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Vortex reconnection under Biot-Savart evolution is investigated geometrically and numerically
using a tent model consisting of vortex filaments initially in the form of two tilted hyperbolic
branches; the vortices are anti-parallel at their points of nearest approach. It is shown that the tips
of these vortices approach each other, accelerating as they do so to form a finite-time singularity
at the apex of the tent. The minimum separation of the vortices and the maximum velocity and
axial strain-rate exhibit nearly self-similar Leray scaling, but the exponents of the velocity and
strain-rate deviate slightly from their respective self-similar values of −1/2 and −1; this deviation
is associated with the appearance of distinct minima of curvature leading to cusp structures at the
tips. The writhe and twist of each vortex are both zero at all times up to the instant of reconnec-
tion. By way of validation of the model, the structure of the eigenvalues and eigenvectors of the
rate-of-strain tensor is investigated: it is shown that the second eigenvalue λ2 has dipole structure
around the vortex filaments. At the tips, it is observed that λ2 is positive and the corresponding
eigenvector is tangent to the filament, implying persistent stretching of the vortex.
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1. Introduction
As a fundamental process in both classical and quantum turbulence, vortex reconnection has

been intensively studied over recent decades (see, for example, Kida & Takaoka 1994). Inspired
by the recent experiment of Kleckner & Irvine (2013) on the dynamics of a trefoil-knot vortex,
we have considered a linearized model in which two skewed Burgers-type vortices are driven
together by an axisymmetric straining velocity field (Kimura & Moffatt 2014). Within the lim-
itations of that model, we demonstrated that the time-scale of reconnection is independent of
kinematic viscosity ν in the limit ν → 0 and that the initial helicity associated with the skewed
configuration decays to zero during the reconnection process.

To elucidate the nonlinear effect of vortex-vortex interaction on the reconnection process, we
then investigated the evolution of a vortex filament in the form of a figure-of-eight (an 8 nearly
flattened on a plane), using a Biot-Savart model (Kimura & Moffatt 2017, hereafter KM17).
In this, the closed loop of the filament was discretised into piecewise linear segments, and the
velocity of each segment was calculated by evaluating the Biot-Savart integral as a sum of the
interactions from all other segments (the cut-off method). While the ring sections of the figure-of-
eight vortex move in opposite directions, the central sections first deform to a nearly anti-parallel
configuration and ultimately collide, producing a pair of cusps in the process. By systematically
varying the number of segments, we controlled the numerical resolution and showed that the
minimum separation of the colliding cusps scales as (tc − t)1/2 where tc is the estimated collision
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Figure 1. Blow-up projections of the vortex configuration at the estimated reconnection time t = 0.330772
for the figure-of-eight vortex (Kimura & Moffatt 2017).

time. We verified also that the scalings of the maximum velocity and the axial stretching rate
at the cusps are very close to (tc − t)−1/2 and (tc − t)−1 respectively. These are the scalings first
obtained by Leray (1934) for possible self-similar solutions of the Navier-Stokes equations.

Scrutiny of the vortex configuration just before the instant of reconnection tc suggests that
there may exist a universal geometric configuration leading up to, and even during, the vortex
reconnection process. We suggested this in KM17, in conformity with de Waele & Aarts (1994)
who argued that a symmetric pyramid (or tent) structure, with a range of apex angle depending
on initial conditions, is invariably formed before reconnection. (We note however that Tebbs,
Youd & Barenghi (2011) have argued, on the basis of the Gross-Pitaevskii equation, that there
may be other routes to reconnection.) In §2 of the present paper, we investigate the approach
further, starting with two initially tilted hyperbolic vortex filaments; this provides a simple rep-
resentation of vortex reconnection, revealing some of the geometric properties involved. Two
movies showing the approach to the reconnection singularity may be found in the supplementary
material.

There is much current interest in vortex reconnection in superfluid helium, usually studied
through the Gross-Pitaevski equation. Reconnection events have been experimentally detected,
notably by Bewley et al. (2008) and Fonda et al. (2004). A variety of reconnection events have
also been very recently detected in a Bose-Einstein condensate (Serafini et al. 2017). Experi-
mental techniques in these contexts are developing rapidly, and provide added motivation for the
present study.

In the classical fluid context, the Biot-Savart model can survive only for so long as the vortex
cores (finite in reality) are not significantly deformed by the local straining process. For this
reason the rate-of-strain tensor in the neighbourhood of the vortex tips plays a crucial role; we
investigate its structure in §3.
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(a) (b)

Figure 2. (a) Schematic view of the tent model. (b) Initial velocity vectors at points on Γ1 and Γ2 for
m = 0.35, c = 0.1 and θ = π/4 in the xz-plane; pink vectors are total velocity v1 + v2, and purple the
self-velocity v1 (colour online).

