n_{i} z_{i}^{2} e^{2} / \epsilon k T$.
- In flow, cloud distorts a little

Electrical double layer on isolated sphere

- another deformable microstructure
- Charged colloidal particle.
- Solvent ions dissociate,
- forming neutralising cloud around particle.
- Screening distance Debye κ^{-1}, with $\kappa^{2}=\Sigma_{i} n_{i} z_{i}^{2} e^{2} / \epsilon k T$.
- In flow, cloud distorts a little
- \longrightarrow very small change in Einstein $\frac{5}{2}$.

Deformations

- Emulsions
- Rupture
- Theories
- Numerical
- Flexible thread
- Double layer

Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

Interactions

- Hydrodynamic
- Dilute
- Experiments
- Numerical
- Electrical double-layer
- Concentrated
- van der Waals
- Fibres
- Drops
- Numerical

Hydrodynamic interactions for rigid spheres

Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged

Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged
Rigid spheres: two bad ideas

Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged
Rigid spheres : two bad ideas
Dilute - between pairs (mostly)

Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged
Rigid spheres: two bad ideas
Dilute - between pairs (mostly)

Reversible (spheres + Stokes flow) \rightarrow return to original streamlines

Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged
Rigid spheres: two bad ideas
Dilute - between pairs (mostly)

Reversible (spheres + Stokes flow) \rightarrow return to original streamlines But minimum separation is $\frac{1}{2} 10^{-4}$ radius \rightarrow sensitive to roughness (typically 1\%) when do not return to original streamlines.

Summing dilute interactions

$$
\text { Divergent integral from } \nabla \mathbf{u} \sim \frac{1}{r^{3}}
$$

Summing dilute interactions

Divergent integral from $\nabla \mathbf{u} \sim \frac{1}{r^{3}}$
Need renormalisation: Batchelor or mean-field hierarchy.

Summing dilute interactions

Divergent integral from $\nabla \mathbf{u} \sim \frac{1}{r^{3}}$
Need renormalisation: Batchelor or mean-field hierarchy.

$$
\mu^{*}=\mu\left[1+2.5 \phi+6.0 \phi^{2}\right]
$$

Summing dilute interactions

Divergent integral from $\nabla \mathbf{u} \sim \frac{1}{r^{3}}$
Need renormalisation: Batchelor or mean-field hierarchy.

$$
\mu^{*}=\mu\left[1+2.5 \phi+6.0 \phi^{2}\right]
$$

- 6.0 for strong Brownian motion

Summing dilute interactions

Divergent integral from $\nabla \mathbf{u} \sim \frac{1}{r^{3}}$
Need renormalisation: Batchelor or mean-field hierarchy.

$$
\mu^{*}=\mu\left[1+2.5 \phi+6.0 \phi^{2}\right]
$$

- 6.0 for strong Brownian motion
- 7.6 for strong extensional flow

Summing dilute interactions

Divergent integral from $\nabla \mathbf{u} \sim \frac{1}{r^{3}}$
Need renormalisation: Batchelor or mean-field hierarchy.

$$
\mu^{*}=\mu\left[1+2.5 \phi+6.0 \phi^{2}\right]
$$

- 6.0 for strong Brownian motion
- 7.6 for strong extensional flow
- $\cong 5$ for strong shear flow, depends on distribution on closed orbits

Summing dilute interactions

Divergent integral from $\nabla \mathbf{u} \sim \frac{1}{r^{3}}$
Need renormalisation: Batchelor or mean-field hierarchy.

$$
\mu^{*}=\mu\left[1+2.5 \phi+6.0 \phi^{2}\right]
$$

- 6.0 for strong Brownian motion
- 7.6 for strong extensional flow
- $\cong 5$ for strong shear flow, depends on distribution on closed orbits

Small strain-hardening, small shear-thinning

Test of Batchelor ϕ^{2} result

$$
\mu^{*}=\mu\left[1+2.5 \phi+6.0 \phi^{2}\right]
$$

Fig. 14.17. Low shear viscosity for dilute suspensions of hard spheres (Russel, 1980): O, data for polystyrene latices ($a=42,87 \mathrm{~nm}$) in water (Saunders, 1961); theory of Batchelor (1977).

