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Abstract. The year 2007 will mark the centenary of the death of William Thomson
(Lord Kelvin), one of the great nineteenth-century pioneers of vortex dynamics.
Kelvin was inspired by Hermann von Helmholtz’s [7] famous paper “Ueber Integrale
der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”,
translated by P.G. Tait and published in English [17] under the title “On Integrals
of the Hydrodynamical Equations, which Express Vortex-motion”. Kelvin conceived
his “Vortex theory of Atoms” (1867–1875) on the basis that, since vortex lines
are frozen in the flow of an ideal fluid, their topology should be invariant. We
now know that this invariance is encapsulated in the conservation of helicity in
suitably defined Lagrangian fluid subdomains. Kelvin’s efforts were thwarted by
the realisation that all but the very simplest three-dimensional vortex structures
are dynamically unstable, and his vortex theory of atoms perished in consequence
before the dawn of the twentieth century. The course of scientific history might
have been very different if Kelvin had formulated his theory in terms of magnetic
flux tubes in a perfectly conducting fluid, instead of vortex tubes in an ideal fluid;
for in this case, stable knotted structures, of just the kind that Kelvin envisaged,
do exist, and their spectrum of characteristic frequencies can be readily defined.
This introductory lecture will review some aspects of these seminal contributions of
Helmholtz and Kelvin, in the light of current knowledge.
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1. The fluid dynamical origins of knot theory
and topology

The origins of vortex dynamics lie in the seminal work of Hermann
von Helmholtz [7], who (i) introduced the concepts of vortex line and vortex
filament (the fluid bounded by the vortex lines passing through the points
of an “infinitely small closed curve”), (ii) derived the vorticity equation for
an ideal incompressible fluid, and (iii) demonstrated that vortex lines are
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transported with the fluid with intensification proportional to the stretching
of its constituent line-elements. This work provided the basis for the bold,
though ultimately erroneous, “vortex atom” conjecture of William Thomson
(Lord Kelvin) [21, 22], Professor of Natural Philosophy at the University of
Glasgow, who sought to explain the structure and spectra of atoms of all the
known elements in terms of knotted and linked vortex filaments in a hypo-
thetical background ideal fluid “ether” permeating the universe. It was this
conjecture that led Peter Guthrie Tait, Kelvin’s opposite number at the nearby
University of Edinburgh, to develop techniques for the classification of knots
of low crossing number (the minimum number of double points in any plane
projection of a knot) [18–20] and thus to sow the seeds for the development
of topology as a recognisable branch of modern mathematics. These develop-
ments of the period 1858–1885 have been discussed in depth by Epple [6], who
conveys well the excitement and drama of this remarkable phase of Victorian
science.

2. Tait’s role in attracting Kelvin’s interest

Helmholtz’s work became more widely known when it was republished in
English translation by Tait [17], who indicates in a concluding paragraph
that his version “does not pretend to be an exact translation” but, follow-
ing revisions that had been made by Helmholtz, “may be accepted as rep-
resenting the spirit of the original”. Tait had made this translation as soon
as he received the German version in 1858, and, stimulated by Helmholtz’s
concluding remarks concerning the behaviour of vortex rings of small cross
section, developed a technique for the experimental demonstration of vortex
ring propagation, and of the “leap-frogging” of vortex rings propagating in
succession along a common axis of symmetry. Although Kelvin had known of
Helmholtz’s work in 1858, it was only when Tait, in his Edinburgh labora-
tory in 1867, showed him his vortex ring demonstration that he was in turn
stimulated to undertake his own extensive studies in vortex dynamics.

