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These are lecture notes for the course on Black Holes in Part III of the Cambridge

Mathematical Tripos.
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Conventions

We will use units such that the speed of light is c = 1 and Newton’s constant is G = 1.

This implies that length, time and mass have the same units.

The metric signature is (−+ ++)

The cosmological constant is so small that is is important only on the largest length

scales, i.e., in cosmology. We will assume Λ = 0 in this course.

We will use abstract index notation. Greek indices µ, ν, . . . refer to tensor compo-

nents with respect to some basis. Such indices take values from 0 to 3. An equation

written with such indices is valid only in a particular basis. Spacetime coordinates

are denoted xµ. Abstract indices are Latin indices a, b, c . . .. These are used to denote

tensor equations, i.e., equations valid in any basis. Any object carrying abstract indices

must be a tensor of the type indicates by its indices e.g. Xa
b is a tensor of type (1, 1).

Any equation written with abstract indices can be written out in a basis by replacing

Latin indices with Greek ones (a → µ, b → ν etc). Conversely, if an equation written

with Greek indices is valid in any basis then Greek indices can be replaced with Latin

ones.

For example: Γµνρ = 1
2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) is valid only in a coordinate basis.

Hence we cannot write it using abstract indices. But R = gabRab is a tensor equation

so we can use abstract indices.

Riemann tensor: R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.
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Most of this course concerns classical aspects of black hole physics. The books

that I found most useful in preparing this part of the course are Wald’s GR book, and

Hawking and Ellis. The final chapter of this course concerns quantum field theory in

curved spacetime. Here I mainly used Birrell and Davies, and Wald’s second book.

The latter also contains a nice discussion of the laws of black hole mechanics.

1 Spherical stars

1.1 Cold stars

To understand the astrophysical significance of black holes we must discuss stars. In

particular, how do stars end their lives?

A normal star like our Sun is supported against contracting under its own gravity

by pressure generated by nuclear reactions in its core. However, eventually the star

will use up its nuclear “fuel”. If the gravitational self-attraction is to be balanced then

some new source of pressure is required. If this balance is to last forever then this new

source of pressure must be non-thermal because the star will eventually cool.

A non-thermal source of pressure arises quantum mechanically from the Pauli prin-

ciple, which makes a gas of cold fermions resist compression (this is called degeneracy

pressure). A white dwarf is a star in which gravity is balanced by electron degeneracy

pressure. The Sun will end its life as a white dwarf. White dwarfs are very dense

compared to normal stars e.g. a white dwarf with the same mass as the Sun would

have a radius around a hundredth of that of the Sun. Using Newtonian gravity one

can show that a white dwarf cannot have a mass greater than the Chandrasekhar limit

1.4M� where M� is the mass of the Sun. A star more massive than this cannot end

its life as a white dwarf (unless it somehow sheds some of its mass).

Once the density of matter approaches nuclear density, the degeneracy pressure of

neutrons becomes important (at such high density, inverse beta decay converts protons

into neutrons). A neutron star is supported by the degeneracy pressure of neutrons.

These stars are tiny: a solar mass neutron star would have a radius of around 10km

(the radius of the Sun is 7×105km). Recall that validity of Newtonian gravity requires

|Φ| � 1 where Φ is the Newtonian gravitational potential. At the surface of a such a

neutron star one has |Φ| ∼ 0.1 and so a Newtonian description is inadequate: one has

to use GR.
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1.2 Spherical symmetry

In this chapter we will see that GR predicts that there is a maximum mass for

neutron stars. Remarkably, this is independent of the (unknown) properties of matter

at extremely high density and so it holds for any cold star. As we will explain, detailed

calculations reveal the maximum mass to be around 3M�. Hence a hot star more

massive than this cannot end its life as a cold star (unless it sheds some mass e.g. in

a supernova). Instead the star will undergo complete gravitational collapse to form a

black hole.

We will make the simplifying assumption that the star is spherically symmetric.

As we will see, the Schwarzschild solution is the unique spherically symmetric vacuum

solution and hence describes the gravitational field outside any spherically symmetric

star. The interior of the star can be modelled using a perfect fluid and so spacetime

inside the star is determined by solving the Einstein equation with a perfect fluid source

and matching onto the Schwarzschild solution outside the star.

1.2 Spherical symmetry

We need to define what we mean by a spacetime being spherically symmetric. You are

familiar with the idea that a round sphere is invariant under rotations, which form the

group SO(3). In more mathematical language, this can be phrased as follows. The

set of all isometries of a manifold with metric forms a group. Consider the unit round

metric on S2:

dΩ2 = dθ2 + sin2 θ dφ2. (1.1)

The isometry group of this metric is SO(3) (actually O(3) if we include reflections).

Any 1-dimensional subgroup of SO(3) gives a 1-parameter group of isometries, and

hence a Killing vector field. A spacetime is spherically symmetric if it possesses the

same symmetries as a round S2:

Definition. A spacetime is spherically symmetric if its isometry group contains an

SO(3) subgroup whose orbits are 2-spheres. (The orbit of a point p under a group of

diffeomorphisms is the set of points that one obtains by acting on p with all of the

diffeomorphisms.)

The statement about the orbits is important: there are examples of spacetimes with

SO(3) isometry group in which the orbits of SO(3) are 3-dimensional (e.g. Taub-NUT

space: see Hawking and Ellis).

Definition. In a spherically symmetric spacetime, the area-radius function r : M → R
is defined by r(p) =

√
A(p)/4π where A(p) is the area of the S2 orbit through p. (In

other words, the S2 passing through p has induced metric r(p)2dΩ2.)
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1.3 Time-independence

1.3 Time-independence

Definition. A spacetime is stationary if it admits a Killing vector field ka which is

everywhere timelike: gabk
akb < 0.

We can choose coordinates as follows. Pick a hypersurface Σ nowhere tangent to

ka and introduce coordinates xi on Σ. Assign coordinates (t, xi) to the point parameter

distance t along the integral curve through the point on Σ with coordinates xi. This

gives a coordinates chart such that ka = (∂/∂t)a. Since ka is a Killing vector field, the

metric is independent of t and hence takes the form

ds2 = g00(xk)dt2 + 2g0i(x
k)dtdxi + gij(x

k)dxidxj (1.2)

where g00 < 0. Conversely, given a metric of this form, ∂/∂t is obviously a timelike

Killing vector field and so the metric is stationary.

Next we need to introduce the notion of hypersurface-orthogonality. Let Σ be a

hypersurface in M specified by f(x) = 0 where f : M → R is smooth with df 6= 0 on

Σ. Then the 1-form df is normal to Σ. (Proof: let ta be any vector tangent to Σ then

df(t) = t(f) = tµ∂µf = 0 because f is constant on Σ.) Any other 1-form n normal to Σ

can be written as n = gdf +fn′ where g is a smooth function with g 6= 0 on Σ and n′ is

a smooth 1-form. Hence we have dn = dg∧df+df ∧n′+fdn′ so (dn)|Σ = (dg−n′)∧df .

So if n is normal to Σ then

(n ∧ dn)|Σ = 0 (1.3)

Conversely:

Theorem (Frobenius). If n is a non-zero 1-form such that n∧ dn = 0 everywhere then

there exist functions f, g such that n = gdf so n is normal to surfaces of constant f i.e.

n is hypersurface-orthogonal.

Definition. A spacetime is static if it admits a hypersurface-orthogonal timelike Killing

vector field. (So static implies stationary.)

For a static spacetime, we know that ka is hypersurface-orthogonal so when defining

coordinates (t, xi) we can choose Σ to be orthogonal to ka. But Σ is the surface t = 0,

with normal dt. It follows that, at t = 0, kµ ∝ (1, 0, 0, 0) in our chart, i.e., ki = 0.

However ki = g0i(x
k) so we must have g0i(x

k) = 0. So in adapted coordinates a static

metric takes the form

ds2 = g00(xk)dt2 + gij(x
k)dxidxj (1.4)

where g00 < 0. Note that this metric has a discrete time-reversal isometry: (t, xi) →
(−t, xi). So static means “time-independent and invariant under time reversal”. For

example, the metric of a rotating star can be stationary but not static because time-

reversal changes the sense of rotation.
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1.4 Static, spherically symmetric, spacetimes

1.4 Static, spherically symmetric, spacetimes

We’re interested in determining the gravitational field of a time-independent spherical

object so we assume our spacetime to be stationary and spherically symmetric. By this

we mean that the isometry group is R× SO(3) where the the R factor corresponds to

“time translations” (i.e., the associated Killing vector field is timelike) and the orbits of

SO(3) are 2-spheres as above. It can be shown that any such spacetime must actually

be static. (The gravitational field of a rotating star can be stationary but the rotation

defines a preferred axis and so the spacetime would not be spherically symmetric.) So

let’s consider a spacetime that is both static and spherically symmetric.

Staticity means that we have a timelike Killing vector field ka and we can foliate

our spacetime with surfaces Σt orthogonal to ka. One can argue that the orbit of

SO(3) through p ∈ Σt lies within Σt. We can define spherical polar coordinates on

Σ0 as follows. Pick a S2 symmetry orbit in Σ0 and define spherical polars (θ, φ) on it.

Extend the definition of (θ, φ) to the rest of Σ0 by defining them to be constant along

(spacelike) geodesics normal to this S2 within Σ0. Now we use (r, θ, φ) as coordinates

on Σ0 where r is the area-radius function defined above (which assume is not constant,

i.e., dr 6= 0). The metric on Σ0 must take the form

ds2 = e2Ψ(r)dr2 + r2dΩ2 (1.5)

drdθ and drdφ terms cannot appear because they would break spherical symmetry.

Note that r is not “the distance from the origin”. Finally, we define coordinates

(t, r, θ, φ) with t the parameter distance from Σ0 along the integral curves of ka. The

metric must take the form

ds2 = −e2Φ(r)dt2 + e2Ψ(r)dr2 + r2dΩ2 (1.6)

We’ll model the matter inside a star as a perfect fluid, with energy momentum tensor

Tab = (ρ+ p)uaub + pgab (1.7)

where ua is the 4-velocity of the fluid (a unit timelike vector: gabu
aub = −1), and ρ,p

are the energy density and pressure measured in the fluid’s local rest frame (i.e. by an

observer with 4-velocity ua).

Since we’re interested in a time-independent and spherically symmetric situation

we assume that the fluid is at rest, so ua is in the time direction:

ua = e−Φ

(
∂

∂t

)a
(1.8)

Our assumptions of staticity and spherical symmetry implies that ρ and p depend only

on r. Let R denote the (area-)radius of the star. Then ρ and p vanish for r > R.
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1.5 Tolman-Oppenheimer-Volkoff equations

1.5 Tolman-Oppenheimer-Volkoff equations

Recall that a perfect fluid’s equations of motion are determined by energy-momentum

tensor conservation. But the latter follows from the Einstein equation and the con-

tracted Bianchi identity. Hence we can obtain the equations of motion from just the

Einstein equation. Now the Einstein tensor inherits the symmetries of the metric and

so there are only three non-trivial components of the Einstein equation. These are

the tt, rr and θθ components (spherical symmetry implies that the φφ component is

proportional to the θθ component).

Define m(r) by

e2Ψ(r) =

(
1− 2m(r)

r

)−1

(1.9)

and note that the LHS is positive so m(r) < r/2. The tt component of the Einstein

equation gives
dm

dr
= 4πr2ρ (1.10)

The rr component of the Einstein equation gives

dΦ

dr
=
m+ 4πr3p

r(r − 2m)
(1.11)

The final non-trivial component of the Einstein equation is the θθ component This

gives a third equation of motion. But this is more easily derived from the r-component

of energy-momentum conservation ∇µT
µν = 0, i.e., from the fluid equations of motion.

This gives
dp

dr
= −(p+ ρ)

(m+ 4πr3p)

r(r − 2m)
(1.12)

We have 3 equations but 4 unknowns (m,Φ, ρ, p) so we need one more equation. We

are interested in a cold star, i.e., one with vanishing temperature T . Thermodynamics

tells us that T , p and ρ are not independent: they are related by the fluid’s equation

of state e.g. T = T (ρ, p). Hence the condition T = 0 implies a relation between p

and ρ, i.e, a barotropic equation of state p = p(ρ). So, for a cold star, p is not an

independent variable so we have 3 equations for 3 unknowns. These are called the

Tolman-Oppenheimer-Volkoff equations.

We assume that ρ > 0 and p > 0, i.e., the energy density and pressure of matter

are positive. We also assume that p is an increasing function of ρ. If this were not

the case then the fluid would be unstable: a fluctuation in some region that led to an

increase in ρ would decrease p, causing the fluid to move into this region and hence

further increase in ρ, i.e., the fluctuation would grow.
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1.6 Outside the star: the Schwarzschild solution

1.6 Outside the star: the Schwarzschild solution

Consider first the spacetime outside the star: r > R. We then have ρ = p = 0. For

r > R (1.10) gives m(r) = M , constant. Integrating (1.11) gives

Φ =
1

2
log (1− 2M/r) + Φ0 (1.13)

for some constant Φ0. We then have gtt → −e2Φ0 as r → ∞. The constant Φ0 can be

eliminated by defining a new time coordinate t′ = eΦ0t. So without loss of generality

we can set Φ0 = 0 and we have arrived at the Schwarzschild solution

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (1.14)

The constant M is the mass of the star. One way to see this is to note that for large

r, the Schwarzschild solution reduces to the solution of linearized theory describing the

gravitational field far from a body of mass M (a change of radial coordinate is required

to see this). We will give a precise definition of mass later in this course.

The components of the above metric are singular at the Schwarzschild radius r =

2M , where gtt vanishes and grr diverges. A solution describing a static spherically

symmetric star can exist only if r = 2M corresponds to a radius inside the star, where

the Schwarzschild solution does not apply. Hence a static, spherically symmetric star

must have a radius greater than its Schwarzschild radius:

R > 2M (1.15)

Normal stars have R� 2M e.g. for the Sun, 2M ≈ 3km whereas R ≈ 7× 105km.