2. Tent model
Figure 1 shows two blow-up projections of the centre part of the figure-of-eight vortex at the

estimated reconnection time t = 0.330772, with the number n of discretised segments (and so
of nodes) equal to 215 = 32768. The projection on the yz-plane (right) suggests rather strongly
that the central sections are hyperbolic in shape. If however we look at the projection on the
xy-plane (left), we see that the two branches of the hyperbola are not on a single plane but on
planes symmetrically tilted at an angle θ say, to the horizontal.

Based on these observations, we propose the following parametrised curves for the branches
of a ‘tilted hyperbola’ with circulations Γ1 and Γ2 (= −Γ1), as the initial condition for a new ‘tent
model’ of vortex-filament reconnection:

Γ1 :


x(p, t) = c cosh p cos θ
y(p, t) = (c/m) sinh p
z(p, t) = −c cosh p sin θ

Γ2 :


x(p, t) = −c cosh p cos θ
y(p, t) = (c/m) sinh p
z(p, t) = −c cosh p sin θ

(−∞ < p < ∞). (2.1)

These expressions are obtained by first parametrising a hyperbola x2 − m2y2 = c2 and then
imposing tilts symmetrically from the horizontal plane through angles ± θ; we may describe the
resulting curve as a ‘tilted hyperbola’ of two branches. We shall allow for time-dependence of the
length-scale of the interaction region c. Note that the arc-length s(p) on either branch measured
from p = 0 is given by |dx/ds| = 1 = |dx/dp| |dp/ds|, so that

s(p) =
c
m

∫ p

0

(
cosh2 q + m2 sinh2 q

)1/2
dq. (2.2)

The radius of curvature at the tip of the hyperbola (p = 0) is R0 = c/m2. Taking kR0 as a
characteristic length-scale for suitable choice of k, we may non-dimensionalise with respect to
this scale. We have adopted values c = 0.1, m = 0.35 in the computations described below. This
corresponds to the choice k = (0.35)2/0.1 ≈ 1.225, and to an angle 2 cot−1 α ≈ 141o between
the asymptotes of the hyperbola. If m and c are varied, then details (e.g. the singularity time tc)
change, but the results are qualitatively stable. As regards θ, we adopt the value θ = π/4; there
are good reasons for this choice, as will emerge in §3 below.

The Biot-Savart model is based on the Euler equations, and without viscosity or any other
regularisation mechanisms, the solution diverges at t = tc when the tips of the vortices collide
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and the curvature and velocity become infinite at the apex of the tent. If viscosity or any other
regularisation mechanism is present, then the formation of a singularity may be averted and
smooth reconnection can then presumably occur.

The tent model, as sketched in Figure 2, can be continued to the post-reconnection situation
on the assumption that the vortices simply exchange pairs on the edges of the tent at the moment
of reconnection. Then two new vortices are located on the complementary surfaces of the tent.
These new vortices are so oriented that they move apart, and the simplest assumption is that they
ultimately recede on these complementary surfaces. Actually, the post-reconnection situation is
in practice complicated by the fact that Kelvin waves are generated at the moment of reconnection
and then propagate down the two vortices (Fonda et al. 2014). Ignoring this complication, with
τ = t − tc, and writing the vorticity field (2.1) before the singularity (τ < 0) as ω(x, y, z, τ),
then this simplest assumption would imply that the vorticity field after the singularity (τ > 0) is
obtained by reversing the sign of ω and rotating the configuration through π/2 about the z-axis,
i. e. for τ > 0,

ω(x, y, z, τ) = −ω(y,−x, z,−τ) . (2.3)

The post-singularity tilted hyperbola may be said to be ‘conjugate’ to the pre-singularity tilted
hyperbola. In the post-singularity situation, the change of sign of vorticity at the tips is what
makes the vortices recede down the sloping faces of the tent. We note that the Euler equations
admit the symmetry u(x, τ) = −u(x,−τ), ω(x, τ) = −ω(x,−τ); here, this symmetry is observed,
but with the additional instantaneous rotation of the configuration through π/2 about the z-axis
at the singularity time τ = 0. Under time-reversal, the whole process is simply reversed.