Experiments - concentrated

Effective viscosities in shear flow

Fig. 14.3. Relative steady shear viscosity as function of Peclet number for polystyrene latices of radii listed in Table 14.3 dispersed in water (-) and benzyl alcohol

$$
\mu a^{3} \gamma / k T
$$

ϕ
Russel, Saville, Schowalter 1989

Stokesian Dynamics

- (mostly) pairwise additive hydrodynamics

Stokesian Dynamics

- (mostly) pairwise additive hydrodynamics

Jamming/locking - clusters across the compressive quadrant

Brady \& Bossis (1985)

Stokesian Dynamics

- (mostly) pairwise additive hydrodynamics

Jamming/locking - clusters across the compressive quadrant

Brady \& Bossis (1985)
Fragile clusters if include soft repulsion or Brownian motion

Stokesian Dynamics 2

Effective viscosity in shear flow

Foss \& Brady (2000)
'Stokesian Dynamics' Brady \& Bossis
Ann. Rev. Fluid Mech. (1988)

Electrical double-layer interactions

Electrical double-layer interactions

Interaction distance r_{*} :

$$
6 \mu \mu a \gamma r_{*}=\frac{\epsilon \zeta^{2} a^{2} \kappa}{r_{*}} e^{-\kappa\left(r_{*}-2 a\right)}
$$

Electrical double-layer interactions

Interaction distance r_{*} :

$$
\begin{gathered}
6 \mu \mu a \gamma r_{*}=\frac{\epsilon \zeta^{2} a^{2} \kappa}{r_{*}} e^{-\kappa\left(r_{*}-2 a\right)} \\
\mu_{*}=\mu\left(1+2.5 \phi+2.8 \phi^{2}\left(\frac{r_{*}}{a}\right)^{5}\right)
\end{gathered}
$$

Electrical double-layer interactions

Interaction distance r_{*} :

$$
\begin{gathered}
6 \mu \mu a \gamma r_{*}=\frac{\epsilon \zeta^{2} a^{2} \kappa}{r_{*}} e^{-\kappa\left(r_{*}-2 a\right)} \\
\mu_{*}=\mu\left(1+2.5 \phi+2.8 \phi^{2}\left(\frac{r_{*}}{a}\right)^{5}\right) \\
\left(\frac{r_{*}}{a}\right)^{5}=\text { velocity } \quad \gamma r_{*} \\
\times \text { force distance } \quad r_{*} \\
\times \text { volume } \quad \phi\left(\frac{r_{*}}{a}\right)^{3}
\end{gathered}
$$

Electrical double-layer interactions

Interaction distance r_{*} :

$$
\phi^{2} \text { coefficient as function of } \frac{r_{*}}{a}
$$

$$
\begin{gathered}
6 \mu \mu a \gamma r_{*}=\frac{\epsilon \zeta^{2} a^{2} \kappa}{r_{*}} e^{-\kappa\left(r_{*}-2 a\right)} \\
\mu_{*}=\mu\left(1+2.5 \phi+2.8 \phi^{2}\left(\frac{r_{*}}{a}\right)^{5}\right) \\
\left(\frac{r_{*}}{a}\right)^{5}=\text { velocity } \quad \gamma r_{*} \\
\times \text { force distance } r_{*} \\
\times \text { volume } \phi\left(\frac{r_{*}}{a}\right)^{3}
\end{gathered}
$$

Experiments - concentrated

Stress as function of shear-rate at different pH .
Suspension of $0.33 \mu \mathrm{~m}$ aluminium particles at $\phi=0.3$

Fig. 3 : Courbes d'écoulement de suspensions d'alumine P772SB, en fonction du pH ,

$$
\phi_{v}=0,30
$$

Ducerf (Grenoble PhD 1992)

Experiments - concentrated

Stress as function of shear-rate at different pH .
Suspension of $0.33 \mu \mathrm{~m}$ aluminium particles at $\phi=0.3$

Fig. 3 : Courbes d'écoulement de suspensions d'alumine P772SB, en fonction du pH ,

$$
\phi_{v}=0,30
$$

Ducerf (Grenoble PhD 1992)
Note yield stress very sensitive to pH

Interactions - van der Waals

Interactions - van der Waals

Attraction \rightarrow aggregation

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?
- Volume fraction of flocs $\phi_{\text {floc }}=\phi\left(\frac{R}{a}\right)^{3}$

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?
- Volume fraction of flocs $\phi_{\text {floc }}=\phi\left(\frac{R}{a}\right)^{3}$
- Collision between two flocs

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?
- Volume fraction of flocs $\phi_{\text {floc }}=\phi\left(\frac{R}{a}\right)^{3}$
- Collision between two flocs
- Hydro force $6 \pi \mu R \gamma R=$ Bond force $F_{b} \times$ number of bonds $N \frac{a}{R}$