1.7 The interior solution

Integrating (1.10) gives

m(r) = 4π

∫ r

0

ρ(r′)r′
2
dr′ +m? (1.16)

where m? is a constant.

Now Σt should be smooth at r = 0 (the centre of the star). Recall that any smooth

Riemannian manifold is locally flat, i.e., measurements in a sufficiently small region

will be the same as in Euclidean space. In Euclidean space, a sphere of area-radius r

also has proper radius r, i.e., all points on the sphere lie proper distance r from the

centre. Hence the same must be true for a small sphere on Σt. The proper radius of a

sphere of area-radius r is
∫ r

0
eΨ(r′)dr′ ≈ eΨ(0)r for small r. Hence we need eΨ(0) = 1 for

the metric to be smooth at r = 0. This implies m(0) = 0 and so m? = 0.
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1.7 The interior solution

Now at r = R, our interior solution must match onto the exterior Schwarzschild

solution. For r > R we have m(r) = M so continuity of m(r) determines M :

M = 4π

∫ R

0

ρ(r)r2dr (1.17)

This is formally the same as the equation relating total mass to density in Newtonian

theory. But there is an important difference: in the Euclidean space of Newtonian

theory, the volume element on a surface of constant t is r2 sin θdr ∧ dθ ∧ dφ and so the

RHS above gives the total energy of matter. However, in GR, the volume element on

Σt is eΨr2 sin θdr ∧ dθ ∧ dφ so the total energy of the matter is

E = 4π

∫ R

0

ρeΨr2dr (1.18)

and since eΨ > 1 (as m > 0) we have E > M : the energy of the matter in the star is

greater than the total energy M of the star. The difference E −M can be interpreted

as the gravitational binding energy of the star.

In GR there is a lower limit on the size of stars that has no Newtonian analogue.

To see this, note that the definition (1.9) implies m(r)/r < 1/2 for all r. Evaluating at

r = R recovers the result R > 2M discussed above. (To see that this has no Newtonian

analogue, we can reinsert factors of G and c to write it as GM/(c2R) < 1/2. Taking

the Newtonian limit c→∞ the equation becomes trivial.)

This lower bound can be improved. Note that (1.12) implies dp/dr ≤ 0 and hence

dρ/dr ≤ 0. Using this it can be shown (examples sheet 1) that

m(r)

r
<

2

9

[
1− 6πr2p(r) + (1 + 6πr2p(r))1/2

]
(1.19)

Evaluating at r = R we have p = 0 and hence obtain the Buchdahl inequality

R >
9

4
M (1.20)

The derivation of this inequality assumes only ρ ≥ 0 and dρ/dr ≤ 0 and nothing about

the equation of state, so it also applies to hot stars satisfying these assumptions. This

inequality is sharp: on examples sheet 1 it is shown that stars with constant density

ρ can get arbitrarily close to saturating it (the pressure at the centre diverges in the

limit in which the inequality becomes an equality).

The TOV equations can be solved by numerical integration as follows. Regard

(1.10) and (1.12) as a pair of coupled first order ordinary differential equations for

m(r) and ρ(r) (recall that p = p(ρ) and dp/dρ > 0). These can be solved, at least
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1.8 Maximum mass of a cold star

numerically on a computer, given initial conditions for m(r) and ρ(r) at r = 0. We

have just seen that m(0) = 0. Hence just need to specify the value ρc = ρ(0) for the

density at the centre of the star.

Given a value for ρc we can solve (1.10) and (1.12). The latter equation shows that

p (and hence ρ) decreases as r increases. Since the pressure vanishes at the surface of

the star, the radius R is determined by the condition p(R) = 0. This determines R as

a function of ρc. Equation (1.17) then determines M as a function of ρc. Finally we

determine Φ(r) inside the star by integrating (1.11) inwards from r = R with initial

condition Φ(R) = (1/2) log(1 − 2M/R) (from (1.13)). Hence, for a given equation of

state, static, spherically symmetric, cold stars form a 1-parameter family of solutions,

labelled by ρc.

1.8 Maximum mass of a cold star

When one follows the above procedure then one finds that, as ρc increases, M increases

to a maximum value but then decreases for larger ρc as shown in Fig. 1.

M

ρ0

Figure 1. Plot of M against ρc for typical equation of state.

The maximum mass will depend on the details of the equation of state of cold

matter. For example, taking an equation of state corresponding to white dwarf matter

reproduces the Chandrasekhar bound (as mentioned above, one does not need GR

for this, it can be obtained using Newtonian gravity). Experimentally we know this

equation of state up to some density ρ0 (around nuclear density) but we don’t know

its form for ρ > ρ0. One might expect that by an appropriate choice of the equation of

state for ρ > ρ0 one could arrange for the maximum mass to be very large, say 100M�.
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1.8 Maximum mass of a cold star

This is not the case. Remarkably, GR predicts that there is an upper bound on the

mass of a cold, spherically symmetric star, which is independent of the form of the

equation of state at high density. This upper bound is around 5M�.

Recall that ρ is a decreasing function of r. Define the core of the star as the region

in which ρ > ρ0 where we don’t know the equation of state and the envelope as the

region ρ < ρ0 where we do know the equation of state. Let r0 be the radius of the core,

i.e., the core is the region r < r0 and the envelope the region r0 < r < R. The mass of

the core is defined as m0 = m(r0). Equation (1.16) gives

m0 ≥
4

3
πr3

0ρ0 (1.21)

We would have the same result in Newtonian gravity. In GR we have the extra con-

straint (1.19). Evaluating this at r = r0 gives

m0

r0

<
2

9

[
1− 6πr2

0p0 + (1 + 6πr2
0p0)1/2

]
(1.22)

where p0 = p(r0) is determined from ρ0 using the equation of state. Note that the

RHS is a decreasing function of p0 so we obtain a simpler (but weaker) inequality by

evaluating the RHS at p0 = 0:

m0 <
4

9
r0 (1.23)

i.e., the core satisfies the Buchdahl inequality. The two inequalities (1.21) and (1.23)

define a finite region of the m0− r0 plane shown in Fig. 2. From this, the upper bound

on the mass of the core is

m0 <

√
16

243πρ0

(1.24)

Hence although we don’t know the equation of state inside the core, GR predicts that

its mass cannot be indefinitely large. Experimentally, we don’t know the equation of

state of cold matter at densities much higher than the density of atomic nuclei so we

take ρ0 = 5× 1014 g/cm3, the density of nuclear matter. This gives an upper bound on

the core mass m0 < 5M�.

Now, given a core with mass m0 and radius r0, the envelope region is determined

uniquely by solving numerically (1.10) and (1.12) with initial conditions m = m0 and

ρ = ρ0 at r = r0, using the known equation of state at density ρ < ρ0. This show

that the total mass M of the star is a function of the core parameters m0 and r0. By

investigating (numerically) the behaviour of this function as m0 and r0 range over the

allowed region of Fig. 2, it is found that the M is maximised at the maximum of m0

(actually one uses the stricter inequality (1.22) instead of (1.23) to define the allowed
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m0

r0

Figure 2. Allowed region of m0 − r0 plane

region). At this maximum, the envelope contributes less than 1% of the total mass so

the maximum value of M is almost the same as the maximum value of m0, i.e., 5M�.

It should be emphasized that this is an upper bound that applies for any physically

reasonable equation of state for ρ > ρ0. But any particular equation of state will

have its own upper bound, which will be less than the above bound. Indeed, one can

improve the above bound by adding further criteria to what one means by “physically

reasonable”. For example, the speed of sound in the fluid is (dp/dρ)1/2. It is natural

to demand that this should not exceed the speed of light, i.e. one could add the extra

condition dp/dρ ≤ 1. This has the effect of reducing the upper bound to about 3M�.

2 The Schwarzschild black hole

We have seen that GR predicts that a cold star cannot have a mass more than a few

times M�. A very massive hot star cannot end its life as a cold star unless it somehow

sheds some of its mass. Instead it will undergo complete gravitational collapse to form a

black hole. The simplest black hole solution is described by the Schwarzschild geometry.

So far, we have used the Schwarzschild metric to describe the spacetime outside a

spherical star. In this chapter we will investigate the geometry of spacetime under

the assumption that the Schwarzschild solution is valid everywhere, i.e., no matter is

present.
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2.1 Birkhoff’s theorem

2.1 Birkhoff’s theorem

In Schwarzschild coordinates (t, r, θ, φ), the Schwarzschild solution is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (2.1)

This is actually a 1-parameter family of solutions. The parameter M take either sign

but, as mentioned above, it has the interpretation of a mass so we will assume M > 0

here. The case M < 0 will be discussed later.

Previously we assumed that we were dealing with r > 2M . But the above metric

is also a solution of the vacuum Einstein equation for 0 < r < 2M . We will see below

how these are related. r = 2M is called the Schwarzschild radius.

We derived the Schwarzschild solution under the assumptions of staticity and spher-

ical symmetry. It turns out that the former is not required:

Theorem (Birkhoff). Any spherically symmetric solution of the vacuum Einstein

equation is isometric to the Schwarzschild solution.

Proof. See Hawking and Ellis.

This theorem assumes only spherical symmetry but the Schwarzschild solution has

an additional isometry: ∂/∂t is a hypersurface-orthogonal Killing vector field. It is

timelike for r > 2M so the r > 2M Schwarzschild solution is static.

Birkhoff’s theorem implies that the spacetime outside any spherical body is de-

scribed by the time-independent (exterior) Schwarzschild solution. This is true even if

the body itself is time-dependent. For example, consider a spherical star that “uses up

its nuclear fuel” and collapses to form a white dwarf or neutron star. The spacetime

outside the star will be described by the static Schwarzschild solution even during the

collapse.

2.2 Gravitational redshift

Consider two observers A and B who remain at fixed (r, θ, φ) in the Schwarzschild

geometry. Let A have r = rA and B have r = rB where rB > rA. Now assume that A

sends two photons to B separated by a coordinate time ∆t as measured by A. Since

∂/∂t is an isometry, the path of the second photon is the same as the path of the first

one, just translated in time through an interval ∆t.

Exercise. Show that the proper time between the photons emitted by A, as measured

by A is ∆τA =
√

1− 2M/rA∆t.
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2.3 Geodesics of the Schwarzschild solution

Similarly the proper time interval between the photons received by B, as measured

by B is ∆τB =
√

1− 2M/rB∆t. Eliminating ∆t gives

∆τB
∆τA

=

√
1− 2M/rB
1− 2M/rA

> 1 (2.2)

Now imagine that we are considering light waves propagating from A to B. Applying

the above argument to two successive wavecrests shows that the above formula relates

the period ∆τA of the waves emitted by A to the period ∆τB of the waves received by

B. For light, the period is the same as the wavelength (since c = 1): ∆τ = λ. Hence

λB > λA: the light undergoes a redshift as it climbs out of the gravitational field.

If B is at large radius, i.e., rB � 2M , then we have

1 + z ≡ λB
λA

=

√
1

1− 2M/rA
(2.3)

Note that this diverges as rA → 2M . We showed above that a spherical star must have

radius R > 9M/4 so (taking rA = R) it follows that the maximum possible redshift of

light emitted from the surface of a spherical star is z = 2.

2.3 Geodesics of the Schwarzschild solution

Let xµ(τ) be an affinely parameterized geodesic with tangent vector uµ = dxµ/dτ . Since

k = ∂/∂t and m = ∂/∂φ are Killing vector fields we have the conserved quantities

E = −k · u =

(
1− 2M

r

)
dt

dτ
(2.4)

and

h = m · u = r2 sin2 θ
dφ

dτ
(2.5)

For a timelike geodesic, we choose τ to be proper time and then E has the interpretation

of energy per unit rest mass and h is the angular momentum per unit rest mass. (To see

this, evaluate the expressions for E and h at large r where the metric is almost flat so

one can use results from special relativity.) For a null geodesic, the freedom to rescale

the affine parameter implies that E and h do not have direct physical significance.

However, the ratio h/E is invariant under this rescaling. For a null geodesic which

propagates to large r (where the metric is almost flat and the geodesic is a straight

line), b = |h/E| is the impact parameter, i.e., the distance of the null geodesic from “a

line through the origin”, more precisely the distance from a line of constant φ parallel

(at large r) to the geodesic.
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Exercise. Determine the Euler-Lagrange equation for θ(τ) and eliminate dφ/dτ to

obtain

r2 d

dτ

(
r2 dθ

dτ

)
− h2 cos θ

sin3 θ
= 0 (2.6)

One can define spherical polar coordinates on S2 in many different ways. It is conve-

nient to rotate our (θ, φ) coordinates so that our geodesic has θ = π/2 and dθ/dτ = 0 at

τ = 0, i.e., the geodesic initially lies in, and is moving tangentially to, the “equatorial

plane” θ = π/2. We emphasize: this is just a choice of the coordinates (θ, φ). Now,

whatever r(τ) is (and we don’t know yet), the above equation is a second order ODE

for θ with initial conditions θ = π/2, dθ/dτ = 0. One solution of this initial value

problem is θ(τ) = π/2 for all τ . Standard uniqueness results for ODEs guarantee that

this is the unique solution. Hence we have shown that we can always choose our θ, φ

coordinates so that the geodesic is confined to the equatorial plane. We shall assume

this henceforth.

Exercise. Choosing τ to be proper time in the case of a timelike geodesic, and arclength

(proper distance) in the case of a spacelike geodesic implies gµνu
µuν = −σ where

σ = 1, 0,−1 for a timelike, null or spacelike geodesic respectively. Rearrange this

equation to obtain
1

2

(
dr

dτ

)2

+ V (r) =
1

2
E2 (2.7)

where

V (r) =
1

2

(
1− 2M

r

)(
σ +

h2

r2

)
(2.8)

Hence the radial motion of the geodesic is determined by the same equation as a

Newtonian particle of unit mass and energy E2/2 moving in a 1d potential V (r).

