Microstructural studies for rheology

- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

Polymers

- Single polymer
- Bead-and-spring model
- Refinements
- FENE-P constitutive equation
- Unravelling a polymer chain
- Kinks model
- Brownian simulations
- Entangled polymers
- rheology
- Refinements
- pom-pom

Bead-and-Spring model of isolated polymer chain

- simplest, only gross distortion, Kuhn \& Kuhn 1945, Kramers 1946

Bead-and-Spring model of isolated polymer chain

- simplest, only gross distortion, Kuhn \& Kuhn 1945, Kramers 1946
- Flow distortion $=$ Stokes drag $=6 \pi \mu a(R \cdot \nabla U-\dot{R})$

$$
a=\frac{1}{6} b N^{0.5} \rightarrow N^{0.6}
$$

Bead-and-Spring model of isolated polymer chain

- simplest, only gross distortion, Kuhn \& Kuhn 1945, Kramers 1946

- Flow distortion $=$ Stokes drag $=6 \pi \mu a(R \cdot \nabla U-\dot{R})$ $a=\frac{1}{6} b N^{0.5} \rightarrow N^{0.6}$
- Resisted by entropic spring force $=\kappa R, \quad \kappa=\frac{3 k T}{N b^{2}}$

Bead-and-Spring model of isolated polymer chain

- simplest, only gross distortion, Kuhn \& Kuhn 1945, Kramers 1946

- Flow distortion $=$ Stokes drag $=6 \pi \mu a(R \cdot \nabla U-\dot{R})$

$$
a=\frac{1}{6} b N^{0.5} \rightarrow N^{0.6}
$$

- Resisted by entropic spring force $=\kappa R, \quad \kappa=\frac{3 k T}{N b^{2}}$

Hence

$$
\dot{R}=R \cdot \nabla U-\frac{1}{2 \tau} R \quad \text { with } \quad \tau=0.8 \mathrm{k} T / \mu\left(N^{1 / 2} b\right)^{3}
$$

Bead-and-Spring model of isolated polymer chain 2

- Adding Brownian motion of the beads: $A=\langle R R\rangle$

Bead-and-Spring model of isolated polymer chain 2

- Adding Brownian motion of the beads: $A=\langle R R\rangle$

$$
\stackrel{\nabla}{A} \equiv \frac{D A}{D t}-A \cdot \nabla U-\nabla U^{T} \cdot A=-\frac{1}{\tau}\left(A-\frac{N b^{2}}{3} l\right)
$$

Bead-and-Spring model of isolated polymer chain 2

- Adding Brownian motion of the beads: $A=\langle R R\rangle$

$$
\begin{gathered}
\stackrel{\nabla}{A} \equiv \frac{D A}{D t}-A \cdot \nabla U-\nabla U^{T} \cdot A=-\frac{1}{\tau}\left(A-\frac{N b^{2}}{3} I\right) \\
\sigma=-p I+2 \mu E+n \kappa A
\end{gathered}
$$

with n number of chains per unit volume.

Bead-and-Spring model of isolated polymer chain 2

- Adding Brownian motion of the beads: $A=\langle R R\rangle$

$$
\begin{gathered}
\stackrel{\nabla}{A} \equiv \frac{D A}{D t}-A \cdot \nabla U-\nabla U^{T} \cdot A=-\frac{1}{\tau}\left(A-\frac{N b^{2}}{3} I\right) \\
\sigma=-p I+2 \mu E+n \kappa A
\end{gathered}
$$

with n number of chains per unit volume.

- Oldroyd-B constitutive equation with UCD time derivative $\stackrel{\nabla}{A}$

Rheological properties

Rheological properties

Shear

- $\mu=$ constant, $N_{1} \propto \gamma^{2}, N_{2}=0$.