The second paragraph of Helmholtz’s paper (in Tait’s translation) deserves
comment. He writes:

Yet Euler [Histoire de l’Académie des Sciences de Berlin 1755, p. 292] has
distinctly pointed out that there are cases of fluid motion in which no velocity-
potential exists, — for instance, the rotation of a fluid about an axis when
every element has the same angular velocity. Among the forces which can pro-
duce such motions may be named magnetic attractions upon a fluid conducting
electric currents, and particularly friction, whether among the elements of the
fluid or against fixed bodies. The effect of fluid friction has not hitherto been
mathematically defined; yet it is very great, and, except in the case of in-
definitely small oscillations, produces most marked differences between theory
and fact. The difficulty of defining this effect, and of finding expressions for
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its measurement, mainly consisted in the fact that no idea had been formed
of the species of motion which friction produces in fluids. Hence it appeared
to me to be of importance to investigate the species of motion for which there
is no velocity-potential.

The mention of what amounts to the rotationality of the Lorentz force
(magnetic attractions upon a fluid conducting electric currents) here shows
remarkable foresight, as does recognition of the crucial role of internal friction
(i.e. viscosity). It is evident however that Helmholtz was unaware of the epic
work of Stokes [15,16] in which the effects of viscosity in a fluid continuum had
been analysed in considerable detail. Tait adds a footnote to his translation
in which he gently draws attention to this omission:

A portion of the contents of the paper had been anticipated by Professor
Stokes in various excellent papers in the Cambridge Philosophical Transac-
tions; but the discovery of the nature and motions of vortex-filaments is en-
tirely novel, and of great consequence.

3. The analogy between vorticity and current as source
fields

I was myself a student at the University of Edinburgh from 1953 to 1957 in the
(then) Tait Institute for Mathematical Physics, and I recall seeing demonstra-
tions with the “vortex ring generator” (sometimes known as a “Kelvin box”
though perhaps more appropriately described as a “Tait box”) in connex-
ion with the third-year course on theoretical hydrodynamics given by Robin
Schlapp that I attended exactly 50 years ago. The traditional style of presen-
tation of this material, with Lamb’s Hydrodynamics as the one and only rec-
ommended treatise, had been well maintained and cultivated since the time
of Kelvin and Tait. We were taught a parallel course on Electromagnetism
by Nicholas Kemmer (successor in 1953 to Max Born in the Edinburgh Chair
of Natural Philosophy), in which context the name of James Clerk Maxwell,
born and schooled in Edinburgh, and later first Cavendish Professor of Ex-
perimental Physics at the University of Cambridge (1871–1879), was equally
venerated. The fact that the relationship between vortex filaments in fluid
mechanics and the velocity field to which they gave rise (via the Biot–Savart
Law) is the same as that between currents in conducting wires (i.e. “current
filaments”) and the magnetic field to which they give rise had been noted by
Helmholtz and was equally familiar to Kelvin, who was in regular correspon-
dence with Maxwell on this and related topics. We now know, as I shall dis-
cuss below, that such interdisciplinary analogies admit powerful exploitation
in a manner that was not recognised until the development of magnetohy-
drodynamics nearly a century later. I propose to argue that, had Kelvin con-
ceived of the ether as a perfectly conducting fluid medium supporting a tangle
of magnetic flux tubes rather than as an ideal (inviscid) medium supporting



4 K. Moffatt

a tangle of vortex filaments, then his theory would have been much more ro-
bust, and the development of natural philosophy (i.e. physics) in the early
twentieth century might have followed a very different course.

4. The (imperfect) analogy between vorticity
and magnetic field

The curious thing is that the basic principles underlying magnetohydrody-
namics (MHD) were already known by the mid-nineteenth century, well before
Maxwell introduced the “displacement current” that was needed to guarantee
charge conservation; this is neglected in MHD, current j being assumed instan-
taneously related to magnetic field B by Ampère’s Law: j = curlB (in “Alfvén
units” for which B has the dimensions of a velocity). When combined with
Faraday’s Law of Induction, and Ohm’s Law in a medium of resistivity η mov-
ing with velocity v, this yields the well-known “induction equation” for the
evolution of magnetic field:

∂B
∂t

= curl(v ×B) + η∇2B. (1)