2.4 Eddington-Finkelstein coordinates

Consider the Schwarzschild solution with r > 2M . Let’s consider the simplest type of

geodesic: radial null geodesics. “Radial” means that θ and φ are constant along the

geodesic, so h = 0. By rescaling the affine parameter τ we can arrange that E = 1.

The geodesic equation reduces to

dt

dτ
=

(
1− 2M

r

)−1

,
dr

dτ
= ±1 (2.9)

where the upper sign is for an outgoing geodesic (i.e. increasing r) and the lower for

ingoing. From the second equation it is clear that an ingoing geodesic starting at some
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r > 2M will reach r = 2M in finite affine parameter. Dividing gives

dt

dr
= ±

(
1− 2M

r

)−1

(2.10)

The RHS has a simple pole at r = 2M and hence t diverges logarithmically as r →
2M . To investigate what is happening at r = 2M , define the “Regge-Wheeler radial

coordinate” r∗ by

dr∗ =
dr(

1− 2M
r

) ⇒ r∗ = r + 2M log
∣∣ r
2M
− 1
∣∣ (2.11)

where we made a choice of constant of integration. (We’re interested only in r > 2M

for now, the modulus signs are for later use.) Note that r∗ ∼ r for large r and r∗ → −∞
as r → 2M . (Fig. 3). Along a radial null geodesic we have

r
2M

0

r∗

Figure 3. Regge=Wheeler radial coordinate

dt

dr∗
= ±1 (2.12)

so

t∓ r∗ = constant. (2.13)

Let’s define a new coordinate v by

v = t+ r∗ (2.14)

so that v is constant along ingoing radial null geodesics. Now let’s use (v, r, θ, φ) as

coordinates instead of (t, r, θ, φ). The new coordinates are called ingoing Eddington-

Finkelstein coordinates. We eliminate t by t = v − r∗(r) and hence

dt = dv − dr(
1− 2M

r

) (2.15)
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Substituting this into the metric gives

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dΩ2 (2.16)

Written as a matrix we have, in these coordinates,

gµν =


−(1− 2M/r) 1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 (2.17)

Unlike the metric components in Schwarzschild coordinates, the components of the

above matrix are smooth for all r > 0, in particular they are smooth at r = 2M .

Furthermore, this matrix has determinant −r4 sin2 θ and hence is non-degenerate for

any r > 0 (except at θ = 0, π but this is just because the coordinates (θ, φ) are not

defined at the poles of the spheres). This implies that its signature is Lorentzian for

r > 0 since a change of signature would require an eigenvalue passing through zero.

The Schwarzschild spacetime can now be extended through the surface r = 2M

to a new region with r < 2M . Is the metric (2.16) a solution of the vacuum Einstein

equation in this region? Yes. The metric components are real analytic functions of the

above coordinates, i.e., they can be expanded as convergent power series about any

point. If a real analytic metric satisfies the Einstein equation in some open set then it

will satisfy the Einstein equation everywhere. Since we know that the (2.16) satisfies

the vacuum Einstein equation for r > 2M it must also satisfy this equation for r > 0.

Note that the new region with 0 < r < 2M is spherically symmetric. How is this

consistent with Birkhoff’s theorem?

Exercise. For r < 2M , define r∗ by (2.11) and t by (2.14). Show that if the metric

(2.16) is transformed to coordinates (t, r, θ, φ) then it becomes (2.1) but now with

r < 2M .

Note that ingoing radial null geodesics in the EF coordinates have dr/dτ = −1

(and constant v). Hence such geodesics will reach r = 0 in finite affine parameter.

What happens there? Since the metric is Ricci flat, the simplest non-trivial scalar

construced from the metric is RabcdR
abcd and a calculation gives

RabcdR
abcd ∝ M2

r6
(2.18)

This diverges as r → 0. Since this is a scalar, it diverges in all charts. Therefore

there exists no chart for which the metric can be smoothly extended through r = 0.
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r = 0 is an example of a curvature singularity, where tidal forces become infinite and

the known laws of physics break down. Strictly speaking, r = 0 is not part of the

spacetime manifold because the metric is not defined there.

Recall that in r > 2M , Schwarzschild solution admits the Killing vector field

k = ∂/∂t. Let’s work out what this is in ingoing EF coordinates. Denote the latter by

xµ so we have

k =
∂

∂t
=
∂xµ

∂t

∂

∂xµ
=

∂

∂v
(2.19)

since the EF coordinates are independent of t except for v = t + r∗(r). We use this

equation to extend the definition of k to r ≤ 2M . Note that k2 = gvv so k is null at

r = 2M and spacelike for 0 < r < 2M . Hence the extended Schwarzschild solution is

static only in the r > 2M region.

2.5 Finkelstein diagram

So far we have considered ingoing radial null geodesics, which have v = constant and

dr/dτ = −1. Now consider the outgoing geodesics. For r > 2M in Schwarzschild

coordinates these have t − r∗ = constant. Converting to EF coordinates gives v =

2r∗ + constant, i.e.,

v = 2r + 4M log | r
2M
− 1|+ constant (2.20)

To determine the behaviour of geodesics in r ≤ 2M we need to use EF coordinates

from the start. This gives

Exercise. Consider radial null geodesics in ingoing EF coordinates. Show that these

fall into two families: “ingoing” with v = constant and “outgoing” satisfying either

(2.20) or r ≡ 2M .

It is interesting to plot the radial null geodesics on a spacetime diagram. Let

t∗ = v− r so that the ingoing radial null geodesics are straight lines at 45◦ in the (t∗, r)

plane. This gives the Finkelstein diagram of Fig. 4.

Knowing the ingoing and outgoing radial null geodesics lets us draw light “cones”

on this diagram. Radial timelike curves have tangent vectors that lie inside the light

cone at any point.

The “outgoing” radial null geodesics have increasing r if r > 2M . But if r < 2M

then r decreases for both families of null geodesics. Both reach the curvature singularity

at r = 0 in finite affine parameter. Since nothing can travel faster than light, the same is

true for radial timelike curves. We will show below that r decreases along any timelike

or null curve (irrespective of whether or not it is radial or geodesic) in r < 2M . Hence

no signal can be sent from a point with r < 2M to a point with r > 2M , in particular
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r2M

t∗

curvature

}
ingoing radial null geodesics

}
outgoing radial null geodesics

singularity

Figure 4. Finkelstein diagram

to a point with r = ∞. This is the defining property of a black hole: a region of an

“asymptotically flat” spacetime from which it is impossible to send a signal to infinity.

2.6 Gravitational collapse

Consider the fate of a massive spherical star once it exhausts its nuclear fuel. The star

will shrink under its own gravity. As mentioned above, Birkhoff’s theorem implies that

the geometry outside the star is given by the Schwarzschild solution even when the

star is time-dependent. If the star is not too massive then eventually it might settle

down to a white dwarf or neutron star. But if it is sufficiently massive then this is not

possible: nothing can prevent the star from shrinking until it reaches its Schwarzschild

radius r = 2M .

We can visualize this process of gravitational collapse on a Finkelstein diagram.

We just need to remove the part of the diagram corresponding the interior of the star.

By continuity, points on the surface of the collapsing star will follow radial timelike

curves in the Schwarzschild geometry. This is shown in Fig. 5.

On examples sheet 1, it is shown that the total proper time along a timelike curve

in r ≤ 2M cannot exceed πM . (For M = M� this is about 10−5s.) Hence the star

will collapse and form a curvature singularity in finite proper time as measured by an

(unlucky) observer on the star’s surface.

Note the behaviour of the outgoing radial null geodesics, i.e., light rays emitted

from the surface of the star. As the star’s surface approaches r = 2M , light from the
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r

t∗

curvature
singularity

interior of star
(not Schwarzschild)

r = 2M
}

null geodesics
outgoing radial

Figure 5. Finkelstein diagram for gravitational collapse

surface takes longer and longer to reach a distant observer. The observer will never see

the star cross r = 2M . Equation (2.3) shows that the redshift of this light diverges as

r → 2M . So the distant observer will see the star fade from view as r → 2M .

2.7 Black hole region

We will show that the region r ≤ 2M of the extended Schwarzschild solution describes

a black hole. First recall some definitions.

Definition. A vector is causal if it is timelike or null (we adopt the convention that

a null vector must be non-zero). A curve is causal if its tangent vector is everywhere

causal.

At any point of a spacetime, the metric determines two light cones in the tangent

space at that point. We would like to regard one of these as the “future” light-cone

and the other as the “past” light-cone. We do this by picking a causal vector field and

defining the future light cone to be the one in which it lies:

Definition. A spacetime is time-orientable if it admits a time-orientation: a causal

vector field T a. Another causal vector Xa is future-directed if it lies in the same light

cone as T a and past-directed otherwise.

Note that any other time orientation is either everywhere in the same light cone as

T a or everywhere in the opposite light cone. Hence a time-orientable spacetime admits

exactly two inequivalent time-orientations.

In the r > 2M region of the Schwarzschild spacetime, we choose k = ∂/∂t as our

time-orientation. (We could just as well choose −k but this is related by the isometry

t→ −t and therefore leads to equivalent results.) k is not a time-orientation in r < 2M

because in ingoing EF coordinates we have k = ∂/∂v, which is spacelike for r < 2M .

However, ±∂/∂r is globally null (grr = 0) and hence defines a time-orientation. We
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just need to choose the sign that gives a time orientation equivalent to k for r > 2M .

Note that

k · (−∂/∂r) = −gvr = −1 (2.21)

and if the inner product of two causal vectors is negative then they lie in the same

light cone (remind yourself why!). Therefore we can use −∂/∂r to define our time

orientation for r > 0. Note that −∂/∂r is tangent to ingoing radial null geodesics.

Proposition. Let xµ(λ) be any future-directed causal curve (i.e. one whose tangent

vector is everywhere future-directed and causal). Assume r(λ0) ≤ 2M . Then r(λ) ≤
2M for λ ≥ λ0.

Proof. The tangent vector is V µ = dxµ/dλ. Since −∂/∂r and V a both are future-

directed causal vectors we have

0 ≥
(
− ∂

∂r

)
· V = −grµV µ = −V v = −dv

dλ
⇒ dv

dλ
≥ 0 (2.22)

hence v is non-decreasing along any future-directed causal curve. We also have

V 2 = −
(

1− 2M

r

)(
dv

dλ

)2

+ 2
dv

dλ

dr

dλ
+ r2

(
dΩ

dλ

)2

(2.23)

where (dΩ/dλ)2 = (dθ/dλ)2 + sin2 θ(dφ/dλ)2. Rearranging gives

− 2
dv

dλ

dr

dλ
= −V 2 +

(
2M

r
− 1

)(
dv

dλ

)2

+ r2

(
dΩ

dλ

)2

(2.24)

Note that every term on the RHS is non-negative if r ≤ 2M . Consider a point on the

curve for which r ≤ 2M so
dv

dλ

dr

dλ
≤ 0 (2.25)

Assume, to obtain a contradiction, that dr/dλ > 0 at this point. Then this inequality

is consistent with (2.22) only if dv/dλ = 0. Plugging this into (2.24) and using the fact

that the terms on the RHS are non-negative implies that V 2 = 0 and dΩ/dλ = 0. But

now the only non-zero component of V µ is V r = dr/dλ > 0 so V is a positive multiple

of ∂/∂r and hence is past-directed, a contradiction.

We have shown that dr/dλ ≤ 0 if r ≤ 2M , which completes the proof. (If r < 2M

then dr/dλ < 0 for if dr/dλ = 0 then (2.24) implies dΩ/dλ = dv/dλ = 0 but then

we have V µ = 0, a contradiction. Hence if r(λ0) < 2M then r(λ) is monotonically

decreasing for λ ≥ λ0.)

This result implies that no future-directed causal curve connects a point with r ≤
2M to a point with r > 2M . More physically: it is impossible to send a signal from
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a point with r ≤ 2M to a point with r > 2M , in particular to a point at r = ∞. A

black hole is defined to be a region of spacetime from which it is impossible to send a

signal to infinity. (We will define “infinity” more precisely later.) The boundary of this

region is the event horizon.

Our result shows that points with r ≤ 2M of the extended Schwarzschild spacetime

lie inside a black hole. However, it is easy to show that there do exist future-directed

causal curves from a point with r > 2M to r =∞ (e.g. an outgoing radial null curve)

so points with r > 2M are not inside a black hole. Hence r = 2M is the event horizon.

2.8 Detecting black holes

There are two important properties that underpin detection methods:

First: there is no upper bound on the mass of a black hole. This contrasts with

cold stars, which have an upper bound around 3M�.

Second: black holes are very small. A black hole has radius R = 2M . A solar mass

black holes has radius 3km. A black hole with the same mass as the Earth would have

radius 0.9cm.

There are other systems which satisfy either one of these conditions. For example,

there is no upper limit on the mass of a cluster of stars or a cloud of gas. But these

would have size much greater than 2M . On the other hand, neutron stars are also very

small, with radius not much greater than 2M . But a neutron star cannot be arbitrarily

massive. It is the combination of a large mass concentrated into a small region which

distinguishes black holes from other kinds of object.

Since black hole do not emit electromagnetic radiation directly, we infer their exis-

tence from their effect on nearby luminous matter. For example, stars near the centre

of our galaxy are observed to be orbiting around the galactic centre (Fig. 6). From the

shapes of the orbits, one can deduce that there is an object with mass 4 × 106M� at

the centre of the galaxy. Since some of the stars get close to the galactic centre, one

can infer that this mass must be concentrated within a radius of about 6 light hours

(6× 109km about the same size as the Solar System) since otherwise these stars would

be ripped apart by tidal effects. The only object that can contain so much mass in

such a small region is a black hole.