Rheological properties

Shear

- $\mu=$ constant, $N_{1} \propto \gamma^{2}, N_{2}=0$.
- Distortion xy: $a \gamma \tau \times a$

Rheological properties

Shear

- $\mu=$ constant, $N_{1} \propto \gamma^{2}, N_{2}=0$.
- Distortion $x y$: $a \gamma \tau \times a$

Extension

- μ

Rheological properties

Shear

- $\mu=$ constant, $N_{1} \propto \gamma^{2}, N_{2}=0$.
- Distortion $x y$: $a \gamma \tau \times a$

Extension

- μ

- Distortion $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$

Rheological properties

Shear

- $\mu=$ constant, $N_{1} \propto \gamma^{2}, N_{2}=0$.
- Distortion $x y$: $a \gamma \tau \times a$

Extension

- μ

- Distortion $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$
- For TDR: small shear and large extensional viscosities

Refinements

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights
3. (important) Finite extensibility - to stop infinite growth $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights
3. (important) Finite extensibility - to stop infinite growth $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$

- Nonlinear spring force - inverse Langevin law

$$
F(R)=\frac{k T}{b} \mathcal{L}^{-1}\left(\frac{R}{N b}\right) \quad \text { with } \quad \mathcal{L}(x)=\operatorname{coth} x-\frac{1}{x}
$$

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights
3. (important) Finite extensibility - to stop infinite growth $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$

- Nonlinear spring force - inverse Langevin law

$$
F(R)=\frac{k T}{b} \mathcal{L}^{-1}\left(\frac{R}{N b}\right) \quad \text { with } \quad \mathcal{L}(x)=\operatorname{coth} x-\frac{1}{x}
$$

- F.E.N.E approximation

$$
F(R)=\frac{k T}{N b^{2}} \frac{R}{1-R^{2} / L^{2}} \quad \text { with fully extended length } \quad L=N b
$$

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights
3. (important) Finite extensibility - to stop infinite growth $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$

- Nonlinear spring force - inverse Langevin law

$$
F(R)=\frac{k T}{b} \mathcal{L}^{-1}\left(\frac{R}{N b}\right) \quad \text { with } \quad \mathcal{L}(x)=\operatorname{coth} x-\frac{1}{x}
$$

- F.E.N.E approximation

$$
F(R)=\frac{k T}{N b^{2}} \frac{R}{1-R^{2} / L^{2}} \quad \text { with fully extended length } \quad L=N b
$$

- FENE-P closure

$$
\left\langle R R /\left(1-R^{2} / L^{2}\right)\right\rangle=\langle R R\rangle /\left(1-\left\langle R^{2}\right\rangle / L^{2}\right)
$$

Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights
3. (important) Finite extensibility - to stop infinite growth $\propto e^{\left(2 E-\frac{1}{\tau}\right) t}$

- Nonlinear spring force - inverse Langevin law

$$
F(R)=\frac{k T}{b} \mathcal{L}^{-1}\left(\frac{R}{N b}\right) \quad \text { with } \quad \mathcal{L}(x)=\operatorname{coth} x-\frac{1}{x}
$$

- F.E.N.E approximation

$$
F(R)=\frac{k T}{N b^{2}} \frac{R}{1-R^{2} / L^{2}} \quad \text { with fully extended length } \quad L=N b
$$

- FENE-P closure

$$
\left\langle R R /\left(1-R^{2} / L^{2}\right)\right\rangle=\langle R R\rangle /\left(1-\left\langle R^{2}\right\rangle / L^{2}\right)
$$

but "molecular individualism"

FENE-P constitutive equation

$$
\begin{aligned}
\stackrel{\nabla}{A} & =-\frac{1}{\tau} \frac{L^{2}}{L^{2}-\operatorname{trace} A}\left(A-\frac{a^{2}}{3} I\right) \\
\sigma & =-p I+2 \mu E+n \kappa \frac{L^{2}}{L^{2}-\operatorname{trace} A} A
\end{aligned}
$$

FENE-P constitutive equation

$$
\begin{aligned}
& \stackrel{\nabla}{A}=-\frac{1}{\tau} \frac{L^{2}}{L^{2}-\operatorname{trace} A}\left(A-\frac{a^{2}}{3} I\right) \\
& \sigma=-p I+2 \mu E+n \kappa \frac{L^{2}}{L^{2}-\operatorname{trace} A} A \\
& \mu_{\mathrm{ext}}+n a L^{2} \\
& E \tau
\end{aligned}
$$

More refinements

4. Nonlinear bead friction

More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size $6 \pi \mu(a \rightarrow R)$