This proposed model is consistent with the conclusion of de Waele & Aarts (1994) that a tent
structure is formed by vortices as a universal route to reconnection; the asymptotes of our tilted
hyperbola correspond to the edges of the tent and the vortices tend to the asymptotes, while the
tips of the vortices approach the summit if c → 0 as t → tc. A similar model, but with different
parametrisation, has been discussed by Boué et al. (2013).

Substituting (2.1) into the Biot-Savart integral (as applied to vortex filaments, here with dx =

x′(s) ds = x′(p) dp),

u(q) = −
Γ

4π

∫ ∞

−∞

(x(q) − x(p)) ∧ x′(p) dp

|x(q) − x(p)|3
, (2.4)

we obtain the velocity at q on Γ1 induced by Γ1 (its ‘self-velocity’) as

v1(q) =
Γ1

16πmc

∫ ∞

−∞

(sin θ, 0, cos θ) dp

sinh( 1
2 (p − q)

[
sinh2 1

2 (p + q) + m−2 cosh2 1
2 (p + q)

]3/2 , (2.5)

and the velocity induced on Γ1 by Γ2 (the ‘induced velocity’) as

v2(q) =
Γ2

16πmc
×∫ ∞

−∞

(
sin θ sinh2 1

2 (p − q), m sin θ cos θ sinh p cosh q, cos θ cosh2 1
2 (p + q)

)
dp[

sinh2 1
2 (p−q)

((
cos2 θ+m−2) cosh2 1

2 (p+q)+sin2 θ sinh2 1
2 (p+q)

)
+cos2 θ cosh2 1

2 (p+q)
]3/2 .

(2.6)

The singularity in v1(q) at p = q is regularised through the cut-off method used below. We may
verify that this self-induced contribution is in the binormal direction on Γ1 and perpendicular to
the plane containing Γ1 (figure 2).

For the evolution of Γ1 and Γ2, we employ a method similar to that used by KM17. At t = 0,
the initial positions (2.1) of Γ1 and Γ2 are discretised and stretched by the double exponential
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(a) (b)

Figure 3. Tent-model configuration and velocity vectors at points on the vortices Γ1 and Γ2
(m = 0.35, c = 0.1, θ = π/4, n = 19202); (a) t = 0.449646; (b) t = 0.449716.
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Figure 4. Scaling of (a) the minimum distance Dmin, (b) the maximum velocity Vmax, (c) the maximum
axial strain-rate σmax ≡ t(s) ·du(s)/ds as a function of tc − t in log-log scale; results of three resolutions,
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Figure 6. (a) Curvature κ(s, t) and (b) torsion τ(s, t) of Γ1 as functions of arc-length s, at times t near to the
singularity time tc (m = 0.35, c = 0.1, θ = π/4, n = 4802).

formula,

pi = sinh
(
π

2
sinh(ih)

)
(i = −N, · · · − 1, 0, 1, · · · ,N). (2.7)

The velocity is evaluated at each point on Γ1 and Γ2 with a five-point finite-difference scheme
with uneven grid points for the first derivatives. Figure 3 shows the positions of Γ1 and Γ2 with
the velocity vectors at points near the centre part at (a) t = 0.449646 and (b) t = 0.449716.
(The total number of nodes here is n = 19202.) At t = 0.449646, the velocity vectors change
continuously along Γ1 and Γ2. At t = 0.449716, however, these vectors are discontinuous at the
centre point while new continuous sets of vectors form on parts of the reconnecting vortices. Two
movies showing the velocity distribution on each vortex as the singularity is approached may be
found in the supplementary material. (Similar behaviour was observed in the evolution of the
figure-of-eight vortex (KM17).)

With the tent model, we find almost the same scaling properties as with the figure-of-eight
vortex. Figure 4 summarises the scaling of the minimum distance Dmin, the maximum velocity
Vmax and the maximum axial strain-rate σmax ≡ t ·du/ds (where t is the unit tangent vector) as
functions of tc − t in log-log scale. Dmin shows (tc − t)1/2 scaling, and Vmax and σmax show scaling
close to (tc − t)−1/2 and (tc − t)−1 respectively, i. e. close to Leray scaling. But if we look closely
at the scaling of Vmax and σmax, the magnitude of the exponents are seen to be slightly above 1/2
and 1 respectively, showing slight deviation from self-similar behaviour. We note that a |tc− t|−1/2

scaling for Dmin has been found both before and after the reconnection event by Zuccher et al.
(2012); different scalings have however been reported by Hussain & Duraisamy (2011) and by
Rorai et al. (2016)).