Many other galaxies are also believed to contain enormous black holes at their

centres (some with masses greater than 109M�). Black holes with mass greater than

about 106M� are referred to as supermassive. There appears to be a correlation between

the mass of the black hole and the mass of its host galaxy, with the former typically

about a thousandth of the latter. Supermassive black holes do not form directly from

gravitational collapse of a normal star (since the latter cannot have a mass much greater

than about 100M�). It is still uncertain how such large black holes form.
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Figure 6. Stars orbiting the galactic centre.

To understand the motion of matter around a black hole, let’s consider timelike

geodesics in more detail. The effective potential has turning points where

r± =
h2 ±

√
h4 − 12h2M2

2M
(2.26)

If h2 < 12M2 then there are no turning points, the effective potential is a monotonically

increasing function of r. If h2 > 12M2 then there are two turning points. r = r+ is

a minimum and r = r− a maximum (Fig. 7). Hence there exist stable circular orbits

r2M

V (r)

1
2

0
r− r+

Figure 7. Timelike geodesics: effective potential for h2 > 12M2

with r = r+ and unstable circular orbits with r = r−.
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Exercise. Show that 3M < r− < 6M < r+.

r+ = 6M is called the innermost stable circular orbit (ISCO). For a normal star,

this lies well inside the star, where the Schwarzschild solution is not valid. But for

a black hole it lies outside the event horizon. There is no analogue of the ISCO in

Newtonian theory, for which all circular orbits are stable and exist down to arbitrarily

small r.

The energy per unit rest mass of a circular orbit can be calculated using E2/2 =

V (r) (since dr/dτ = 0):

Exercise. Show that the energy per unit rest mass of a circular orbit r = r± can be

written

E =
r − 2M

r1/2(r − 3M)1/2
(2.27)

Hence a body following a circular orbit with large r has E ≈ 1 − M/(2r), i.e., its

energy is m−Mm/(2r) where m is the mass of the body. The first term is just the rest

mass energy (E = mc2) and the second term can be interpreted in Newtonian terms as

the sum of its kinetic energy and gravitational potential energy.

r
=

6M
r = 2M

Black holes formed in gravitational collapse of

a star have M less than about 100M� since (hot)

stars with significantly higher mass than this do

not exist. Such holes are referred to as solar mass

black holes. The main way that such black holes

are detected is to look for a binary system consist-

ing of a black hole and a normal star. In such a

system, the black hole can be surrounded by an

accretion disc: a disc of gas orbiting the black

hole, stripped off the star by tidal forces due to

the black hole’s gravitational field. Supermassive

black holes can also have (much bigger) accretion

discs: in this case, the disc is formed from matter

present near the centre of the host galaxy.

As a first approximation, we can treat particles in an accretion disc as moving

on geodesics. A particle in this material will gradually lose energy because of friction

in the disc and so its value of E will decrease. This implies that r will decrease:

the particle will gradually spiral in to smaller and smaller r. This process can be

approximated by the particle moving slowly from one stable circular orbit to another.

Eventually the particle will reach the ISCO, which has E =
√

8/9, after which it falls

rapidly into the hole. The fraction of rest mass converted to radiation in this process is
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1−
√

8/9 ≈ 0.06. This is an enormous amount of energy, much higher than the fraction

of rest mass energy liberated in nuclear reactions. That is why accretion discs around

supermassive black holes are believed to power some of the most energetic phenomena

in the universe e.g. quasars.

The energy that the particle loses as it moves towards the ISCO leaves the disc as

electromagnetic radiation. The first detections of black holes were made in the 1970s

by observing X-rays emitted from accretion discs around solar mass black holes in

our galaxy. The X-rays exhibits a characteristic cut-off in red-shift, corresponding to

the ISCO. In 2019, radio observations were used to produce an image (Fig. 8) of the

accretion disc around the supermassive black hole at the centre of the nearby galaxy

M87, which has an estimated mass of 6× 109M�.

Figure 8. Image of the accretion disc around the supermassive black hole at the centre of

M87. The disc is nearly face-on to us and there is a dark area in the centre corresponding

roughly to the ISCO. (Credit: Event Horizon Telescope.)

Of course we are no longer restricted to electromagnetic observations of black holes.

The subject was revolutionized in 2015 by the LIGO/VIRGO collaboration’s direct

detection of gravitational waves from a (solar mass) black hole merger. (See my General

Relativity lecture notes for more on this.) The evidence that the objects involved

were black holes is that they had to be very compact (or else they could not get

close enough to emit significant gravitational waves) and their masses (around 30M�)

were too large for them to be neutron stars. Furthermore, the detected gravitational

waves were in agreement with predictions from supercomputer simulations of black hole

mergers. The post-merger gravitational waves exhibited damped oscillations, just as

expected of a black hole settling down to equilibrium. Many other detections were made

subsequently, including mergers where one, or both, compact objects were neutron

stars. Future gravitational wave experiments will include LISA, a space-based detector,

which will detect gravitational waves of much lower frequency than LIGO/VIRGO,

including waves emited by mergers involving supermassive black holes.
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2.9 White holes

We defined ingoing EF coordinates using ingoing radial null geodesics. What hap-

pens if we do the same thing with outgoing radial null geodesics? Starting with the

Schwarzschild solution in Schwarzschild coordinates with r > 2M , let

u = t− r∗ (2.28)

so u = constant along outgoing radial null geodesics. Now introduce outgoing Eddington-

Finkelstein (u, r, θ, φ). The Schwarzschild metric becomes

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2dΩ2 (2.29)

Just as for the ingoing EF coordinates, this metric is smooth with non-vanishing deter-

minant for r > 0 and hence can be extended to a new region r ≤ 2M . Once again we

can define Schwarzschild coordinates in r < 2M to see that the metric in this region is

simply the Schwarzschild metric. There is a curvature singularity at r = 0.

This r < 2M region is not the same as the r < 2M region in the ingoing EF

coordinates. An easy way to see this is to look at the outgoing radial null geodesics,

i.e., lines of constant u. We saw above (in the Schwarzschild coordinates) that these

have dr/dτ = 1 hence they propagate from the curvature singularity at r = 0, through

the surface r = 2M and then extend to large r. This is impossible for the r < 2M

region we discussed previously since that region is a black hole.

Exercise. Show that k = ∂/∂u in outgoing EF coordinates and that the time-

orientation which is equivalent to k for r > 2M is given by +∂/∂r.

The r < 2M region of the outgoing EF coordinates is a white hole: a region which

no signal from infinity can enter. A white hole is the time reverse of a black hole. To

see this, make the substitution u = −v to see that the above metric is isometric to

(2.16). The only difference is the sign of the time orientation. It follows that no signal

can be sent from a point with r > 2M to a point with r < 2M . Any timelike curve

starting with r < 2M must pass through the surface r = 2M within finite proper time.

White holes are believed to be unphysical. A black hole is formed from a normal

star by gravitational collapse. But a white hole begins with a singularity, so to create

a white hole one must first make a singularity. Black holes are stable objects: small

perturbations of a black hole are believed to decay. Applying time-reversal implies that

white holes must be unstable objects: small perturbations of a white hole become large

under time evolution.
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2.10 The Kruskal extension

2.10 The Kruskal extension

We have seen that the Schwarzschild spacetime can be extended in two different ways,

revealing the existence of a black hole region and a white hole region. How are these

different regions related to each other? This is answered by introducing a new set

of coordinates. Start in the region r > 2M . Define Kruskal-Szekeres coordinates

(U, V, θ, φ) by

U = −e−u/(4M), V = ev/(4M), (2.30)

so U < 0 and V > 0. Note that

UV = −er∗/(2M) = −er/(2M)
( r

2M
− 1
)

(2.31)

The RHS is a monotonic function of r (for r > 0) and hence this equation determines

r(U, V ) uniquely. We also have
V

U
= −et/(2M) (2.32)

which determines t(U, V ) uniquely.

Exercise. Show that in Kruskal-Szekeres coordinates, the metric is

ds2 = −32M3e−r(U,V )/(2M)

r(U, V )
dUdV + r(U, V )2dΩ2 (2.33)

Hint. First transform the metric to coordinates (u, v, θ, φ) and then to KS coordinates.

Let us now define the function r(U, V ) for U ≥ 0 or V ≤ 0 by (2.31). This

new metric can be analytically extended, with non-vanishing determinant, through the

surfaces U = 0 and V = 0 to new regions with U > 0 or V < 0.

Let’s consider the surface r = 2M . Equation (2.31) implies that either U = 0

or V = 0. Hence KS coordinates reveal that r = 2M is actually two surfaces, that

intersect at U = V = 0. Similarly, the curvature singularity at r = 0 corresponds to

UV = 1, a hyperbola with two branches. This information can be summarized on the

Kruskal diagram of Fig. 9.

One should think of “time” increasing in the vertical direction on this diagram.

Radial null geodesics are lines of constant U or V , i.e., lines at 45◦ to the horizontal.

This diagram has four regions. Region I is the region we started in, i.e., the region

r > 2M of the Schwarzschild solution. Region II is the black hole that we discovered

using ingoing EF coordinates (note that these coordinates cover regions I and II of

the Kruskal diagram), Region III is the white hole that we discovered using outgoing

EF coordinates. And region IV is an entirely new region. In this region, r > 2M
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I

U
V

II

III

IV

t = const

r
=

2M

r
=

2M

ingoing radial
null geodesic

outgoing radial
null geodesic

r = 0

r = 0

r = const

Figure 9. Kruskal diagram

and so this region is again described by the Schwarzschild solution with r > 2M .

This is a new asymptotically flat region. It is isometric to region I: the isometry is

(U, V ) → (−U,−V ). Note that it is impossible for an observer in region I to send a

signal to an observer in region IV. If they want to communicate then one or both of

them will have to travel into region II (and then hit the singularity).

Note that the singularity in region II appears to the future of any point. Therefore

it is not appropriate to think of the singularity as a “place” inside the black hole. It

is more appropriate to think of it as a “time” at which tidal forces become infinite.

The black hole region is time-dependent because, in Schwarzschild coordinates, it is

r, not t, that plays the role of time. This region can be thought of as describing a

homogeneous but anisotropic universe approaching a “big crunch”. Conversely, the

white hole singularity resembles a “big bang” singularity.

Most of this diagram is unphysical. If we include a timelike worldline corresponding

to the surface of a collapsing star and then replace the region to the left of this line by

the (non-vacuum) spacetime corresponding to the star’s interior then we get a diagram

in which only regions I and II appear (Fig. 10). Inside the matter, r = 0 is just the

origin of polar coordinates, where the spacetime is smooth.

Finally, let’s discuss time translations in Kruskal coordinates:

Exercise. Show that, in Kruskal coordinates

k =
1

4M

(
V

∂

∂V
− U ∂

∂U

)
k2 = −

(
1− 2M

r

)
(2.34)

The result for k2 can be deduced either by direct calculation or by noting that it is

true for r > 2M (e.g. use Schwarzschild coordinates) and the the LHS and RHS are

both analytic functions of U, V (since the metric is analytic). Hence the result must be

true everywhere.
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U
Vr = 0

r = 0
(origin of polar

r = 2M
I

II

coordinates)

interior
of star

Figure 10. Kruskal diagram for gravitational collapse. The region to the left of the shaded

region is not part of the spacetime.

k is timeline in regions I and IV, spacelike in regions II and III, and null (or zero)

where r = 2M i.e. where U = 0 or V = 0. The orbits (integral curves) of k on a

Kruskal diagram are shown in Fig. 11. Note that the sets {U = 0} and {V = 0}
are fixed (mapped into themselves) by k and that k = 0 on the “bifurcation 2-sphere”

U = V = 0. Hence points on the latter are also fixed by k.

U V

I

II

III

IV

Figure 11. Orbits of k in Kruskal spacetime.
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2.11 Einstein-Rosen bridge

Recall equation (2.32): in region I we have V/U = −et/(2M). Hence a surface of

constant t in region I is a straight line through the origin in the Kruskal diagram.

These extend naturally into region IV (see Fig. 9). Let’s investigate the geometry of

these hypersurfaces. Define a new coordinate ρ by

r = ρ+M +
M2

4ρ
(2.35)

Given r, there are two possible solutions for ρ (see Fig. 12). We choose ρ > M/2

r

ρ

2M

M/2

Figure 12. Area-radius function r as a function of isotropic radial coordinate ρ.

in region I and 0 < ρ < M/2 in region IV. The Schwarzschild metric in isotropic

coordinates (t, ρ, θ, φ) is then (exercise)

ds2 = −(1−M/(2ρ))2

(1 +M/(2ρ))2
dt2 +

(
1 +

M

2ρ

)4 (
dρ2 + ρ2dΩ2

)
(2.36)

The transformation ρ→M2/(4ρ) is an isometry that interchanges regions I and IV. Of

course the above metric is singular at ρ = M/2 but we know this is just a coordinate

singularity. Now consider the metric of a surface of constant t:

ds2 =

(
1 +

M

2ρ

)4 (
dρ2 + ρ2dΩ2

)
(2.37)

This metric is non-singular for ρ > 0. It defines a Riemannian 3-manifold with

topology R × S2 (where R is parameterized by ρ). Its geometry can be visualized by

embedding the surface into 4d Euclidean space (examples sheet 1). If we suppress the θ
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I

IV

S2

ρ→∞

ρ→ 0

Figure 13. Einstein-Rosen bridge

direction, this gives the diagram shown in Fig 13. The geometry has two asymptotically

flat regions (ρ→∞ and ρ→ 0) connected by a “throat” with minimum radius 2M at

ρ = M/2. A surfaces of constant t in the Kruskal spacetime is called an “Einstein-Rosen

bridge”.