More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size $6 \pi \mu(a \rightarrow R)$

$$
\mu_{\mathrm{ext}}=1+n L^{3} \quad \text { and hysteresis }
$$

More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size $6 \pi \mu(a \rightarrow R)$

$$
\mu_{\mathrm{ext}}=1+n L^{3} \quad \text { and hysteresis }
$$

5. Rotation of the beads - simple shear not so simple

More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size $6 \pi \mu(a \rightarrow R)$

$$
\mu_{\mathrm{ext}}=1+n L^{3} \quad \text { and hysteresis }
$$

5. Rotation of the beads - simple shear not so simple

More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size $6 \pi \mu(a \rightarrow R)$

$$
\mu_{\mathrm{ext}}=1+n L^{3} \quad \text { and hysteresis }
$$

5. Rotation of the beads - simple shear not so simple

Afine $\quad \stackrel{\nabla}{A} \longrightarrow$ non-affine $\quad \stackrel{\circ}{A}-\frac{\operatorname{trace} A}{3+\operatorname{trace} A}(A \cdot E+E \cdot A)$ inefficiency of straining

One more refinement

6. Dissipative stress - nonlinear internal modes

One more refinement

6. Dissipative stress - nonlinear internal modes Simulations show growing stretched segments
segment length $\propto \frac{R^{2}}{L}, \quad$ number $\propto \frac{L^{2}}{R^{2}}, \quad$ dissipation $\propto \frac{R^{4}}{L}$

One more refinement

6. Dissipative stress - nonlinear internal modes Simulations show growing stretched segments
segment length $\propto \frac{R^{2}}{L}, \quad$ number $\propto \frac{L^{2}}{R^{2}}, \quad$ dissipation $\propto \frac{R^{4}}{L}$

$$
\sigma=-p I+2 \mu\left(1+n \frac{(\operatorname{trace} A)^{2}}{L}\right) E+n \kappa \frac{L^{2}}{L^{2}-\operatorname{trace} A} A
$$

One more refinement

6. Dissipative stress - nonlinear internal modes Simulations show growing stretched segments
segment length $\propto \frac{R^{2}}{L}, \quad$ number $\propto \frac{L^{2}}{R^{2}}, \quad$ dissipation $\propto \frac{R^{4}}{L}$

$$
\sigma=-p l+2 \mu\left(1+n \frac{(\operatorname{trace} A)^{2}}{L}\right) E+n \kappa \frac{L^{2}}{L^{2}-\operatorname{trace} A} A
$$

Good for contraction flows

Unravelling a polymer chain in an extensional flow

Simulation of chain with $N=100$ in uni-axial straining motion at strains $E t=0.8,1.6,2.4$.

Unravelling a polymer chain in an extensional flow

Simulation of chain with $N=100$ in uni-axial straining motion at strains $E t=0.8,1.6,2.4$.

- Growing stretched segments

Unravelling a polymer chain in an extensional flow

Simulation of chain with $N=100$ in uni-axial straining motion at strains $E t=0.8,1.6,2.4$.

- Growing stretched segments
- Two ends not on opposite sides

Simplified 1D 'kinks' model

Simplified 1D 'kinks' model

- $t=0$: 1D random walk, N steps of ± 1

Simplified 1D 'kinks' model

- $t=0$: 1D random walk, N steps of ± 1
- $t>0$: floppy inextensible string in $u=E x$

Simplified 1D 'kinks' model

- $t=0$: 1D random walk, N steps of ± 1
- $t>0$: floppy inextensible string in $u=E x$
- arc lengths satisfy

$$
\dot{s}_{i}=\frac{1}{4} E\left(-s_{i+1}+2 s_{i}-s_{i-1}\right)
$$

Simplified 1D 'kinks' model

- $t=0$: 1D random walk, N steps of ± 1
- $t>0$: floppy inextensible string in $u=E x$
- arc lengths satisfy

$$
\dot{s}_{i}=\frac{1}{4} E\left(-s_{i+1}+2 s_{i}-s_{i-1}\right)
$$

- Large gobble small

Kinks model 2

Number of segments $n(t)$

Kinks model 2

Number of segments $n(t)$

Distribution of lengths $\ell(t)$ scaled by $e^{2 E t}$

Kinks model 2

Number of segments $n(t)$
Distribution of lengths $\ell(t)$ scaled by $e^{2 E t}$