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?
- Volume fraction of flocs $\phi_{\text {floc }}=\phi\left(\frac{R}{a}\right)^{3}$
- Collision between two flocs
- Hydro force $6 \pi \mu R \gamma R=$ Bond force $F_{b} \times$ number of bonds $N \frac{a}{R}$
- Hence $\phi_{\text {floc }}=\phi \frac{F_{b}}{6 \pi \mu a^{2} \gamma}$

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?
- Volume fraction of flocs $\phi_{\text {floc }}=\phi\left(\frac{R}{a}\right)^{3}$
- Collision between two flocs
- Hydro force $6 \pi \mu R \gamma R=$ Bond force $F_{b} \times$ number of bonds $N \frac{a}{R}$
- Hence $\phi_{\text {floc }}=\phi \frac{F_{b}}{6 \pi \mu a^{2} \gamma}$
- So strong shear-thinning and yields stress $\phi F_{b} / a^{2}$.

Interactions - van der Waals

Attraction \rightarrow aggregation
\rightarrow gel (conc) or suspension of flocs (dilute)
Possible model of size of flocs R

- Number of particles in floc $N=\left(\frac{R}{a}\right)^{d}, \mathrm{~d}=2.3$?
- Volume fraction of flocs $\phi_{\text {floc }}=\phi\left(\frac{R}{a}\right)^{3}$
- Collision between two flocs
- Hydro force $6 \pi \mu R \gamma R=$ Bond force $F_{b} \times$ number of bonds $N \frac{a}{R}$
- Hence $\phi_{\text {floc }}=\phi \frac{F_{b}}{6 \pi \mu a^{2} \gamma}$
- So strong shear-thinning and yields stress $\phi F_{b} / a^{2}$.

Breakdown of structure in rheology $\mu(\gamma)$

Interactions - fibres

Interactions - fibres

Cannot pack with random orientation if

$$
\phi r>1
$$

Interactions - fibres

Cannot pack with random orientation if

$$
\phi r>1
$$

leads to spontaneous alignment, nematic phase transition

Interactions - fibres

Cannot pack with random orientation if

$$
\phi r>1
$$

leads to spontaneous alignment, nematic phase transition
Note extensional viscosity $\propto \phi r^{2}$ can be big while random,

Interactions - fibres

Cannot pack with random orientation if

$$
\phi r>1
$$

leads to spontaneous alignment, nematic phase transition
Note extensional viscosity $\propto \phi r^{2}$ can be big while random, but shear viscosity $\propto \phi r$ is only big if aligned.

Interactions - fibres

Cannot pack with random orientation if

$$
\phi r>1
$$

leads to spontaneous alignment, nematic phase transition
Note extensional viscosity $\propto \phi r^{2}$ can be big while random, but shear viscosity $\propto \phi r$ is only big if aligned.

Disk not random if $\phi \frac{1}{r}>1$.

Interactions - drops

Interactions - drops

- No jamming/locking of drops (cf rigid spheres)

Interactions - drops

- No jamming/locking of drops (cf rigid spheres)
- small deformation avoid geometric frustration

Interactions - drops

- No jamming/locking of drops (cf rigid spheres)
- small deformation avoid geometric frustration
- slippery particle, no co-rotation problems

Interactions - drops

- No jamming/locking of drops (cf rigid spheres)
- small deformation avoid geometric frustration
- slippery particle, no co-rotation problems
- Faster flow \rightarrow more deformed \rightarrow wider gaps in collisions

Interactions - drops

- No jamming/locking of drops (cf rigid spheres)
- small deformation avoid geometric frustration
- slippery particle, no co-rotation problems
- Faster flow \rightarrow more deformed \rightarrow wider gaps in collisions
- Deformed shape has lower collision cross-section
so 'dilute' at $\phi=0.3$, blood works!

Numerical studies: boundary integral method

Numerical studies: boundary integral method 3

Figure 10. Steady-state results as a function of capillary number for $\lambda=1$. (a) Average steady-state drop deformation, (b) drop orientation, (c) shear stress contribution of drops, and (d) contribution of drops to normal stresses: first normal stress difference (solid curves), second normal stress difference (dashed curves); $\phi=0(\diamond), \phi=10 \%$ (口), $\phi=20 \%(*), \phi=30 \%(\Delta)$.
$\lambda=1$, different $\phi=0,0.1,0.2,0.3$. Effectively dilute at $\phi=0.3$.

Numerical studies: boundary integral method 4

Reduced cross-section for collisions

into flow

Interactions

- Hydrodynamic
- Dilute
- Experiments
- Numerical
- Electrical double-layer
- Concentrated
- van der Waals
- Fibres
- Drops
- Numerical
- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