2.12 Extendibility

Definition. A spacetime (M, g) is extendible if it is isometric to a proper subset of

another spacetime (M′, g′). The latter is called an extension of (M, g). (In GR we

require that the spacetime manifold M is connected so both M and M ′ should be

connected.)

For example, let (M, g) denote the Schwarzschild solution with r > 2M and let

(M′, g′) denote the Kruskal spacetime. ThenM is a subset ofM′ (i.e. region I). If we

define a map to take a point of M to the corresponding point of M′ then this is just

the identity map in region I, which is obviously an isometry. The Kruskal spacetime

(M′, g′) is inextendible (not extendible). In particular, it cannot be extended beyond

r = 0 (this is obvious for a C2 metric, because of the curvature singularity, but it is

true even for a C0 metric (Sbierski 2015)).

2.13 Singularities

We say that the metric is singular in some basis if its components are not smooth

or its determinant vanishes. A coordinate singularity can be eliminated by a change

of coordinates (e.g. r = 2M in the Schwarzschild spacetime). These are unphysical.

However, if it is not possible to eliminate the bad behaviour by a change of coordinates

then we have a physical singularity. We have already seen an example of this: a scalar

curvature singularity, where some scalar constructed from the Riemann tensor blows

up, cannot be eliminated by a change of coordinates and hence is physical. It is also

possible to have more general curvature singularities for which no scalar constructed
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from the Riemann tensor diverges but, nevertheless, there exists no chart in which the

Riemann tensor remains finite.

Not all physical singularities are curvature singularities. For example consider the

manifold M = R2, introduce plane polar coordinates (r, φ) (so φ ∼ φ+ 2π) and define

the 2d Riemannian metric

g = dr2 + λ2r2dφ2 (2.38)

where λ > 0. The metric determinant vanishes at r = 0. If λ = 1 then this is just

Euclidean space in plane polar coordinates, so we can convert to Cartesian coordinates

to see that r = 0 is just a coordinate singularity, i.e., g can be smoothly extended to

r = 0. But consider the case λ 6= 1. In this case, let φ′ = λφ to obtain

g = dr2 + r2dφ′
2

(2.39)

which is locally isometric to Euclidean space and hence has vanishing Riemann tensor

(so there is no curvature singularity at r = 0). However, it is not globally isometric to

Euclidean space because the period of φ′ is 2πλ. Consider a circle r = ε. This has

circumference

radius
=

2πλε

ε
= 2πλ (2.40)

which does not tend to 2π as ε → 0. Recall that any smooth Riemannian manifold is

locally flat, i.e., one recovers results of Euclidean geometry on sufficiently small scales

(one can introduce normal coordinates to show this). The above result shows that

this is not true for small circles centred on r = 0. Hence the above metric cannot be

smoothly extended to r = 0. This is an example of a conical singularity.

A problem in defining singularities is that they are not “places”: they do not belong

to the spacetime manifold because we define spacetime as a pair (M, g) where g is a

smooth Lorentzian metric. For example, r = 0 is not part of the Kruskal manifold.

Similarly, in the example just discussed if we want a smooth Riemannian manifold

then we must take M = R2\(0, 0) so that r = 0 is not a point of M . But in both of

these examples, the existence of the singularity implies that some geodesics cannot be

extended to arbitrarily large affine parameter because they “end” at the singularity. It

is this property that we will use to define what we mean by “singular”.

First we must eliminate a trivial case, corresponding to the possibility of a geodesic

ending simply because we haven’t taken the range of its parameter to be large enough.

Recall that a curve is a smooth map γ : (a, b) → M . Sometimes a curve can be

extended, i.e., it is part of a bigger curve. If this happens then the first curve will have

an endpoint, which is defined as follows.

Definition. p ∈M is a future endpoint of a future-directed causal curve γ : (a, b)→M

if, for any neighbourhood O of p, there exists t0 such that γ(t) ∈ O for all t > t0. We
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say that γ is future-inextendible if it has no future endpoint. Similary for past endpoints

and past inextendibility. γ is inextendible if it is both future and past inextendible.

For example, let (M, g) be Minkowski spacetime. Let γ : (−∞, 0)→ M be γ(t) =

(t, 0, 0, 0). Then the origin is a future endpoint of γ. However, if we instead let (M, g)

be Minkowski spacetime with the origin deleted then γ is future-inextendible.

Definition. A geodesic is complete if an affine parameter for the geodesic extends

to ±∞. A spacetime is geodesically complete if all inextendible causal geodesics are

complete.

For example, Minkowski spacetime is geodesically complete, as is the spacetime

describing a static spherical star. However, the Kruskal spacetime is geodesically in-

complete because some geodesics have r → 0 in finite affine parameter and hence cannot

be extended to infinite affine parameter. A similar definition applies to Riemannian

manifolds.

A spacetime that is extendible will usually also be geodesically incomplete. But

in this case, it is clear that the incompleteness arises because we are not considering

“the whole spacetime”. So we will regard a spacetime as singular if it is geodesically

incomplete and inextendible. This is the case for the Kruskal spacetime.

3 The initial value problem

In the next chapter we will explain why GR predicts that black holes necessarily form

under certain circumstances. To do this, we need to understand the initial value prob-

lem for GR.

3.1 Predictability

Definition. Let (M, g) be a time-orientable spacetime. A partial Cauchy surface Σ

is a hypersurface for which no two points are connected by a causal curve in M . The

future domain of dependence of Σ, denoted D+(Σ), is the set of p ∈M such that every

past-inextendible causal curve through p intersects Σ. The past domain of dependence,

D−(Σ), is defined similarly. The domain of dependence of Σ is D(Σ) = D+(Σ)∪D−(Σ).

D(Σ) is the region of spacetime in which one can determine what happens from

data specified on Σ. For example, any causal geodesic (i.e. free particle worldline)

in D(Σ) must intersect Σ at some point p. The geodesic is determined uniquely by

specifying its tangent vector (velocity) at p. More generally, solutions of hyperbolic
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partial differential equations are uniquely determined in D(Σ) by initial data prescribed

on Σ.

Here, by “hyperbolic partial differential equations” we mean second order partial

differential equations for a set of tensor fields T (i)ab...
cd... (i = 1, . . . N) for which the

equations of motion take the form

gef∇e∇fT
(i)ab...

cd... = . . . (3.1)

where the RHS is a tensor that depends smoothly on the metric and its derivatives,

and linearly on the fields T (j) and their first derivatives, but not their second or higher

derivatives. The Klein-Gordon equation is of this form, as are the Maxwell equations

when written using a vector potential Aa in Lorenz gauge.

For example, let Σ be the positive x-axis in 2d Minkowski spacetime (M, g) (figure

14). D+(Σ) is the set of points with 0 ≤ t < x, D−(Σ) is the set of points with

−x < t ≤ 0. The boundary of D(Σ) is the pair of null rays t = ±x for x > 0. Let Σ′

be the entire x-axis. This gives D(Σ′) = M .

t = xt

x

D+(Σ)

D−(Σ)

Σ

t = −x

Figure 14. The regions D±(Σ)

Consider the wave equation ∇a∇aψ = −∂2
t ψ+ ∂2

xψ = 0 in this spacetime. Specify-

ing the initial data (ψ, ∂tψ) on Σ determines the solution uniquely in D(Σ). Specifying

initial data on Σ′ determines the solution uniquely throughout M . Two such solutions

whose initial data agrees on the subset Σ of Σ′ will agree within D(Σ) but differ on

M\D(Σ).

This is true in general: if D(Σ) 6= M then solutions of hyperbolic equations will

not be uniquely determined in M\D(Σ) by data on Σ. Given only this data, there will

be infinitely many different solutions on M which agree within D(Σ).

Definition. A spacetime (M, g) is globally hyperbolic if it admits a Cauchy surface: a

partial Cauchy surface Σ such that M = D(Σ).
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Figure 15. Examples of Cauchy surfaces for the Kruskal spacetime and the spacetime

describing spherically symmetric gravitational collapse.

(If Σ is not a Cauchy surface then the past/future boundary of D(Σ) is called the

past/future Cauchy horizon. We will define it more precisely later.)

Hence a globally hyperbolic spacetime is one in which one can predict what happens

everywhere from data on Σ. Minkowski spacetime is globally hyperbolic e.g. a surface

of constant t is a Cauchy surface. Other examples are the the Kruskal spacetime and

the spacetime describing spherically symmetric gravitational collapse, see Fig. 15.

To obtain an example of a spacetime which is not globally hyperbolic, delete the

origin from 2d Minkowski spacetime (the cross in Fig. 14). For any partial Cauchy

surface Σ, there will be some inextendible causal curves which don’t intersect Σ because

they “end” at the origin.

The following theorem is proved in Wald:

Theorem. Let (M, g) be globally hyperbolic. Then (i) there exists a global time

function: a map t : M → R such that −(dt)a (normal to surfaces of constant t) is

future-directed and timelike (ii) surfaces of constant t are Cauchy surfaces, and these

all have the same topology Σ (iii) the topology of M is R× Σ.

Exercise. Show that U + V is a global time function in the Kruskal spacetime.

Since the surface U + V = 0 is an Einstein-Rosen bridge, it follows that Σ has

topology R× S2 in this case. The topology of M is R2 × S2.

xi(p)

p

t = 0

If (M, g) is globally hyperbolic then we can

perform a 3 + 1 split (“Arnowitt-Deser-Misner

(ADM) decomposition”) of spacetime as follows.

Let t be a time function. Introduce coordinates xi
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3.2 Extrinsic curvature

(i = 1, 2, 3) on the Cauchy surface t = 0. Pick an

everywhere timelike vector field T a. Given p ∈M ,

consider the integral curve of T a through p. This

intersects the surface t = 0 at a unique point. Let xi(p) be the coordinates of this

point. This defines functions xi : M → R. We use (t, xi) as our coordinate chart. It is

conventional to use the following notation for the metric components:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (3.2)

where N(t, x) is called the lapse function (sometimes denoted α) and N i(t, x) the shift

vector (sometimes denoted βi). The metric on a surface of constant t is hij(t, x).

3.2 Extrinsic curvature

In GR, not only do we need to determine the metric tensor but we also need to determine

the spacetime on which this tensor is defined. So it is not obvious what constitutes a

suitable set of initial data for solving Einstein’s equation. However, it seems likely that

we will want to prescribe data on an “initial” hypersurface Σ which should correspond

to a “moment of time”. This we interpret as the requirement that Σ should be a

spacelike hypersurface:

Definition. A hypersurface Σ is spacelike if its normal 1-form na is everywhere time-

like. (A vector Xa is tangent to Σ iff naX
a = 0, which implies that Xa is spacelike.)

What data should be prescribed on Σ? Since the Einstein equation, like the Klein-

Gordon equation, is second order in derivatives, one would expect that prescribing the

spacetime metric and the “time derivative of the metric” on Σ should be enough. In

fact, it turns out that we do not need to prescribe a full spacetime metric tensor on

Σ, but only a Riemannian metric hab describing the intrinsic geometry of Σ, obtained

from the spacetime metric by pull-back. A notion of “time derivative of the metric”

on Σ is provided by the extrinsic curvature tensor of Σ, which we will now introduce.

First we let na be the normal 1-form to Σ, which we assume to have unit norm:

nan
a = −1 (3.3)

We now define the projection tensor onto Σ as

hab = δab + nanb (3.4)

Note that hab = gab+nanb is symmetric which means that it doesn’t matter whether we

write hab or hab . If Xa and Y a are tangent to Σ then habX
aY b = gabX

aY b, so hab can be
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3.2 Extrinsic curvature

interpreted as the metric induced on Σ (the pull-back of gab to Σ). This is sometimes

called the first fundamental form of Σ.

It is easy to check that

habn
b = 0 hach

c
b = hab (3.5)

which shows that hab is a projection onto Σ. We can decompose any vector on Σ as

Xa = δabX
b = habX

b − nanbXb ≡ Xa
‖ +Xa

⊥ (3.6)

where Xa
‖ = habX

b is tangent to Σ and Xa
⊥ = −nbXbna is normal to Σ.

Let Na be normal to Σ at p and consider parallel transport of Na along a curve in

Σ with tangent vector Xa, i.e., Xb∇bNa = 0. Does Na remain normal to Σ? To answer

this, let Y a be another vector tangent to Σ so Y aNa = 0 at p. Consider how Y aNa

varies along the curve: X(Y aNa) = Xb∇b(Y
aNa) = NaX

b∇bY
a. So Y aNa vanishes

along the curve iff the RHS vanishes. So if parallel transport within Σ preserves the

property of being normal to Σ then (∇XY )⊥ = 0 for any X, Y tangent to Σ. The

converse is also true. This motivates the following:

Definition. Up to now, na has been defined defined only on Σ so first extend it to

a neighbourhood of Σ in an arbitrary way (with unit norm). The extrinsic curvature

tensor (also called the second fundamental form) Kab is defined at p ∈ Σ by K(X, Y ) =

−na
(
∇X‖Y‖

)a
where X, Y are vector fields on M .

Lemma.

Kab = hcah
d
b∇cnd (3.7)

and Kab is independent of how na is extended.

Proof. The RHS of the definition of K(X, Y ) is

− ndXc
‖∇cY

d
‖ = Xc

‖Y
d
‖ ∇cnd = hcaX

ahdbY
b∇cnd (3.8)

where we used ndY
d
‖ = 0 in the first equality. The final expression is linear in Xa and

Y b so the result follows. To demonstrate that the result is independent of how na is

extended, consider a different extension n′a, and let ma = n′a − na so ma = 0 on Σ.