Scalings

$$
\left\{\begin{array}{l}
n \ell=N \\
\sqrt{n} \ell=R=\sqrt{N} e^{E t}
\end{array}\right.
$$

Kinks model 2

Number of segments $n(t)$

Distribution of lengths $\ell(t)$ scaled by $e^{2 E t}$

Scaling

$$
\left\{\begin{array} { l }
{ n \ell = N } \\
{ \sqrt { n } \ell = R = \sqrt { N } e ^ { E t } }
\end{array} \longrightarrow \left\{\begin{array}{l}
n=N e^{-2 E t} \\
\ell=e^{2 E t}
\end{array}\right.\right.
$$

Evidence of a dissipative stress

Original data of Sridhar, Tirtaatmadja, Nguyen \& Gupta 1991 plotted as viscosity as function of time

Replotted a function of strain $=$ strain-rate \times time

Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating $\nabla \cdot \mathbf{D}$

Keep random force fixed in time-step, but vary friction

Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating $\nabla \cdot \mathbf{D}$ Keep random force fixed in time-step, but vary friction
2. Replace very stiff (fast) bonds with rigid + correction potential

$$
-k T \nabla \ln \sqrt{\operatorname{det} M^{-1}} \quad \text { with } \quad M^{-1 a b}=\sum_{i \text { beads }} m_{i}^{-1} \frac{\partial g^{a}}{\partial \mathbf{x}_{i}} \cdot \frac{\partial g^{b}}{\partial \mathbf{x}_{i}}
$$

where rigid constraints are $g^{a}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=0$ and stiff spring energy $\frac{1}{2}\left|\nabla g^{a}\right|^{2}$

Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating $\nabla \cdot \mathbf{D}$ Keep random force fixed in time-step, but vary friction
2. Replace very stiff (fast) bonds with rigid + correction potential

$$
-k T \nabla \ln \sqrt{\operatorname{det} M^{-1}} \quad \text { with } \quad M^{-1 a b}=\sum_{i \text { beads }} m_{i}^{-1} \frac{\partial g^{a}}{\partial \mathbf{x}_{i}} \cdot \frac{\partial g^{b}}{\partial \mathbf{x}_{i}}
$$

where rigid constraints are $g^{a}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=0$ and stiff spring energy $\frac{1}{2}\left|\nabla g^{a}\right|^{2}$
3. Stress by subtraction of large $\Delta t^{-1 / 2}$ term with zero average

$$
\frac{1}{2}\left(x^{n}+x^{n+1}\right) f^{n} \longrightarrow \frac{1}{2} \Delta x^{n} f^{n}
$$

Relaxation of fully stretched chain

Long times - Rouse relaxation

σ / N vs t / N^{2} (Rouse)

Relaxation of fully stretched chain

Long times - Rouse relaxation
Short times finite

σ / N vs t / N^{2} (Rouse)

$\sigma / \frac{1}{3} N^{3}$ vs $N^{2} t$

Relaxation of fully stretched chain

Long times - Rouse relaxation
Short times finite

σ / N vs t / N^{2} (Rouse)

$$
\sigma / \frac{1}{3} N^{3} \text { vs } N^{2} t
$$

Intermediate times $\sigma \sim k T N^{2} t^{-1 / 2}$

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\rightharpoonup}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p I+2 \mu E+G f A
\end{gathered}
$$

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\nabla}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p l+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\nabla}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p l+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$
- FENE-P $\quad f=L^{2} /\left(L^{2}-\operatorname{trace} A\right)$

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\nabla}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p I+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$
- FENE-P $\quad f=L^{2} /\left(L^{2}-\operatorname{trace} A\right)$
- Nonlinear bead friction $h=\sqrt{\operatorname{trace} A / 3}$