This bears an obvious superficial similarity to the vorticity equation

∂ω

∂t
= curl(u× ω) + ν∇2ω (2)

in a non-conducting medium of kinematic viscosity ν, superficial because
whereas ω is related to u in (2) by ω = curlu, B bears no such relation
to the transporting velocity field v in (1). This imperfection in the analogy
between B and ω does not however vitiate an important conclusion: just
as (2) implies that the ω-lines (i.e. vortex lines) are transported with the fluid
when ν = 0, so (1) implies that the B-lines (i.e. Faraday’s magnetic lines
of force) are so transported when η = 0. Thus, conservation of topology
of the B-field in a perfectly conducting fluid could have provided an equally
good starting point for Kelvin (rather than conservation of topology of the
ω-field in an inviscid fluid) in formulating a theory of the structure and spec-
tra of atoms, and indeed a more plausible one since, as was recognised early
in the twentieth century, atoms do involve microscopic current circuits (con-
ventionally pictured as electrons orbiting in their various shells around a nu-
cleus) and their associated magnetic fields.

5. The long-delayed development
of magnetohydrodynamics

Thus all the principles were available in the 1860s for such a complementary
approach, but Kelvin’s preoccupation was with vortices, while on the electro-
magnetic front, Maxwell’s preoccupation was with providing a unified theory
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of electricity and magnetism. MHD was a subject waiting to be discovered,
but it was not until the work of Alfven [1] that the subject was in the event de-
veloped to the point at which the crucial “frozen-in” property of the magnetic
field in a perfectly conducting fluid was finally recognised. Soon after this, the
analogy between vorticity and magnetic field referred to above was recognised
and exploited by Batchelor [4] in a first investigation of the effect of turbu-
lence on a random magnetic field. The explosive development of MHD in the
1950s and 1960s was greatly stimulated by technological problems associated
with controlled thermonuclear fusion, as well as with an expanding recogni-
tion of its vital role in understanding fundamental processes in astrophysics
and geophysics.

6. Helicity: the bridge between fluid mechanics
and topology

Kelvin’s vision of the role of knotted or linked vortex tubes in a hypothetical
ether was largely qualitative in character. He correctly perceived that knots
and linkages would be conserved by virtue of the frozen-in property of vortex
lines, but he had no quantitative measure of such knottedness or linkage.
The simplest such quantitative measure for any localised vorticity distribution
is in fact provided by its helicity, the integrated scalar product of the vorticity
field ω and the velocity u to which it gives rise:

H =
∫

u · ωdV. (3)

This quantity is an invariant of the Euler equations, either for an incom-
pressible fluid or for a compressible fluid under the barotropic condition that
pressure p is a function of density ρ alone: p = p(ρ) [8,13]. For the prototype
linkage of two vortex tubes of circulation κ1 and κ2 (each having no internal
twist), centred on unknotted but possibly linked closed curves C1 and C2,
the helicity may be easily evaluated in the form

H = ±2nκ1κ2, (4)

where the plus or minus sign is chosen according as whether the linkage
is right- or left-handed, and n is an integer, actually the Gauss linking number
of C1 and C2. It is here that the link between topology and fluid dynamics
is at its most transparent.

7. Knotted vortex tubes

For a single vortex tube T of circulation κ whose axis C is in the form of a knot
of type K, the situation is more subtle. The helicity in this case is given by
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H = κ2(Wr + Tw), (5)

where Wr and Tw are respectively the writhe of C and twist of T [12].
The writhe is given by a double integral round C analogous to the Gauss
integral, and admits interpretation as the sum of the (signed) crossings of the
knot averaged over all projections. The twist can be decomposed in the form

Tw =
1
2π

(∫
τ(s)ds+N

)
, (6)

where τ(s) is the torsion of C as a function of arc-length s, and N represents
the intrinsic twist of vortex lines around the axis C as they traverse the circuit
round the tube (an integer if these vortex lines are closed curves). If the vortex
tube is deformed through any configuration that instantaneously contains
an inflexion point, then N jumps by an integer at this instant, but the jump
is compensated by an equal and opposite jump in the total torsion, so that Tw
varies in a continuous manner [12]. As shown by Calugareanu [5] in a purely
geometric context, and as generalised to higher dimension by White [23],
the sum [5] is indeed constant under arbitrary deformation of the tube.