Then, on Σ,

XaY b (K ′ab −Kab) = Xc
‖Y

d
‖ ∇cmd = ∇X‖(Y

d
‖ md) = X‖(Y

d
‖ md) = 0 (3.9)

where the second equality uses ma = 0 on Σ and the final equality follows because it is

the derivative along a curve tangent to Σ, along which ma = 0.
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Remark. nb∇cnb = (1/2)∇c(nbn
b) = 0 because nbn

b = −1. Hence we can also write

Kab = hca∇cnb (3.10)

Lemma. Kab = Kba.

Proof. Let Σ be a surface of constant f with df 6= 0 on Σ. Recall a result from

section 1.3: on Σ we have na = g(df)a for some function g chosen to make na a unit

covector. We can extend na to a neighbourhood of Σ using this formula. We now have

∇cnd = g∇c∇df + (∇cg)g−1nd and so Kab = ghcah
d
b∇c∇df , which is symmetric.

Lemma. Kab is related to the Lie derivative of hab along na by

Kab =
1

2
Lnhab (3.11)

Proof. Examples sheet 2.

This equation explains why Kab can be interpreted as “the time derivative of the

metric on Σ.”

3.3 The Gauss-Codacci equations

A tensor at p ∈ Σ is invariant under the projection hab if

T a1...ar b1...bs = ha1c1 . . . h
ar
crh

d1
b1
. . . hdsbsT

c1...cr
d1...ds (3.12)

Tensors at p which are invariant under projection can be identified with tensors defined

on the submanifold Σ, at p and vice-versa. (See Hawking and Ellis for more details on

this correspondence.)

Proposition. A covariant derivative D on Σ can be defined by projection of the

covariant derivative on M : for any tensor obeying (3.12) we define

DaT
b1...br

c1...cs = hdah
b1
e1
. . . hbrerh

f1
c1
. . . hfscs∇dT

e1...er
f1...fs (3.13)

Lemma. D is the Levi-Civita connection associated to the metric hab on Σ: Dahbc = 0

and D is torsion-free.

Proof. ∇ahbc = nc∇anb + nb∇anc. Acting with the projections kills both terms. To

prove the torsion-free property, let f : Σ→ R and extend to a function f : M → R.

DaDbf = hcah
d
b∇c (hed∇ef) = hcah

e
b∇c∇ef +

(
hcah

d
b∇ch

e
d

)
∇ef (3.14)
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3.3 The Gauss-Codacci equations

The first term is symmetric (because ∇ is torsion-free). The second term involves

hcah
d
b∇ch

e
d = gefhcah

d
b∇chdf = gefhcah

d
bnf∇cnd = neKab (3.15)

which is also symmetric on a, b. Hence DaDbf is symmetric so D is torsion-free.

We can now calculate the Riemann tensor associated to D, which measures the

intrinsic curvature of Σ. The following result shows that this can be written in terms

of the Riemann tensor of ∇ and the extrinsic curvature of Σ.

Proposition. Denote the Riemann tensor associated to Da on Σ as R
′a
bcd. This is

given by Gauss’ equation:

R
′a
bcd = haeh

f
bh

g
ch

h
dR

e
fgh − 2K[c

aKd]b (3.16)

Proof. Let Xa be tangent to Σ. The Ricci identity for D is

R
′a
bcdX

b = 2D[cDd]X
a (3.17)

Let’s calculate the RHS

DcDdX
a = hech

f
dh

a
g∇e (DfX

g)

= hech
f
dh

a
g∇e

(
hhfh

g
i∇hX

i
)

= hech
h
dh

a
i∇e∇hX

i + hech
f
dh

a
i

(
∇eh

h
f

)
∇hX

i + hech
h
dh

a
g (∇eh

g
i )∇hX

i

= hech
f
dh

a
g∇e∇fX

g +Kcdh
a
i n

h∇hX
i +Kc

anih
h
d∇hX

i (3.18)

where we used (3.15) in the final two terms. The final term can be written

Kc
ahhd∇h(niX

i)−Kc
aX ihhd∇hni = −Kc

aXbhibh
h
d∇hni = −Kc

aKbdX
b (3.19)

where we used X i = hibX
b because Xa is tangent to Σ. We can now plug (3.18) into

(3.17): the second term on the RHS drops out when we antisymmetrize, leaving

R
′a
bcdX

b = 2he[ch
f
d]h

a
g∇e∇fX

g − 2K[c
aKd]bX

b (3.20)

The first term can be written

2hech
f
dh

a
g∇[e∇f ]X

g = hech
f
dh

a
gR

g
hefX

h = hech
f
dh

a
gh

h
bR

g
hefX

b (3.21)

where we used the Ricci identity for ∇ in the first equality and the fact that Xa is

parallel to Σ in the second. Moving everything to the LHS now gives(
R
′a
bcd − hech

f
dh

a
gh

h
bR

g
hef + 2K[c

aKd]b

)
Xb = 0 (3.22)
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The expression in brackets is invariant under projection onto Σ and hence can be

identified with a tensor on Σ. Xb is an arbitrary vector parallel to Σ. It follows that

the expression in brackets must vanish. The result follows upon relabelling dummy

indices.

Lemma. The Ricci scalar of Σ is

R′ = R + 2Rabn
anb −K2 +KabKab (3.23)

where K ≡ Ka
a.

Proof. R′ = hbdR
′c
bcd (since hbd can be identified with the inverse metric on Σ). Now

use Gauss’ equation.

Proposition. (Codacci’s equation).

DaKbc −DbKac = hdah
e
bh

f
cn

gRdefg (3.24)

Proof.

DaKbc = hdah
g
bh

f
c∇dKgf

= hdah
g
bh

f
c∇d

(
heg∇enf

)
= hdah

g
bh

f
ch

e
g∇d∇enf + hdah

g
bh

f
c (∇dh

e
g)∇enf

= hdah
e
bh

f
c∇d∇enf +Kabn

ehfc∇enf (3.25)

where we used (3.15) in the final line. Antisymmetrizing on a, b now gives

2D[aKb]c = 2hd[ah
e
b]h

f
c∇d∇enf = 2hdah

e
bh

f
c∇[d∇e]nf = hdah

e
bh

f
cRfgden

g (3.26)

The result follows using Rdefg = Rfgde.

Lemma.

DaK
a
b −DbK = hcbRcdn

d (3.27)

Proof. Contract Codacci’s equation with hac.

Some people refer to equation (3.27) as Codacci’s equation.

3.4 The constraint equations

Consider the “normal-normal” component of the Einstein equation, i.e., contract Gab =

8πTab with nanb. On the LHS we get

Gabn
anb = Rabn

anb +
1

2
R =

1

2

(
R′ −KabKab +K2

)
(3.28)
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where we have used (3.23) in the final step. Therefore we have

R′ −KabKab +K2 = 16πρ (3.29)

where ρ ≡ Tabn
anb is the matter energy density measured by an observer with 4-velocity

na. R′ is determined by the metric on Σ, i.e., by hab. This equation reveals that we are

not free to specify hab and Kab arbitrarily on Σ: they must be related by this equation,

which is called the Hamiltonian constraint.

Now consider the “normal-tangential” components of the Einstein equation by

contracting it with na and then projecting onto Σ:

8πhbaTbcn
c = hbaGbcn

c = hbaRbcn
c (3.30)

Using (3.27) we have

DbK
b
a −DaK = 8πhbaTbcn

c (3.31)

Note that the RHS is (8π times) minus the momentum density measured by an observer

with 4-velocity na. The LHS of this equation involves only the metric on Σ and Kab so

this is another constraint equation, called the momentum constraint.

The constraint equations involve the metric hab on Σ and its “time-derivative”

Kab = (1/2)Lnhab. The remaining components of the Einstein equation, i.e., those

tangential to Σ, involve second time derivatives of hab. More precisely, they involve

LnLnhab. These components are evolution equations, which determine how to evolve

the initial data “forward in time”.

3.5 The initial value problem in GR

Initial data for Einstein’s equation consists of a triple (Σ, hab, Kab) where (Σ, hab) is a

Riemannian 3-manifold and Kab is a symmetric tensor. The idea is that Σ corresponds

to a spacelike hypersurface in spacetime, hab is the pull-back of the spacetime metric

to Σ, and Kab is the extrinsic curvature tensor of Σ, i.e., the “rate of change” of the

metric on Σ. The initial data is not completely free: the Einstein equation implies that

it must satisfy the constraint equations.

The following result is of fundamental significance in GR:

Theorem (Choquet-Bruhat & Geroch 1969). Let (Σ, hab, Kab) be initial data sat-

isfying the vacuum Hamiltonian and momentum constraints (i.e. equations (3.29,3.31)

with vanishing RHS). Then there exists a unique (up to diffeomorphism) spacetime

(M, gab), called the maximal Cauchy development of (Σ, hab, Kab) such that (i) (M, gab)

satisfies the vacuum Einstein equation; (ii) (M, gab) is globally hyperbolic with Cauchy
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surface Σ; (iii) The induced metric and extrinsic curvature of Σ are hab and Kab re-

spectively; (iv) Any other spacetime satisfying (i),(ii),(iii) is isometric to a subset of

(M, gab).

Analogous theorems exist in the non-vacuum case for suitable matter e.g. a per-

fect fluid or tensor fields whose equations of motion are hyperbolic partial differential

equations (e.g. Maxwell field, scalar field, perfect fluid).

It is possible that the maximal Cauchy development (M, gab) is extendible, i.e.,

isometric to a proper subset of another spacetime (M ′, g′ab). By the above theorem, Σ

cannot be a Cauchy surface for (M ′, g′ab). Instead we will have M = D(Σ) ⊂ M ′, and

the boundaries of D(Σ) in M ′ will be future/past Cauchy horizons. If this happens

then we cannot predict physics in M ′\D(Σ) from the initial data on Σ. In particular,

we cannot say determine the metric g′ab in M ′\D(Σ): there will be infinitely possible

solutions of the vacuum Einstein equation that are consistent with the initial data on

Σ. Let’s look at some examples for which this happens.

First consider initial data given by a surface Σ = {(x, y, z) : x > 0} with flat 3-

metric δµν and vanishing extrinsic curvature. The maximal development of this initial

data is the region |t| < x of Minkowski spacetime, which is extendible. Outside this

region, we cannot predict the spacetime, in particular it need not be flat. In this

example we could have anticipated that the maximal development would be extendible

because the initial data is extendible (to x ≤ 0). If we are given initial conditions only

in part of space then we do not expect to be able to predict the entire spacetime.

Now consider the Schwarzschild solution with M < 0:

ds2 = −
(

1 +
2|M |
r

)
dt2 +

(
1 +

2|M |
r

)−1

dr2 + r2dΩ2 (3.32)

This solution has a curvature singularity at r = 0 but no event horizon. Let (Σ, hab, Kab)

be the data on a surface t = 0 in this spacetime (in fact Kab = 0). In this case, (Σ, hab)

is inextendible. However, viewed as a Riemannian manifold, (Σ, hab) is not geodesically

complete because some of its geodesics have r → 0 in finite affine parameter. So in this

case, the initial data is “singular”.

The resulting maximal development is not the whole M < 0 Schwarzschild space-

time. This is because some inextendible causal curves do not intersect Σ. For example,

consider an outgoing radial null geodesic, which satisfies

dt

dr
=

(
1 +

2|M |
r

)−1

=
r

r + 2|M |
≈ r

2|M |
at small r (3.33)

hence t ≈ t0 + r2/(4|M |) at small r so t has a finite limit t0 as r → 0. So this

null geodesic emerges from the singularity at time t0 and then has t > t0. Hence if
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t0 > 0 then this geodesic does not intersect Σ so Σ is not a Cauchy surface for the full

spacetime. One can show that the boundary of D(Σ) is given precisely by those radial

null geodesics which have t0 = 0, i.e., they “emerge from the singularity on Σ”: see

Fig. 16.

r

t

D+(Σ)

D−(Σ)

Figure 16. Domain of dependence of t = 0 surface in negative M Schwarzschild geometry.

We emphasize that the solution outside D(Σ) is not determined by the initial data

on Σ. The data on Σ does not predict that the solution outside D(Σ) must coincide with

the M < 0 Schwarzschild solution. This is just one possibility amongst infinitely many

alternatives. These alternatives cannot be spherically symmetric because of Birkhoff’s

theorem.

In this case, the extendibility of the maximal development arises because the initial

data is singular (not geodesically complete) and one “can’t predict what comes out of a

singularity”. Henceforth we will restrict to initial data which is geodesically complete

(and therefore also inextendible).

Even when (Σ, hab) is geodesically complete, the maximal development may be

extendible. For example, let Σ be the hyperboloid −t2 + x2 + y2 + z2 = −1 with

t < 0 in Minkowski spacetime (Fig. 17). Take hab to be the induced metric and

Kab the extrinsic curvature of this surface. Clearly there are inextendible null curves

in Minkowski spacetime which do not intersect Σ. The maximal development of the

initial data on Σ is the interior of the past light cone through the origin in Minkowsi

spacetime. In this case, the maximal development is extendible because the initial data

surface is “asymptotically null” so “information can arrive from infinity”. Extensions of
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t

y

x
Σ

D(Σ)

Figure 17. Hyperboloidal initial data surface in Minkowski spacetime.

the maximal development need not be flat in M\D(Σ), even if they satisfy the vacuum

Einstein equation there. Such extensions include solutions describing gravitational

waves being sent in from infinity to the future of the Cauchy horizon.

3.6 Asymptotically flat initial data

To avoid all of these ways in which D(Σ) is extendible, we will restrict to geodesically

complete initial data which is “asymptotically flat” in the sense that, at large distance,

it looks like a surface of constant t in Minkowski spacetime. (Recall that such surfaces

are Cauchy surfaces for Minkowski spacetime.) We also want to allow for the possibility

of having several asymptotically flat regions, as in the Kruskal spacetime.