This deviation is evident in the appearance of inflection points on the filaments and a conse-
quent tendency to form cusps (KM17) as the singularity is approached. Figure 5 shows (a) the
xz- and (b) the yz-projections of the tip part of the vortices at times close to the singularity (with
n = 19202). The scaling exponent of the axial stretching is larger than the Leray exponent, im-
plying a faster velocity in the z-direction at the tips, causing the appearance of inflection points
and leading towards the cusped structure. The xz-projection also shows that the tips gradually
leave the planes defined by the remote parts of the vortices. This means that the vortex filaments
develop non-zero torsion near the tips,

τ =
x′′′ · (x′ ∧ x′′)

(x′ ∧ x′′) · (x′ ∧ x′′)
, (2.8)
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(a) (b)

Figure 7. Iso-surfaces of λ2 (m = 0.35, c = 0.1, θ = π/4, n = 4802); (a) t = 0.473200 with λ2 = 150
(orange) and λ2 = −150 (blue); (b) t = 0.489820 with λ2 = 120 (orange) and λ2 = −120 (blue) (colour

online).

where the prime signifies d/dp.
Figure 6 shows the curvature κ(s, t) and torsion τ(s, t) of either vortex filament as functions of

arc-length s, at times t near to the singularity time tc. The curvature is symmetric about s = 0,
with no zero, therefore no 3D inflection point. We have verified that the maximum curvature (at
the tip) scales as (tc − t)−µ, where µ = 0.6027. This is somewhat greater than the value 1/2 that
might be expected; we have no explanation for this at present, but again, it is an indication of the
departure from Leray self-similarity. The inflection point observed in figure 5 is merely one on
the 2D projection of the curve on the xz-plane. This does show up however in figure 6(a) as a very
distinct minimum of curvature which collapses towards the singularity point as t → tc. Figure
6(b) shows the torsion τ(s, t), which is antisymmetric about s = 0 and has very pronounced
peaks at the location of the curvature minima. These results are consistent with results obtained
by Villois, Proment & Krstulovic (2017) on the basis of the Gross-Pitaevskii model.

Two important properties of a deformed filament are its writhe Wr(t) and twist Tw(t) (Moffatt
& Ricca 1992), and we know that in this case, for each tilted hyperbola, Wr + Tw = const. = 0,
since Wr = Tw = 0 initially. The twist Tw(t) is proportional to the integral of the torsion τ(s, t)
along the complete length of the filament, and this remains zero for all t > 0 by virtue of the
antisymmetry in s. This implies that Wr(t) = 0 also for all t > 0, consistent with the interpretation
of writhe as the average over all projections of the (signed) number of self-crossings of the curve:
the tilted hyperbola is increasingly bent upwards from its original plane, but is not twisted about
the z-direction, and therefore exhibits no self-crossings from any angle of projection.

3. Strain around the vortices
During the reconnection process, the vortices are subject to the local velocity gradient ∇v, and

the vortex cores, finite in reality, are inevitably deformed by the straining action. The nature of
the deformation is determined by the eigenvalues λ1 > λ2 > λ3 (λ1 +λ2 +λ3 = 0) of the rate-of-
strain tensor e = 1

2 (∇v + (∇v)T). From the Biot-Savart integral (2.4), the deformation tensor at x
is

∂u j(x)
∂xi

=
Γ

4π

∫ 3 (xi − xi(p))
[
(x − x(p)) ∧ dx(p)

]
j

|x − x(p)|5
+ εi jk

dxk(p)
|x − x(p)|3

 , (i, j, k = 1, 2, 3),

(3.1)
where εi jk is the Levi-Civita symbol.
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(a) (b)

Figure 8. Contours of λ2 on the plane y = 0; (a) t = 0.473200; (b) t = 0.489820
(m = 0.35, c = 0.1, θ = π/4, n = 4802)