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\rightharpoonup}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p I+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$
- FENE-P $\quad f=L^{2} /\left(L^{2}-\operatorname{trace} A\right)$
- Nonlinear bead friction $h=\sqrt{\operatorname{trace} A / 3}$
- New form of stress

$$
\sigma=-p l+2 \mu E+2 \mu_{d}(A: E) A+G \sqrt{\operatorname{trace} A} A
$$

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\nabla}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p I+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$
- FENE-P $\quad f=L^{2} /\left(L^{2}-\operatorname{trace} A\right)$
- Nonlinear bead friction $h=\sqrt{\operatorname{trace} A / 3}$
- New form of stress

$$
\sigma=-p l+2 \mu E+2 \mu_{d}(A: E) A+G \sqrt{\operatorname{trace} A} A
$$

- Last term for finite stress when fully stretched

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\rightharpoonup}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p I+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$
- FENE-P $\quad f=L^{2} /\left(L^{2}-\operatorname{trace} A\right)$
- Nonlinear bead friction $h=\sqrt{\operatorname{trace} A / 3}$
- New form of stress

$$
\sigma=-p l+2 \mu E+2 \mu_{d}(A: E) A+G \sqrt{\operatorname{trace} A} A
$$

- Last term for finite stress when fully stretched
- μ_{d} term $\left(\propto N^{-1 / 2}\right)$ for enhanced dissipation

Constitutive equation - options

$$
\begin{gathered}
\stackrel{\nabla}{A}=-\frac{1}{h \tau} f(A-I) \\
\sigma=-p I+2 \mu E+G f A
\end{gathered}
$$

- Oldroyd B $\quad f=1$
- FENE-P $\quad f=L^{2} /\left(L^{2}-\operatorname{trace} A\right)$
- Nonlinear bead friction $h=\sqrt{\operatorname{trace} A / 3}$
- New form of stress

$$
\sigma=-p l+2 \mu E+2 \mu_{d}(A: E) A+G \sqrt{\operatorname{trace} A} A
$$

- Last term for finite stress when fully stretched
- μ_{d} term $\left(\propto N^{-1 / 2}\right)$ for enhanced dissipation

Good for positive pressure drops and large upstream vortices in contraction flows.

Reptation model of De Gennes 1971 - often reformulated

Reptation model of De Gennes 1971 - often reformulated

Chain moves in tube defined by topological constraints from other chains.

Reptation model of De Gennes 1971 - often reformulated

Chain moves in tube defined by topological constraints from other chains.

Chain disengages from tube by diffusing along its length

$$
\tau_{D}=\frac{L^{2}}{D=k T / 6 \pi \mu L} \propto M^{3}
$$

Reptation model of De Gennes 1971 - often reformulated

Chain moves in tube defined by topological constraints from other chains.

Chain disengages from tube by diffusing along its length

$$
\tau_{D}=\frac{L^{2}}{D=k T / 6 \pi \mu L} \propto M^{3}
$$

Modulus $G=n k T \longrightarrow \mu^{*}=G \tau_{D} \propto M^{3} \quad\left(\operatorname{expts} M^{3.4}\right)$

Diffusion out of tube

At later time:

Diffusion out of tube

At later time:

Fraction of original tube surviving

$$
\sum_{n} \frac{1}{n^{2}} e^{-n^{2} t / \tau_{D}}
$$

Diffusion out of tube

At later time:

Fraction of original tube surviving

$$
\sum_{n} \frac{1}{n^{2}} e^{-n^{2} t / \tau_{D}}
$$

Diffusion gives linear viscoelasticity $G^{\prime} \propto \omega^{1 / 2}$

Doi-Edwards rheology 1978

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

Unit segments of the tube \mathbf{u} aligned by flow:
$\mathbf{u} \longrightarrow \mathbf{A u}$ with Finger tensor \mathbf{A}

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

Unit segments of the tube \mathbf{u} aligned by flow:
$\mathbf{u} \longrightarrow \mathbf{A u}$ with Finger tensor \mathbf{A}
Stress

$$
\sigma(t)=n \int_{0}^{\infty} \sum_{\substack{p \\ \text { surving tube }}} \frac{1}{p^{2}} e^{-p^{2} s / \tau_{D}} \quad N_{\text {segements }} \frac{3 k T}{a} a\left\langle\frac{\mathbf{A}^{*} \mathbf{u} \mathbf{A}^{*} \mathbf{u}}{\left|\mathbf{A}^{*} \mathbf{u}\right|^{2}}\right\rangle d s
$$

with relative deformation $\mathbf{A}^{*}=A(t) A^{-1}(t-s)$.