8. Magnetic helicity and the lower bound on magnetic
energy

In consequence of the analogy (albeit imperfect) between vorticity and mag-
netic field, there is an analogous topological invariant of a magnetic field B
in a perfectly conducting fluid, namely the magnetic helicity

HM =
∫

A ·B dV (7)

where A is a vector potential for B: A = curlB and note that the inte-
gral (7) is gauge-invariant provided the normal component of B vanishes
on the boundary of the fluid domain). This invariant was discovered by
Woltjer [24], but its topological interpretation was not recognised until some
years later [8]. This invariant provides an important lower bound on the mag-
netic energy

M =
∫

B2/2 dV, (8)

namely [3]
M � q|HM |, (9)

where q is a constant (with the dimensions of (length)−1), which depends
only on the domain topology, geometry and scale. There is no corresponding
lower bound for the kinetic energy associated with a vorticity field in an ideal
fluid, and it is here that there is great advantage in switching attention to the
magnetic problem.
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9. Magnetic relaxation

Let us then conceive of a perfectly conducting incompressible fluid contained
in a fixed domain ∆ with surface S, containing a magnetic field B0(x) of non-
zero magnetic helicity, the fluid being at rest at time t = 0. In general, the
associated Lorentz force j × B is rotational, and the fluid will move under
the action of this force; as it moves, it transports the magnetic field, whose
topology is conserved. If we suppose that the fluid has nonzero viscosity, then,
for so long as the fluid is in motion, energy (magnetic M plus kinetic K)
is dissipated through the agency of viscosity, and is therefore monotonic de-
creasing; it is however constrained by the inequality (9), which implies that
ultimately M +K tends to a constant, and so the rate of dissipation of en-
ergy tends to zero. It is at least reasonable then to conjecture that the velocity
field must tend to zero identically in ∆, and that we must arrive at an equilib-
rium state that is stable within the framework of perfect conductivity because
magnetic energy is then minimal under frozen-field perturbations; this mag-
netostatic equilibrium is described by the force balance

j×B = ∇p, (10)

where p is the fluid pressure. The asymptotic field B results from deformation
of B0(x) by a velocity field v(x, t) which dissipates a finite amount of energy
over the whole time interval 0 < t < ∞ in this sense, it may be said to be
“topologically accessible” from B0. This process has been described in detail
by Moffatt [9]. One important feature is that, in general, tangential disconti-
nuities of B (i.e. current sheets) may develop during the relaxation process.
The prototype configuration for which this happens is that consisting of two
unknotted, untwisted, linked magnetic flux tubes which, under relaxation,
contract in length and expand in cross section (volume being conserved) until
they make contact on an open surface which is then necessarily such a surface
of tangential discontinuity. Actually, in this situation, one tube then spreads
round the other, the ultimate magnetostatic equilibrium being axisymmetric
and the current sheet (asymptotically) a torus.

10. Relaxation of knotted flux tubes

A flux tube of volume V , carrying magnetic flux Φ (the analogue of κ)
and knotted in the form of a knot of type K, has magnetic helicity the ana-
logue of (5), i.e.

HM = hΦ2, (11)

where h =Wr+Tw is the conserved writhe-plus-twist of the tube. This tube
will relax under the procedure outlined above to a minimum energy state of
magnetostatic equilibrium, in which the minimum energyMmin is determined
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by the three characteristic properties of the initial field that are conserved dur-
ing relaxation, namely Φ, V , and h; on dimensional grounds, this relationship
must take the form

Mmin = mK(h)Φ2V −1/3, (12)

where mK(h) is a dimensionless function of the dimensionless helicity para-
meter h, whose form is determined solely by the knot type K [11]. Moreover,
this state, being stable, will be characterised by a spectrum of real frequencies
ωn, which, again on dimensional grounds, are given by

ωn = ΩKn(h)ΦV −1, (13)

where the ΩKn(h) (n = 1, 2, 3, . . .) are again dimensionless functions of h,
determined solely by the knot type K. I suspect that it was just such rela-
tions as (12) and (13) that Kelvin was seeking in relation to knotted vortex
tubes. He was unsuccessful because there is no known relaxation procedure in
three dimensions analogous to that described above that conserves vorticity
topology and minimises kinetic energy.

