not in elastic solids

- not in elastic solids
- not in viscous fluids

- not in elastic solids
- not in viscous fluids

Hence

```
non-Newtonian \neq \frac{1}{2} elastic solid + \frac{1}{2} viscous fluid
```

- not in elastic solids
- not in viscous fluids

Hence

```
non-Newtonian \neq \frac{1}{2} elastic solid + \frac{1}{2} viscous fluid
```

Important relaxation time τ of stress/microstructure.

 μ_0 solvent viscosity, *G* elastic modulus, τ relaxation time.

Early viscosity μ₀

- Early viscosity μ_0
- Steady state viscosity $\mu_0 + G\tau$

- Early viscosity μ₀
- Steady state viscosity $\mu_0 + G\tau$
- Takes τ to build up to steady state

- Early viscosity μ₀
- Steady state viscosity $\mu_0 + G\tau$
- Takes τ to build up to steady state
- steady deformation = shear rate $\gamma imes$ memory time au

Microstructure A: $\frac{DA}{Dt} - \nabla u^{T} \cdot A - A \cdot \nabla u + \frac{1}{\tau} (A - I) = 0$

Stress σ :

$$\sigma = -pI + 2\mu_0 E + G(A - I)$$

Microstructure A:

$$\frac{DA}{Dt} - \nabla u^{T} \cdot A - A \cdot \nabla u + \frac{1}{\tau} (A - I) = 0$$

Stress σ :

$$\sigma = -pI + 2\mu_0 E + G(A - I)$$

Weak flow: $\nabla u \ll \frac{1}{\tau}$, so A = I + a with $|a| \ll 1$

Microstructure A:

$$\frac{DA}{Dt} - \nabla u^{T} \cdot A - A \cdot \nabla u + \frac{1}{\tau} (A - I) = 0$$

Stress σ :

$$\sigma = -pI + 2\mu_0 E + G(A - I)$$

Weak flow: $\nabla u \ll \frac{1}{\tau}$, so A = I + a with $|a| \ll 1$ $\frac{Da}{Dt} + \frac{1}{\tau}a = 2E$

Microstructure A:

$$\frac{DA}{Dt} - \nabla u^T \cdot A - A \cdot \nabla u + \frac{1}{\tau} (A - I) = 0$$
Stress σ :

$$\sigma = -\rho I + 2\mu_0 E + G (A - I)$$

Weak flow:
$$\nabla u \ll \frac{1}{\tau}$$
, so $A = I + a$ with $|a| \ll 1$
 $\frac{Da}{Dt} + \frac{1}{\tau}a = 2E$

Start up:

$$a = \dot{\gamma} \tau \left(1 - e^{-t/\tau} \right) \quad \sigma = \mu_0 \dot{\gamma} + G \dot{\gamma} \tau \left(1 - e^{-t/\tau} \right)$$

Microstructure A:

$$\frac{DA}{Dt} - \nabla u^{T} \cdot A - A \cdot \nabla u + \frac{1}{\tau} (A - I) = 0$$
Stress σ :

$$\sigma = -pI + 2\mu_0 E + G (A - I)$$

Weak flow:
$$\nabla u \ll \frac{1}{\tau}$$
, so $A = I + a$ with $|a| \ll 1$
 $\frac{Da}{Dt} + \frac{1}{\tau}a = 2E$

Start up:

$$\mathbf{a} = \dot{\gamma} \tau \left(1 - e^{-t/\tau} \right) \quad \sigma = \mu_0 \dot{\gamma} + G \dot{\gamma} \tau \left(1 - e^{-t/\tau} \right)$$

Stopping:

$$a = \dot{\gamma} au \ e^{-t/ au} \quad \sigma = G \dot{\gamma} au \ e^{-t/ au}$$

- Early viscosity μ₀
- Steady state viscosity $\mu_0 + G\tau$
- Takes au to build up to steady state
- steady deformation = shear rate $\gamma \times$ memory time τ

 μ_0 solvent viscosity, *G* elastic modulus, au relaxation time.

- Early viscosity μ₀
- Steady state viscosity $\mu_0 + G\tau$
- Takes au to build up to steady state
- steady deformation = shear rate $\gamma \times$ memory time τ

NB steady flows are unsteady Lagrangian.

 Δp scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$.

 Δp scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$. But if flow fast, lower pressure drop from early-time viscosity μ_0 .

 Δp scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$. But if flow fast, lower pressure drop from early-time viscosity μ_0 . Oldroyd-B has no big increase in Δp , and no big upstream vortex

Drag scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$.

Drag scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$. But if flow fast lower, lower drag from early-time viscosity μ_0 .

Drag scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$. But if flow fast lower, lower drag from early-time viscosity μ_0 . Oldroyd-B has no big increase in drag, and no big wake

... and negative wakes

Experiment

Bisgaard 1983 JNNFM

... and negative wakes

Experiment

Bisgaard 1983 JNNFM

Unrelaxed elastic stress in wake, cancelled by negative viscous flow.

- relaxation + slightly nonlinear effect

 ${\rm shear} \ \gamma$

- relaxation + slightly nonlinear effect

- relaxation + slightly nonlinear effect

microstructure

- relaxation + slightly nonlinear effect

- relaxation + slightly nonlinear effect

- relaxation + slightly nonlinear effect

Shear stress = $G \times (rate = \gamma) \times (memory time = \tau)$

- relaxation + slightly nonlinear effect

Shear stress = $G \times (rate = \gamma) \times (memory time = \tau)$ Normal stress (tension in streamlines) = shear stress $\times \gamma \tau$.

- Rod climbing
- Secondary circulation
- Migration into chains
- Migration to centre of pipe
- Falling rods align with gravity
- Stabilisation of jets
- Co-extrusion instability
- Taylor-Couette instability