Definition. (a) An initial data set (Σ, hab, Kab) is an asymptotically flat end if (i) Σ is

diffeomorphic to R3\B where B is a closed ball centred on the origin in R3; (ii) if we

pull-back the R3 coordinates to define coordinates xi on Σ then hij = δij +O(1/r) and

Kij = O(1/r2) as r → ∞ where r =
√
xixi (iii) derivatives of the latter expressions

also hold e.g. hij,k = O(1/r2) etc. (If matter fields are present then these should also

decay at a suitable rate at large r.)

(b) An initial data set is asymptotically flat with N ends if it is the union of a

compact set with N asymptotically flat ends.

For example, in the (M > 0) Schwarzschild solution consider the surface Σ = {t =

constant, r > 2M}. On examples sheet 2 it is shown that this data is an asymptotically

flat end. Of course this initial data is not geodesically complete (since it stops at

r = 2M). But now consider the Kruskal spacetime. Then Σ corresponds to part of

an Einstein-Rosen bridge. The full Einstein-Rosen bridge is asymptotically flat with 2

ends. This is because it is the union of the bifurcation sphere U = V = 0 (a compact

set) with two copies of the asymptotically flat end just discussed (one in region I and

one in region IV).
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3.7 Strong cosmic censorship

For geodesically complete, asymptotically flat, initial data it would be very disturbing

if the maximal Cauchy development were extendible. It would imply that GR suffers

from a lack of determinism (predictability). The strong cosmic censorship conjecture

asserts that this does not happen:

Strong cosmic censorship conjecture (Penrose). Let (Σ, hab, Kab) be a geodesi-

cally complete, asymptotically flat (with N ends), initial data set for the vacuum

Einstein equation. Then generically the maximal Cauchy development of this initial

data is inextendible.

This conjecture is known to be correct for initial data which is sufficiently close to

initial data for Minkowski spacetime. For such data, a theorem of Christdoulou and

Klainerman (1994) asserts that the resulting spacetime “settles down to Minkowski

spacetime at late time”. In more physical terms, it says that Minkowski spacetime is

stable against small gravitational perturbations. The spacetime has no Cauchy horizon

so strong cosmic censorship is true for such initial data.

The word “generically” is included because of known counter-examples. Later we

will discuss charged and rotating black hole solutions and find that they exhibit a

Cauchy horizon (for a geodesically complete, asymptotically flat initial data set) inside

the black hole. However, this is believed to be unstable in the sense that an arbitrar-

ily small perturbation of this initial data has an inextendible maximal development.

More formally, if one introduces some measure on the space of geodesically complete,

asymptotically flat, initial data, strong cosmic censorship asserts that the maximal

development is inextendible except for a set of initial data of measure zero.

The above conjecture can be extended to include matter. We need to assume that

the matter is such that the Choquet-Bruhat-Geroch theorem applies, as will be the

case if the matter fields satisfy hyperbolic equations of motion. We also restrict to

matter that is “physical” in the sense that it has positive energy density and does not

travel faster than light. We do this by imposing the dominant energy condition (to be

discussed later). This condition is satisfied by all “normal” matter. One also has to

deal with the fact that some types of matter (e.g. a perfect fluid) can form singularities

(shocks) even in the absence of gravity and so the conjecture is most straightforward

to formulate for matter that doesn’t do this e.g. a Maxwell field or Klein-Gordon field.

Proving the strong cosmic censorship conjecture, and the related weak cosmic cen-

sorship conjecture, is one of the main goals of mathematical relativity.
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We have seen how spherically symmetric gravitational collapse results in the formation

of a singularity. But maybe this is just a consequence of spherical symmetry. For exam-

ple, in Newtonian theory, spherically symmetric collapse of a ball of matter produces

a “singularity”, i.e., infinite density at the origin. But this does not happen without

spherical symmetry. In this case, the singularity is non-generic: a tiny perturbation

(breaking spherical symmetry) of the initial state results in a “bouncing” solution with-

out a singularity. Could the same be true in GR? No. In this chapter we will discuss

the Penrose singularity theorem, which shows that singularities are a generic prediction

of GR.

4.1 Null hypersurfaces

Definition. A null hypersurface is a hypersurface whose normal is everywhere null.

Example. Consider surfaces of constant r in the Schwarzschild spacetime. The 1-form

n = dr is normal to such surfaces. Using ingoing Eddington-Finkelstein coordinates,

the inverse metric is

gµν =


0 1 0 0

1 1− 2M
r

0 0

0 0 1
r2

0

0 0 0 1
r2 sin2 θ

 (4.1)

hence

n2 ≡ gµνnµnν = grr = 1− 2M

r
(4.2)

so the surface r = 2M is a null hypersurface. Since nµ = gµνnν = gµr we have

na|r=2M =

(
∂

∂v

)a
(4.3)

Let na be normal to a null hypersurface N . Then any (non-zero) vector Xa tangent

to the hypersurface obeys naX
a = 0 which implies that either Xa is spacelike or Xa

is parallel to na. In particular, note that na is tangent to the hypersurface. Hence, on

N , the integral curves of na lie within N .

Proposition. The integral curves of na are null geodesics. These are called the

generators of N .

Proof. Let N be given by an equation f = constant for some function f with df 6= 0

on N . Then we have n = hdf for some function h. Let N = df . The integral curves of

na and Na are the same up to a choice of parameterization.
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Then since N is null we have that NaNa = 0 on N . Hence the function NaNa is

constant on N which implies that the gradient of this function is normal to N :

∇a

(
N bNb

)
|N = 2αNa (4.4)

for some function α on N . Now we also have ∇aNb = ∇a∇bf = ∇b∇af = ∇bNa. So

the LHS above is 2N b∇aNb = 2N b∇bNa. Hence we have

N b∇bNa|N = αNa (4.5)

which is the geodesic equation for a non-affinely parameterized geodesic. Hence, on N ,

the integral curves of Na (and therefore also na) are null geodesics. �

Example. In the Kruskal spacetime, let N = dU which is null everywhere (gUU = 0)

and normal to a family of null hypersurfaces (U = constant), which gives

N b∇bNa = N b∇b∇aU = N b∇a∇bU = N b∇aNb = (1/2)∇a(N
2) = 0 (4.6)

so in this case Na is tangent to affinely parameterized null geodesics. Raising an index

gives (exercise)

Na = − r

16M3
er/(2M)

(
∂

∂V

)a
(4.7)

Now let N be the surface U = 0. Since r = 2M on N we see that Na is a constant

multiple of ∂/∂V . Hence V is an affine parameter for the generators of N . Similarly

U is an affine parameter for the generators of the null hypersurface V = 0.

4.2 Geodesic deviation

You encountered the geodesic deviation equation in the GR course. Recall the following

definitions:

Definition. A 1-parameter family of geodesics is a map γ : I × I ′ → M where I

and I ′ both are open intervals in R, such that (i) for fixed s, γ(s, λ) is a geodesic

with affine parameter λ (so s is the parameter that labels the geodesic); (ii) the map

(s, λ) 7→ γ(s, λ) is smooth and one-to-one with a smooth inverse. This implies that the

family of geodesics forms a 2d surface Σ ⊂M .

Let Ua be the tangent vector to the geodesics and Sa to be the vector tangent to

the curves of constant t, which are parameterized by s (see Fig. 18). In a chart xµ, the

geodesics are specified by xµ(s, λ) with Sµ = ∂xµ/∂s. Hence xµ(s+ δs, λ) = xµ(s, λ) +

δsSµ(s, λ) + O(δs2). Therefore (δs)Sa points from one geodesic to an infinitesimally

nearby one in the family. We call Sa a deviation vector.
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}
λ = const

S

S

U
U U

s = const

Figure 18. 1-parameter family of geodesics

In a neighbourhood of Σ we can use coordinates (s, λ, y1, y2) for suitable y1, y2.

This gives a coordinate chart in which S = ∂/∂s and U = ∂/∂λ on Σ. Hence Sa and

Ua commute:

[S, U ] = 0 ⇔ U b∇bS
a = Sb∇bU

a (4.8)

Recall that this implies that Sa satisfies the geodesic deviation equation

U c∇c(U
b∇bS

a) = Ra
bcdU

bU cSd (4.9)

Given an affinely parameterized geodesic γ with tangent Ua, a solution Sa of this

equation along γ is called a Jacobi field.

4.3 Geodesic congruences

Definition. Let U ⊂ M be open. A geodesic congruence in U is a family of geodesics

such that exactly one geodesic passes through each p ∈ U .

We will consider a congruence for which all the geodesics are of the same type

(timelike or spacelike or null). Then by normalizing the affine parameter we can arrange

that the tangent vector Ua satisfies U2 = ±1 (in the spacelike or timelike case) or U2 = 0

(in the null case) everywhere.

Now consider a 1-parameter family of geodesics belonging to a congruence. Write

(4.8) as

U b∇bS
a = Ba

bS
b (4.10)

where

Ba
b = ∇bU

a (4.11)

measures the failure of Sa to be parallelly transported along the geodesic with tangent

Ua. Note that

Ba
bU

b = 0 (4.12)
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Figure 19. Shifting the affine parameter changes the deviation vector.

because Ua is tangent to affinely parameterized geodesics. Note also that

UaB
a
b =

1

2
∇b(U

2) = 0 (4.13)

because we’ve arranged that U2 is constant throughout U . This implies that

U · ∇(U · S) = (U · ∇Ua)Sa + UaU · ∇Sa = UaBabS
b = 0 (4.14)

using the geodesic equation and (4.10). Hence U · S is constant along any geodesic in

the congruence.

Now recall that, even after normalising so that U2 ∈ {±1, 0}, the affine parameter

is not uniquely defined because we are free to shift it by a constant. We can choose this

constant to be different on different geodesics, i.e., it can depend on s: λ′ = λ − a(s)

is just as good an affine parameter as λ. But this changes the deviation vector to

(exercise)

S
′a ≡ Sa +

da

ds
Ua (4.15)

Hence S
′a is a deviation vector pointing to the same geodesic as Sa: Fig. 19.

Now U · S ′ = U · S + (da/ds)U2 so in the spacelike or timelike case, we can fix this

“gauge freedom” by choosing a(s) so that U · S = 0 at some point on each geodesic

(e.g. λ = 0). Since U · S is constant along each geodesic, this implies that U · S = 0

everywhere.

4.4 Null geodesic congruences

In the null case, the above procedure does not work because U ·S ′ = U ·S. Instead we

fix the gauge freedom as follows. Pick a spacelike hypersurface Σ which intersects each
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geodesic once. Let Na be a vector field defined on Σ obeying N2 = 0 and N · U = −1

on Σ. Now extend Na off Σ by parallel transport along the geodesics: U · ∇Na = 0.

This implies N2 = 0 and N · U = −1 everywhere (proof: exercise). In summary, we’ve

constructed a vector field such that

N2 = 0 U ·N = −1 U · ∇Na = 0 (4.16)

We can now decompose any deviation vector uniquely as

Sa = αUa + βNa + Ŝa (4.17)

where

U · Ŝ = N · Ŝ = 0 (4.18)

which implies that Ŝa is spacelike (or zero). Note that U · S = −β hence β is constant

along each geodesic. So we can write a deviation vector Sa the sum of a part αUa + Ŝa

orthogonal to Ua and a part βNa that is parallelly transported along each geodesic.

An important case is when the congruence contains the generators of a null hyper-

surface N and we are interested only in the behaviour of these generators. In this case,

if we pick a 1-parameter family of geodesics contained within N then the deviation

vector Sa will be tangent to N and hence obey U · S = 0 (since Ua is normal to N )

i.e. β = 0.

Note that we can write

Ŝa = P a
b S

b (4.19)

where

P a
b = δab +NaUb + UaNb (4.20)

is a projection (i.e. P a
b P

b
c = P a

c ) of the tangent space at p onto T⊥, the 2d space of

vectors at p orthogonal to Ua and Na. Since Ua and Na are both parallelly transported,

so is P a
b :

U · ∇P a
b = 0 (4.21)

Proposition. A deviation vector for which U · S = 0 satisfies U · ∇Ŝa = B̂a
bŜ

b where

B̂a
b = P a

c B
c
dP

d
b .

Proof. U · ∇Ŝa = U · ∇(P a
c S

c) = P a
c U · ∇Sc = P a

c B
c
dS

d = P a
c B

c
dP

d
e S

e using U · S = 0

and Bc
dU

d = 0 in the final step. Finally we can use P 2 = P to write the RHS as

P a
c B

c
dP

d
b P

b
eS

e = B̂a
bŜ

b.
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4.5 Expansion, rotation and shear

Note that B̂a
b can be regarded as a matrix that acts on the 2d space T⊥. To understand

its geometrical interpretation, it is useful to divide it into its trace, traceless symmetric,

and antisymmetric parts as follows:

Definition. The expansion, shear and rotation of the null geodesic congruence are

θ = B̂a
a σ̂ab = B̂(ab) −

1

2
Pabθ, ω̂ab = B̂[ab] (4.22)

This implies

B̂a
b =

1

2
θP a

b + σ̂ab + ω̂ab (4.23)

Exercise. Show that θ = gabBab = ∇aU
a.

This shows that the expansion is independent of the choice of Na, i.e., it is an

intrinsic property of the congruence. Scalar invariants of the rotation and shear (e.g.

ω̂abω̂
ab or the eigenvalues of σ̂ab) are also independent of the choice of Na.

Proposition. If the congruence contains the generators of a (null) hypersurfaceN then

ω̂ab = 0 on N . Conversely, if ω̂ab = 0 everywhere then Ua is everywhere hypersurface

orthogonal (i.e. orthogonal to a family of null hypersurfaces).