t = 0.473200
Γ1 + Γ2:
λ1 λ2 λ3

2.4256E+02 2.1026E+01 -2.6359E+02
e1 e2 e3−6.8940E − 01

7.4945E − 12
7.2438E − 01


 2.7533E − 12

1.0000E + 00
−7.7257E − 12


7.2438E − 01
3.3316E − 12
6.8940E − 01



Γ2:
λ1 λ2 λ3

2.4179E+02 2.0781E+01 -2.6257E+02
e1 e2 e3−7.0635E − 01

−1.7479E − 15
7.0786E − 01


−8.6695E − 16

1.0000E + 00
1.6042E − 15


 7.0786E − 01
−5.1942E − 16
7.0635E − 01


t = 0.489820

Γ1 + Γ2:
λ1 λ2 λ3

3.0615E+04 6.0021E+03 -3.6617E+04
e1 e2 e3−6.9195E − 01

4.3931E − 14
7.2194E − 01


1.4811E − 12
1.0000E + 00
1.3587E − 12


 7.2194E − 01
−2.0094E − 12
6.9195E − 01



Γ2:
λ1 λ2 λ3

3.1620E+04 6.1659E+03 -3.7786E+04
e1 e2 e3−7.0653E − 01

7.3238E − 13
7.0768E − 01


 1.0330E − 12

1.0000E + 00
−3.5946E − 15


 7.0768E − 01
−7.2849E − 13
7.0653E − 01


Table 1. Eigenvalues and eigenvectors of the rate-of-strain tensor at the tipping point on Γ1 at times

t = 0.47320 and t = 0.489820 corresponding to Figures 7 and 8.

Figure 7 shows the 3D iso-surfaces of λ2 near the vortices. Two times are selected: (a) t =

0.473200 and (b) t = 0.489820. The iso-surfaces are plotted by evaluating the nine components
of (3.1) and, after symmetrising, by solving the cubic eigenvalue equation at 2003 grid points
around Γ1 and Γ2. At the earlier time, λ2 shows a dipole structure around the vortices (figure
7(a)). As time advances, the positive parts of the dipole overlap near the tips of the vortices to
produce another dipole structure on the symmetry plane x = 0 (figure 7(b)). Figure 8 shows the
contours of λ2 on the plane y = 0 corresponding to figure 7; this shows details of the change
around the tip. At t = 0.473200, two tilted dipoles are observed which move along the zero-level
of λ2 (figure 8(a)). At t = 0.489820 the positive parts of the dipoles overlap at the centre of
the region. The combined dipoles squeeze the zero-level of λ2 towards a cusp at the tip while
the ‘tails’ are straightened. By comparing figure 8(b) with figure 5, we may conjecture that it
is the complicated local strain structure that leads to the appearance of inflection points and the
development of cusps.
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A crucial issue concerns the structure of the principal rates of strain λ1, λ2 and λ3 near the vor-
tex tips. Table 1 shows the values of these eigenvalues and corresponding eigenvectors e1, e2, e3
at the tip of Γ1 at the two times corresponding to Figure 7 and Figure 8. The strain is evaluated
by the total velocity produced by Γ1 and Γ2 (first three columns) and by the induced velocity
produced by Γ2 alone (last three columns). The results may be summarised as follows:
(i) λ1 + λ2 + λ3 = 0, as expected by virtue of incompressibility.
(ii) λ2 > 0, and e2 is in the axial direction (parallel to the y-axis); each vortex is therefore per-
sistently stretched at the tip.
(iii) The eigenvectors e1 and e3 are in the xz-plane and are mutually orthogonal (as expected for
a real symmetric matrix).
(iv) The rate-of-strain produced by Γ2 alone is dominant at the tip of Γ1, and the magnitudes of
the x and z components of e1 and e3 are nearly equal; these vectors are therefore close to the
directions z = ±x.
The same results were obtained for a sequence of times up to tc, and under modest variation of
the parameters m and c, thus providing evidence for the accuracy of the computation. We note
here that the straining in the xz-plane in the neighbourhood of the tip of Γ1 must tend to rotate
the angle θ of its plane towards the value π/4 if it is not π/4 initially. This is why we have chosen
the value θ = π/4 in the initial condition (2.1).

Direct numerical simulations (DNS) of the Euler equations by Brenner, Hormoz & Pumir
(2016) and others have provided evidence of the flattening of vortex cores as the singularity time
is approached. This must be a consequence of the positive rate-of-strain eigenvalue (here λ1) in
the plane of cross-section of the vortex core. The Reynolds number dependence of this flattening
when weak viscosity is taken into account remains a key issue, and will require much better
numerical resolution than has so far been achieved.

In this context, it has been shown (Moffatt, Kida & Ohkitani 1994) that at very high Reynolds
number, the cross-section of a stretched Burgers-type vortex remains nearly circular even when
the straining flow is non-axisymmetric. There is therefore the possibility here that, at sufficiently
high Reynolds number beyond the reach of present DNS, the vortex cross-sections, if assumed
finite, may remain compact at leading order. We are currently investigating this possibility.

This work is supported by JSPS KAKENHI Grant Numbers JP24247014, JP16H01175. The au-
thors thank Prof. H. Fujiwara for helpful suggestions concerning the numerical methods.
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