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

Unit segments of the tube \mathbf{u} aligned by flow:
$\mathbf{u} \longrightarrow \mathbf{A u}$ with Finger tensor \mathbf{A}
Stress

$$
\sigma(t)=n \int_{0}^{\infty} \sum_{\substack{p \\ \text { surving tube }}} \frac{1}{p^{2}} e^{-p^{2} s / \tau_{D}} \quad N_{\text {segements }} \frac{3 k T}{a} a\left\langle\frac{\mathbf{A}^{*} \mathbf{u} \mathbf{A}^{*} \mathbf{u}}{\left|\mathbf{A}^{*} \mathbf{u}\right|^{2}}\right\rangle d s
$$

with relative deformation $\mathbf{A}^{*}=A(t) A^{-1}(t-s)$.
A BKZ integral constitutive equation

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

Unit segments of the tube \mathbf{u} aligned by flow:
$\mathbf{u} \longrightarrow \mathbf{A u}$ with Finger tensor \mathbf{A}
Stress

$$
\sigma(t)=n \int_{0}^{\infty} \sum_{\substack{p \\
\text { surving tube }}} \frac{1}{p^{2}} e^{-p^{2} s / \tau_{D}} \quad \begin{aligned}
& N_{\text {segements }} \frac{3 k T}{a} a\left\langle\frac{\mathbf{A}^{*} \mathbf{u} \mathbf{A}^{*} \mathbf{u}}{\left|\mathbf{A}^{*} \mathbf{u}\right|^{2}}\right\rangle d s \\
&
\end{aligned}
$$

with relative deformation $\mathbf{A}^{*}=A(t) A^{-1}(t-s)$.
A BKZ integral constitutive equation
Problem maximum in shear stress

Refinements

Refinements

1. Chain retraction

$$
\text { deform } \rightarrow
$$

Refinements

1. Chain retraction

Chain returns in Rouse time to natural length \longrightarrow loss of segments

Refinements

1. Chain retraction

Chain returns in Rouse time to natural length \longrightarrow loss of segments
2. Chain fluctuations

Refinements

1. Chain retraction

Chain returns in Rouse time to natural length \longrightarrow loss of segments
2. Chain fluctuations
3. Other chains reptate \rightarrow release topological constraints "Double reptation" of Des Cloiseaux 1990. bimodal blends

Refinements

1. Chain retraction

Chain returns in Rouse time to natural length \longrightarrow loss of segments
2. Chain fluctuations
3. Other chains reptate \rightarrow release topological constraints "Double reptation" of Des Cloiseaux 1990. bimodal blends
4. $2 \& 3$ give $\mu \propto M^{3.4}$

Refinements

1. Chain retraction

Chain returns in Rouse time to natural length \longrightarrow loss of segments
2. Chain fluctuations
3. Other chains reptate \rightarrow release topological constraints "Double reptation" of Des Cloiseaux 1990. bimodal blends
4. $2 \& 3$ give $\mu \propto M^{3.4}$
5. Advected constraint release Marrucci 1996

$$
\frac{1}{\tau_{D}} \longrightarrow \frac{1}{\tau_{D}}+\beta \nabla u:\langle u u\rangle
$$

Refinements

1. Chain retraction

Chain returns in Rouse time to natural length \longrightarrow loss of segments
2. Chain fluctuations
3. Other chains reptate \rightarrow release topological constraints "Double reptation" of Des Cloiseaux 1990. bimodal blends
4. $2 \& 3$ give $\mu \propto M^{3.4}$
5. Advected constraint release Marrucci 1996

$$
\frac{1}{\tau_{D}} \longrightarrow \frac{1}{\tau_{D}}+\beta \nabla u:\langle u u\rangle
$$

6. Flow changes tube volume or cross-section

Chain trapped in a fast shearing lattice

Lattice for other chains

Chain trapped in a fast shearing lattice

Lattice for other chains

central section pulling chain out of arms

Chain trapped in a fast shearing lattice

Lattice for other chains

central section pulling chain out of arms \rightarrow high dissipative stresses

Branched polymers - typical in industry

Branched polymers - typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp \left(M_{\text {arm }} / M_{\text {entangle }}\right)$

