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Mathematical Tripos Part II(B) E.J. Hinch
Fluid Dynamics (B20) November 1998

Example Sheet 4

1. A plank of width 2a is held horizontal and dropped onto the surface of water filling
the half-space y < 0. Let U be the speed of fall when the plank hits the water. Show
that the instantaneous flow of the water can be represented by the complex potential

w(z) = iU
(

z −
(

z2 − a2
)1/2

)

,

and determine the instantaneous velocity of particles in the free surface y = 0. Calcu-
late the pressure field in the water at the instant of impact, and show that the force
experienced by the plank at this instant is infinite. Calculate too the magnitude of the
impulse suffered by the plank. [The time-integral of the pressure across a discontinuous
change of velocity is −ρ[φ]+

−

.]

2. A cylinder, boundary C, is immersed in a flow with complex potential w(z). Show
that the force (Fx, Fy) and couple G acting on the cylinder is given by

Fx − iFy = i

∫

C

1
2
ρ

(

dw

dz

)2

dz and G = −Re

∫

C

1
2
ρ

(

dw

dz

)2

z dz.

[Note (nx − iny)dl = idz and along a streamline dw = dw.]
Suppose now that there are no singularities of the integrands in the region occupied

by the fluid and that as z → ∞

w ∼ Uz −
iκ

2π
ln z +

D

z
,

where κ is real but U and D are complex. By deforming the contour C to a large circle,
evaluate F and G.

3. Use question 2 to find the torque on a flat plate for which the circulation κ satisfies
the Kutta condition. Where on the plate must the lift force be deemed to act so as to
guarantee the correct torque about the centre of the plate?

4. An elliptical cylinder 1
4x2 + y2 = α2 lies in a uniform stream of speed U > 0 in

the x-direction, and there is a circulation κ > 0 about the cylinder. Use a conformal
transformation of the form

z = ζ +
m2α2

ζ
,

where m is a number to be calculated, to transform the ellipse to a circle, and hence
obtain the complex velocity potential of the flow. Show that the stagnation points are
given in general by

z = iβ ± 2
(

α2 − β2
)1/2

,

where β = κ/6πU , and examine the position of the stagnation points in the cases

(i) α > β, (ii) α = β, (iii) α < β < 5α/3, (iv) β > 5α/3.
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5. A vortex sheet of strength U is located at a distance h above a rigid wall y = 0 and
is parallel to it, so that the fluid velocity (u, 0, 0) is

u =

{

U in 0 < y < h,
0 in y > 0 .

Suppose now that the sheet is perturbed slightly to the position y = h + η0e
ik(x−ct)

where k > 0 is real but c may be complex. Show that

c = U/(1 ± i
√

tanh kh).

Deduce that
(i) the sheet is unstable to disturbances of all wavelengths;
(ii) for short waves (kh ≫ 1) the growth rate kIm(c) is 1

2
Uk and the wave propagation

speed Re(c) is 1
2U , as if the wall were absent;

(iii) for long waves (kh ≪ 1) the growth rate is Uk
√

kh (so that the wall inhibits the
growth of long waves) and the propagation speed is U .

6. A two-dimensional jet in the x-direction has velocity profile

u =

{

0 in y > h,
U in −h < y < y,
0 in y < −h .

The vortex sheets at y = ±h are perturbed to

y =

{

+h + η1e
ik(x−ct),

−h + η2e
ik(x−ct).

Show that the jet is unstable to a ‘varicose’ instability for which η1 = −η2 (identical
to that of question 5), and also to a ‘sinuous’ instability for which η1 = η2 and

c = U/(1 ± i
√

coth kh).

[The growth rates at small kh are again Uk
√

kh. Hence thin jets (e.g. smoke filaments)
can suffer rather slowly growing sinuous instabilities.]

7. Show that the rate of dissipation of mechanical energy in an incompressible fluid is
2µeijeij per unit volume, where eij is the rate-of-strain tensor and µ is the viscosity.

A finite mass of incompressible fluid, of viscosity µ and density ρ is held in the
shape of a sphere r < a by surface tension. It is set into a mode of small oscillations in
which the velocity filed may be taken to have Cartesian components

u = βx, v = −βy, w = 0.

where β ∝ exp(−ǫt) sin ωt. Assuming that ǫ ≪ ω, calculate the dissipation rate aver-
aged over a cycle (ignoring the slowly varying factor exp(−ǫt)) and hence show that
ǫ = 5µ/ρa2. You may assume that the total energy of the oscillation is twice the ki-
netic energy averaged over a cycle. Why is is permissible to ignore the details of the
boundary layer near r = a?

Please notify all errors to E.J.Hinch@damtp.cam.ac.uk.

2


