
Chapter 8

Yield problems

I Yield stress
I foams
I cross-linked gels
I pastes

I Simple applications
I transport of small particles
I dangerous no-flow in quiet corners

I Squeeze film paradox

I Ketchup bottle & oil pipelines



Yield Stress in foams

Yield stress vs volume fraction 0.5 to 1.0, curve 0.73(φ− φc)2.

St James & Durian (1999) J.Rheol 43

Foams permanently damages where yield? Debregeas (2003)
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Yield stress of a gel



Yield stress of a paste

Stress as function of shear-rate at different pH.
Suspension of 0.33µm aluminium particles at φ = 0.3

Ducerf (Grenoble PhD 1992)

Note yield stress very sensitive to pH



Sedimentation (or NOT)

Need F
4πa2

> 3.5σY

Flow in a finite region
Yield surface

Rigid region

v
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Squeeze film paradox

Walton & Bittleston (1991) JFM 222 – pseudo & real plugs
Balmforth & Craster (1999) JNNFM 84 – lubrication thy correct
Wilson (1993) JNNFM 47 – 2 limits in bi-viscosity

z = h

z=−h
x

z

  x =0 x =L

W/2

W/2



Squeeze film 2 – the problem

Momentum

0 = −px + σxx ,x + σxz,z

0 = −pz + σxz,x + σzz,z

Rheology – Bingham{
E = 0 if |σ| < σY

σ =
(

2µ+ σY
|E |

)
E if |σ| > σY

where |E | =
√

1
2E : E , |σ| =

√
1
2σ : σ,

E =

(
ux

1
2(uz + wx)

1
2(uz + wx) wz

)
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Squeeze film 3 – nondimensionalised

As for Newtonian lubrication:

x on L, z on H, w on W , u on WL/H, E on W /H
σxz , σY on µWL/H2, σxx , σzz on µW /H, p on µWL2/H3

Then with ε = H/L

0 = −px + ε2σxx ,x + σxz,z

0 = −ε−2pz + σxz,x + σzz,z

so p = p(x) + O(ε2)

E =

(
εux

1
2(uz + ε2wx)

1
2(uz + ε2wx) εwz

)
So leading order rheology{

uz = 0 if |σxz | < σY

σxz = ∓σY +±uz in z ≷ 0 if |σxz | > σY
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Squeeze film 4 – profile

Integrate x-momentum

σxz = dp
dx z + O(ε2)

Hence yields level Y

z = Y = σY
/(
−dp

dx

)
(Yld)

Rheology

uz =

{
0 in 0 ≤ z ≤ Y
dp
dx (z − Y ) in Y ≤ z ≤ 1

Hence velocity profile

u =

{
U in 0 ≤ z ≤ Y

U + dp
dx

1
2(z − Y )2 in Y ≤ z ≤ 1

Then no-slip u = 0 and z = 1 for dp/dx
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Squeeze film 5 – profile 2

u =

U in 0 ≤ z ≤ Y

U

(
1− (z − Y )2

(1− Y )2

)
in Y ≤ z ≤ 1

Plug

Flux

Q =

∫ 1

0
u dz = U

(
2
3 + 1

3Y
)

Mass conservation
Q = 1

2x

Hence. . .U and then dp/dx
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Squeeze film 6 – solved

U = 1
2x
/(

2
3 + 1

3Y
)

with dp
dx = −x

/(
2
3 + 1

3Y
)

(1− Y )2

Substituting this pressure gradient into the yield condition (Yld):

Y = (23 + 1
3Y )(1− Y )2/x ∼

{
1− x1/2 x � 1

2/3x x � 1

Paradox: plug velocity varies U(x)
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Squeeze film 7 – paradox resolved

Can have U(x) in a pseudo-plug if just above yield:

|σ| = σY + O(ε).

Now
σxz = σY z/Y in 0 ≤ z ≤ Y ,

so need

σxx = −σzz = σY

√
1− (z/Y )2

What flow does this stress drive in the plug?
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Squeeze film 8 – paradox resolved

Straining E ∝ σ,

so u = U(x) + εu1(x , z)

E ∼ ε
(

Ux
1
2u1z

1
2u1z Ux

)
, so |E | = ε

√
U2
x + 1

4u
2
1z .

Then

−σY z/Y = σxz =

(
2 +

σY
|E |

)
ε12u1z

i.e.

u1z = − 2Uxz/Y√
1− (z/Y )2

(singular as z ↗ Y )

so

u1 = 2UxY
√

1− (z/Y )2

(Singularity gives O(ε) transition layer at z = Y )

Bottom line: naive plug works, even if it is a pseudo-plug
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Ketchup bottle problem
with applications to oil pipeline assembles

North Sea. Shell Gannet project

Costain



Ketchup bottle – rheology of gel



Ketchup bottle – three questions

I Will the gel convect at ∆t = 80◦C?

I Pressure to pump 3km in 10 hours?

I How much flows out of the ketchup bottle?



Ketchup bottle – three questions

I Will the gel convect at ∆t = 80◦C?

I Pressure to pump 3km in 10 hours?

I How much flows out of the ketchup bottle?



Ketchup bottle – three questions

I Will the gel convect at ∆t = 80◦C?

I Pressure to pump 3km in 10 hours?

I How much flows out of the ketchup bottle?



Ketchup bottle – three questions

I Will the gel convect at ∆t = 80◦C?

I Pressure to pump 3km in 10 hours?

I How much flows out of the ketchup bottle?



Ketchup bottle – the gel

Observe 1mm bubbles do not move.

Hence yield stress is
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Ketchup bottle – pumping

Pipe radius r , length L.
Pressure drop balancing yield stress

πr2∆p = 2πrLσY

Hence
∆p

L
= 200Pam−1

(measure 350 in 100m test)

Hence
∆p = 6 bar in 3km

Strength of pipe 50 bar.

Answer2: safe to pump
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I gel cools and contracts
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Ketchup bottle – idealised bottle

F
σ

z = h(x)

z = h(x)

 a

θ

Y

Pressure force

F =

∫
p dA with p = ρg(h − z)

Gradient balances the wall stress, all at yield

σY 2aθ =
dF

dx
= ρg

dh

dx
A

Now h = a(1− cos θ) and A = a2(θ − 1
2 sin 2θ),
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Ketchup bottle – idealised continued

so
dθ

dx
=

σY
ρga2

2θ

sin θ(θ − 1
2 sin 2θ)

Hence volume removed 1.69a3
ρga

σY
from length 0.85a

ρga

σY

Answer3: enough flows out of the bottle, just
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Student Exercise

Consider a gravity current of a yield fluid on an inclined plane.



Chapter 8

Yield problems

I Yield stress
I foams
I cross-linked gels
I pastes

I Simple applications
I transport of small particles
I dangerous no-flow in quiet corners

I Squeeze film paradox

I Ketchup bottle & oil pipelines