11. The analogous Euler flows

There is nevertheless a second analogy (and this time it is perfect!) which
is an extension of the analogy already recognised by Helmholtz and Kelvin,
and touched on in §3 above. This is the analogy between B and u (and con-
sequently between j = curlB, and ω = curlu). The analogue of (10) is then

u× ω = ∇H, (14)

where H = p0 − p, for some constant p0. Equation (14) may be immediately
recognised as the steady form of the Euler equation with H the total head.
Thus, to each magnetostatic equilibrium satisfying (10), there corresponds
a steady Euler flow, obtained by simply replacing B by u, j by ω, and p by
p0−H. Note here that, through this analogy, a magnetic flux tube corresponds
not to a vortex tube in the Euler flow, but to a streamtube! So a knotted flux
tube corresponds to a knotted streamtube, a somewhat curious concept within
the context of the Euler equations. However, although the analogy is perfect
as far as the steady state is concerned, it does not extend to the stability
of the steady state: stability of the minimum energy knotted flux configu-
rations does not imply stability of the analogous Euler flows. The reason
is that under perturbation of the magnetostatic equilibrium, the B-field must
be frozen in the fluid, whereas under perturbation of the Euler flow satis-
fying the time-dependent Euler equation, it is not the “analogous” u-field,
but rather the ω-field, that is frozen in the fluid. This subtle distinction com-
pletely changes the stability criterion for steady states [10]. One should in fact
expect all the analogous Euler flows to be in general unstable if only because
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they will generally contain vortex sheets (the analogue of the current sheets
referred to above) and these will be generically subject to Kelvin–Helmholtz
instability. It has in fact been shown by Rouchon [14] that steady Euler flows
that are nontrivially three-dimensional fail to satisfy Arnold’s [2] sufficient
condition for stability: the constant-energy trajectories on the “isovortical”
folium through a fixed point in the space of divergence-free velocity fields of
finite energy are in general hyperbolic in character, so that the perturbed flow
is not constrained by conservation of energy to remain near the fixed point.
This does not imply instability, but it makes it very likely!

12. Conclusions

Kelvin was frustrated in his vortex ambitions on two accounts: first in fail-
ing to find steady non-axisymmetric solutions of the Euler equations having
knotted vortex lines; and second in being unable to demonstrate the stability
of even the simplest vortex ring configurations. His investigations of the 1870s
and 1880s laid the basis for many subsequent investigations of problems of
vortex structure and stability that remain very much alive today; but his ini-
tial concept of the “vortex atom” failed to gain ground because of these two
fundamental barriers to progress. If instead one adopts the complementary
scenario of magnetic flux tubes in a perfectly conducting fluid, then the nat-
ural technique of magnetic relaxation, as described above, leads in principle
to stable equilibria of magnetic flux tubes knotted in an arbitrary manner.
The actual realisation of the relaxation process, and the determination of
the frequency spectra of these stable equilibria, present computational chal-
lenges that should be within the power of current super-computers. I hope
that someone may soon be able to rise to these challenges, and thus revive
the vision and spirit of the great nineteenth-century pioneers of the subject
of this Symposium.
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infinite et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst.
Fourier Grenoble, 16, 319–361.

3. Arnol’d V. (1974) The asymptotic Hopf invariant and its applications (in
Russian). Proc. Summer School in Diff. Eqns., Erevan, Armenian SSR Acad.
Sci, 1974. (English translation: 1986, Sel. Math. Sov. , 5, 327–345).

4. Batchelor G. K. (1950) On the spontaneous magnetic field in a conducting liquid
in turbulent motion, Proc. Roy. Soc. A, 201, 405–416.
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