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Example Sheet 3

1. The walls of a channel are porous and separated by a distance d. Fluid is driven
through the channel by a pressure gradient G = −∂p/∂x, and at the same time suction
is applied to one wall of the channel providing a cross flow with uniform transverse
component of velocity V , fluid being supplied at this rate at the other wall. Find and
sketch the steady velocity and vorticity distributions in the fluid (i) when V d/ν ≪ 1
and (ii) when V d/ν ≫ 1.

2. Viscous fluid fills an annulus a < r < b between a long stationary cylinder r = b and
a long cylinder r = a rotating at angular velocity Ω. Find the axisymmetric velocity
field, ignoring end effects.

Suppose now that the two cylinders are porous, and a pressure difference is applied
so that there is a radial flow −V a/r. Find the new steady flow around the cylinder
when V a/ν < 2 and V a/ν > 2. Comment on the flow structure when V a/ν ≫ 1.

Find the torque that must be applied to maintain the motion.

3. Starting from the Navier-Stokes equations for incompressible viscous flow with con-
servative forces, obtain the vorticity equation

Dω

Dt
= ω ·∇u + ν∇2

ω.

Interpret the terms in the equation.
At time t = 0 a concentration of vorticity is created along the z-axis, with the

same circulation Γ around the axis at each z. The fluid is viscous and incompressible,
and for t > 0 has only an azimuthal velocity v, say. Show that there is a similarity
solution of the form vr/Γ = f(η), where r = (x2 + y2)1/2 and η is a suitable similarity
variable. Further show that all conditions are satisfied by

f(η) = 1
2π (1 − e−η), η = r2/4νt.

Show also that the total vorticity in the flow remains constant at Γ for all t > 0. Sketch
v as a function of r.

4. Calculate the vorticity ω associated with the velocity field

u = (−αx− yf(r, t), −αy + xf(r, t), 2αz) ,

where α is a positive constant, and f(r, t) depends on r = (x2 + y2)1/2 and time t.
Hence show that the velocity field represents a dynamically possible motion if f(r, t)
satisfies

2f + r
∂f

∂r
= Aγ(t)e−γ(t)r2

,

where

γ(t) =
α

2ν

(

1 ± e−2α(t−t0)
)

−1

,

and A and t0 are constants.
Show that in the case where the minus sign is taken γ is approximately 1/[4ν(t−t0)]

when t only just exceeds t0. Which terms in the vorticity equation dominate when this
approximation holds?
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5. Wind blowing over a reservoir exerts at the water surface a uniform tangential stress S
which is normal to, and away from, a straight side of the reservoir. Use dimensional
analysis, based both on balancing the inertial and viscous forces in a thin boundary
layer and on the imposed boundary condition, to find order-of-magnitude estimates for
the boundary-layer thickness δ(x) and the surface velocity U(x) as functions of distance
x from the shore. Using the boundary-layer equations, find the ordinary differential
equation governing the non-dimensional function f defined by

ψ(x, y) = u(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?

6. A steady two-dimensional jet of fluid runs along a plane rigid wall, the fluid being
at rest far from the wall. Use the boundary-layer equations to show that the quantity

P =

∫

∞

0

u(y)

(
∫

∞

y

u(y′)2 dy′
)

dy

is independent of the distance x along the wall. Find order-of-magnitude estimates for
the boundary-layer thickness and velocity as functions of x.

Show that in the analogous axisymmetric wall jet spreading out radially the ve-
locity varies like r−3/2.

7. Show that the streamfunction ψ(r, θ) for a steady two-dimensional flow satisfies

−
1

r

∂(ψ,∇2ψ)

∂(r, θ)
= ν∇4ψ.

Show further that this equation admits solutions of the form

ψ = Qf(θ),

if f satisfies

f ′′′′ + 4f ′′ +
2Q

ν
f ′f ′′ = 0.

[See lectures for solutions.]

Please notify all errors to E.J.Hinch@damtp.cam.ac.uk.
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