Branched polymers - typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp \left(M_{\text {arm }} / M_{\text {entangle }}\right)$
Pom-Pom model of Tom McLeish and Ron Larson 1999

Branched polymers - typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp \left(M_{\text {arm }} / M_{\text {entangle }}\right)$
Pom-Pom model of Tom McLeish and Ron Larson 1999

$$
\text { Stress: } \quad \sigma=G \lambda^{2} \mathbf{S}
$$

Branched polymers - typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp \left(M_{\text {arm }} / M_{\text {entangle }}\right)$
Pom-Pom model of Tom McLeish and Ron Larson 1999

$$
\text { Stress: } \quad \sigma=G \lambda^{2} \mathbf{S}
$$

Orientation: $\quad \mathbf{S}=\mathbf{B} /$ trace \mathbf{B}

$$
\stackrel{\nabla}{\mathbf{B}}=-\frac{1}{\tau_{0}}(\mathbf{B}-\mathbf{I})
$$

Branched polymers - typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp \left(M_{\text {arm }} / M_{\text {entangle }}\right)$
Pom-Pom model of Tom McLeish and Ron Larson 1999

$$
\text { Stress: } \quad \sigma=G \lambda^{2} \mathbf{S}
$$

Orientation: $\quad \mathbf{S}=\mathbf{B} /$ trace \mathbf{B}
$\stackrel{\nabla}{\mathbf{B}}=-\frac{1}{\tau_{O}}(\mathbf{B}-\mathbf{I})$
Stretch: $\dot{\lambda}=\nabla u: \mathbf{S}-\frac{1}{\tau_{S}}(\lambda-1) \quad$ while $\quad \lambda<\lambda_{\max }$

Branched polymers - typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp \left(M_{\text {arm }} / M_{\text {entangle }}\right)$
Pom-Pom model of Tom McLeish and Ron Larson 1999

$$
\text { Stress: } \quad \sigma=G \lambda^{2} \mathbf{S}
$$

Orientation: $\quad \mathbf{S}=\mathbf{B} / \operatorname{trace} \mathbf{B} \quad \stackrel{\nabla}{\mathbf{B}}=-\frac{1}{\tau_{O}}(\mathbf{B}-\mathbf{I})$
Stretch: $\quad \dot{\lambda}=\nabla u: \mathbf{S}-\frac{1}{\tau_{S}}(\lambda-1) \quad$ while $\quad \lambda<\lambda_{\max }$
with $\tau_{O}=\tau_{\operatorname{arm}}\left(M_{C} / M_{E}\right)^{3}$ and $\tau_{S}=\tau_{\text {arm }}\left(M_{C} / M_{E}\right)^{2}$ and
$\tau_{\mathrm{arm}} \cong \exp \left(M_{\mathrm{arm}} / M_{E}\right)$ where $M_{C}=M_{\text {crossbar }}$ and $M_{E}=M_{\text {entanglement }}$.

Test of Pom-Pom model - Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension.

Test of Pom-Pom model - Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension. Predict: Transient Shear and Transient Normal Stress

Test of Pom-Pom model - Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension.
Predict: Transient Shear and Transient Normal Stress

Polymers

- Single polymer
- Bead-and-spring model
- Refinements
- FENE-P constitutive equation
- Unravelling a polymer chain
- Kinks model
- Brownian simulations
- Entangled polymers
- rheology
- Refinements
- pom-pom

Other microstructural studies

Other microstructural studies

- Electro- and Magneto- -rheological fluids

Other microstructural studies

- Electro- and Magneto- -rheological fluids
- Associating polymers

Other microstructural studies

- Electro- and Magneto- -rheological fluids
- Associating polymers
- Surfactants - micells

Other microstructural studies

- Electro- and Magneto- -rheological fluids
- Associating polymers
- Surfactants - micells
- Aging materials

Other microstructural studies

- Electro- and Magneto- -rheological fluids
- Associating polymers
- Surfactants - micells
- Aging materials
- GENERIC

Other microstructural studies

- Electro- and Magneto- -rheological fluids
- Associating polymers
- Surfactants - micells
- Aging materials
- GENERIC
- Modelling 'Molecular individualism' and closure problems
- Micro \& macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