Proof. The definition of B̂ and U ·B = B · U = 0 implies

B̂b
c = Bb

c + U bNdB
d
c + UcB

b
dN

d + U bUcNdB
d
eN

e (4.24)

Using this, we have

U[aω̂bc] = U[aB̂bc] = U[aBbc] (4.25)

since the extra terms drop out of the antisymmetrization. Now using the definition of

Bab we have

U[aω̂bc] = U[a∇cUb] = −1

6
(U ∧ dU)abc (4.26)

If Ua is normal to N then U ∧ dU = 0 on N and hence, on N ,

0 = U[aω̂bc] =
1

3
(Uaω̂bc + Ubω̂ca + Ucω̂ab) (4.27)

Contracting this with Na gives ω̂bc = 0 on N (using U · N = −1 and ω̂ · N = 0).

Conversely, if ω̂ = 0 everywhere then (4.26) implies that U is hypersurface-orthogonal

using Frobenius’ theorem.
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expansion shear

λ = λ0

λ = λ1

Figure 20. Effects of expansion and shear on the generators of a null hypersurface.

4.6 Expansion and shear of a null hypersurface

Assume that we have a congruence which includes the generators of a null hypersurface

N . The generators of N have ω̂ = 0. To understand how these generators behave,

restrict attention to deviation vectors tangent to N (i.e. consider a 1-parameter family

of generators of N ). Consider the evolution of the generators of N as a function of

affine parameter λ, as shown in Fig. 20.

Qualitatively: expansion θ corresponds to neighbouring generators moving apart

(if θ > 0) or together (if θ < 0). Shear corresponds to geodesics moving apart in one

direction, and together in the orthogonal direction whilst preserving the cross-sectional

area.

We can make this more precise by introducing Gaussian null coordinates near N
as follows (see Fig. 21). Pick a spacelike 2-surface S within N and let yi (i = 1, 2)

be coordinates on this surface. Assign coordinates (λ, yi) to the point affine parameter

distance λ from S along the generator of N (with tangent Ua) which intersects the

surface S at the point with coordinates yi. Now we have coordinates (λ, yi) on N such

that the generators are lines of constant yi and Ua = (∂/∂λ)a.

Let V a be a null vector field on N satisfying V · ∂/∂yi = 0 and V · U = 1. Assign

coordinates (r, λ, yi) to the point affine parameter distance r along the null geodesic

which starts at the point on N with coordinates (λ, yi) and has tangent vector V a

there.
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N

(λ, yi)

S

yi

V
(r, λ, yi)

Figure 21. Construction of Gaussian null coordinates near a null hypersurface N .

This defines a coordinate chart in a neighbourhood of N such that N is at r = 0,

with U = ∂/∂λ on N , and ∂/∂r is tangent to affinely parameterized null geodesics.

The latter implies that grr = 0 everywhere.

Exercise. Use the geodesic equation for ∂/∂r to show grµ,r = 0.

At r = 0 we have grλ = V · U = 1 (as V = ∂/∂r on N ) and gri = V · (∂/∂yi) = 0.

Since grµ is independent of r, these results are valid for all r. We also know that gλλ = 0

at r = 0 (as Ua is null) and gλi = 0 at r = 0 (as ∂/∂yi is tangent to N and hence

orthogonal to Ua). So we can write gλλ = rF and gλi = rhi for some smooth functions

F , hi. Therefore the metric takes the form

ds2 = 2drdλ+ rFdλ2 + 2rhidλdy
i + hijdy

idyj (4.28)

(We note that F must vanish at r = 0. To see this, we use the fact that the curves λ 7→ (0, λ, yi),

for constant yi are affinely parameterized null geodesics: the generators of N . For these the only-non

vanishing component of the geodesic equation is the r component. This reduces to ∂r(rF ) = 0 Hence

F = 0 at r = 0 so we can write F = rF̂ for some smooth function F̂ .)

On N the metric is

g|N = 2drdλ+ hijdy
idyj (4.29)

so Uµ = (0, 1, 0, 0) on N implies that Uµ = (1, 0, 0, 0) on N . Now U · B = B · U = 0

implies that Br
µ = Bµ

λ = 0. We saw above that θ = Bµ
µ. Hence on N we have

θ = Bi
i = ∇iU

i = ∂iU
i + ΓiiµU

µ = Γiiλ =
1

2
giµ (gµi,λ + gµλ,i − giλ,µ) (4.30)
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In the final expression, note that the form of the metric on N implies that giµ is

non-vanishing only when µ = j, and that gij = hij (the inverse of hij) hence on N

θ =
1

2
hij (gji,λ + gjλ,i − giλ,j) =

1

2
hijhij,λ =

∂λ
√
h√
h

(4.31)

where we used giλ = 0 on N and defined h = dethij. Hence we have

∂

∂λ

√
h = θ

√
h (4.32)

From (4.29),
√
h is the area element on a surface of constant λ within N , so θ measures

the rate of increase of this area element with respect to affine parameter along the

geodesics.

4.7 Trapped surfaces

Consider a 2d spacelike surface S, i.e., a 2d submanifold for which all tangent vectors

are spacelike. For any p ∈ S there will be precisely two future-directed null vectors Ua
1

and Ua
2 orthogonal to S (up to the freedom to rescale Ua

1 and Ua
2 ). If we assume that

S is orientable then Ua
1 and Ua

2 can be defined continuously over S. This defines two

families of null geodesics which start on S and are orthogonal to S (with the freedom

to rescale Ua corresponding to the freedom to rescale the affine parameter). These

null geodesics form two null hypersurfaces N1 and N2. In simple situations, these

correspond to the set of “outgoing” and “ingoing” light rays that start on S. Consider

a null congruence that contains the generators of Ni. By the proposition above, we will

have ω̂ab = 0 on N1 and N2.

Example. Let S be a 2-sphere U = U0, V = V0 in the Kruskal spacetime. By

symmetry, the generators of Ni will be radial null geodesics, as shown in Fig. 22.

Hence Ni must be surfaces of constant U or constant V with generators tangent to

dU and dV respectively. We saw above that dU and dV correspond to affine parame-

terization. Raising an index, equation (4.7) gives

Ua
1 = rer/2M

(
∂

∂V

)a
Ua

2 = rer/2M
(
∂

∂U

)a
(4.33)

where we have discarded an overall constant and fixed the sign so that Ua
1 and Ua

2 are

future-directed. (∂/∂U and ∂/∂V are future-directed because they are globally null and

hence define time-orientations. In region I they both give the same time orientation as

the one defined by ka.) We can now calculate the expansion of these congruences:

θ1 = ∇aU
a
1 =

1√
−g

∂µ
(√
−gUµ

1

)
= r−1er/2M∂V

(
re−r/2Mrer/2M

)
= 2er/2M∂V r (4.34)
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VU

I
II

III
IV

S(U0,V0)

N1
N2

Figure 22. Null hypersurfaces orthogonal to a sphere S (U = U0, V = V0) in the Kruskal

spacetime.

The RHS can be calculated from (2.31), giving

θ1 = −8M2

r
U (4.35)

A similar calculation gives

θ2 = −8M2

r
V (4.36)

We can now set U = U0 and V = V0 to study the expansion (on S) of the null geodesics

normal to S. For S in region I, we have θ1 > 0 and θ2 < 0 i.e., the outgoing null

geodesics normal to S are expanding and the ingoing geodesics are converging, as one

expects under normal circumstances. In region IV we have θ2 > 0 and θ1 < 0 so again

we have an expanding family and a converging family. However, in region II we have

θ1 < 0 and θ2 < 0: both families of geodesics normal to S are converging. And in

region III, θ1 > 0 and θ2 > 0 so both families are expanding.

Definition. A compact, orientable, spacelike, 2-surface is trapped if both families of null

geodesics orthogonal to S have negative expansion everywhere on S. It is marginally

trapped if both families have non-positive expansion everywhere on S.

So in the Kruskal spacetime, all 2-spheres U = U0, V = V0 in region II are trapped

and 2-spheres on the event horizon (U0 = 0, V0 > 0) are marginally trapped.

4.8 Raychaudhuri’s equation

Let’s determine how the expansion evolves along the geodesics of a null geodesic con-

gruence.
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Proposition (Raychaudhuri’s equation).

dθ

dλ
= −1

2
θ2 − σ̂abσ̂ab + ω̂abω̂ab −RabU

aU b (4.37)

Proof. From the definition of θ we have

dθ

dλ
= U · ∇

(
Ba

bP
b
a

)
= P b

aU · ∇Ba
b = P b

aU
c∇c∇bU

a (4.38)

Now commute derivatives using the definition of the Riemann tensor:

dθ

dλ
= P b

aU
c
(
∇b∇cU

a +Ra
dcbU

d
)

= P b
a [∇b(U

c∇cU
a)− (∇bU

c)(∇cU
a)] + P b

aR
a
dcbU

cUd

= −Bc
bP

b
aB

a
c −RcdU

cUd (4.39)

where we used the geodesic equation and, in the final term, the antisymmetry of the

Riemann tensor allows us to replace P b
a with δba. Finally (exercise) we can rewrite the

first term so that
dθ

dλ
= −B̂c

aB̂
a
c −RabU

aU b (4.40)

The result then follows by using (4.23).

Similar calculations give equations governing the evolution of shear and rotation.

4.9 Energy conditions

Raychaudhuri’s equation involves the Ricci tensor, which is related to the energy-

momentum tensor of matter via the Einstein equation. We will want to consider only

“physical” matter, which implies that the energy-momentum tensor should satisfy cer-

tain conditions. For example, an observer with 4-velocity ua would measure an “energy-

momentum current” ja = −T abub. We would expect “physically reasonable” matter

not to move faster than light, so this current should be non-spacelike. This motivates:

Dominant energy condition. −T abV b is a future-directed causal vector (or zero)

for all future-directed timelike vectors V a.

For matter satisfying the dominant energy condition, if Tab is zero in some closed

region S of a spacelike hypersurface Σ then Tab will be zero within D+(S). (See Hawking

and Ellis for a proof.)

Example. Consider a massless scalar field

Tab = ∂aΦ∂bΦ−
1

2
gab(∂Φ)2 (4.41)
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Let

ja = −T abV b = −(V · ∂Φ)∂aΦ +
1

2
V a(∂Φ)2 (4.42)

then, for timelike V a,

j2 =
1

4
V 2
(
(∂Φ)2

)2 ≤ 0 (4.43)

so ja is indeed causal or zero. Now consider

V · j = −(V · ∂Φ)2 +
1

2
V 2(∂Φ)2 = −1

2
(V · ∂Φ)2 +

1

2
V 2

(
∂Φ− V · ∂Φ

V 2
V

)2

(4.44)

the final expression in brackets is orthogonal to V a and hence must be spacelike or

zero, so its norm is non-negative. We then have V · j ≤ 0 using V 2 < 0. Hence ja is

future-directed (or zero).

A less restrictive condition requires only that the energy density measured by all

observers is positive:

Weak energy condition. TabV
aV b ≥ 0 for any causal vector V a.

A special case of this is

Null energy condition. TabV
aV b ≥ 0 for any null vector V a.

The dominant energy condition implies the weak energy condition, which implies

the null energy condition. Another energy condition is

Strong energy condition. (Tab − (1/2)gabT
c
c )V aV b ≥ 0 for all causal vectors V a.

Using the Einstein equation, this is equivalent to RabV
aV b ≥ 0, or “gravity is

attractive”. Despite its name, the strong energy condition does not imply the weak

energy condition. The strong energy condition is needed to prove some of the singularity

theorems, but the dominant energy condition is the most important physically. For

example, our universe appears to contain a positive cosmological constant. This violates

the strong energy condition but respects the dominant energy condition.

4.10 Conjugate points

Lemma. In a spacetime satisfying Einstein’s equation with matter obeying the null

energy condition, the generators of a null hypersurface satisfy

dθ

dλ
≤ −1

2
θ2 (4.45)

Proof. Consider the RHS of Raychaudhuri’s equation. The generators of a null hyper-

surface have ω̂ = 0. Vectors in T⊥ are all spacelike, so the metric restricted to T⊥ is
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positive definite. Hence σ̂abσ̂ab ≥ 0. Einstein’s equation gives RabU
aU b = 8πTabU

aU b

because Ua is null. Hence the null energy condition implies RabU
aU b ≥ 0. The result

follows from Raychaudhuri’s equation.

Corollary. If θ = θ0 < 0 at a point p on a generator γ of a null hypersurface then

θ → −∞ along γ within an affine parameter distance 2/|θ0| provided γ extends this

far.

Proof. Let λ = 0 at p. Equation (4.45) implies that θ is decreasing, so negative, and

d

dλ
θ−1 ≥ 1

2
(4.46)

Integrating gives θ−1 − θ−1
0 ≥ λ/2, which can be rearranged to give

θ ≤ θ0

1 + λθ0/2
(4.47)

if θ0 < 0 then the RHS → −∞ as λ→ 2/|θ0|.

Definition. Points p, q on a geodesic γ are conjugate if there exists a Jacobi field (i.e.

a solution of the geodesic deviation equation) along γ that vanishes at p and q but is

not identically zero.

Roughly speaking, if p and q are conjugate then there exist multiple infinitesimally

nearby geodesics which pass through p and q. The following results are proved in

Hawking and Ellis:

Theorem 1. Consider a null geodesic congruence which includes all of the null

geodesics through p (this congruence is singular at p). If θ → −∞ at a point q on

a null geodesic γ through p then q is conjugate to p along γ.

Theorem 2. Let γ be a causal curve with p, q ∈ γ. Then there does not exist a smooth

1-parameter family of causal curves γs connecting p, q with γ0 = γ and γs timelike for

s > 0 (i.e. γ cannot be smoothly deformed to a timelike curve) if, and only if, γ is a

null geodesic with no point conjugate to p along γ between p and q.

For example, consider the 3d spacetime R× S2 with metric

ds2 = −dt2 + dΩ2 (4.48)

Null geodesics emitted from the south pole at time t = 0 (the spacetime point p)

all reconverge at the north pole at time t = π (spacetime point r). Such geodesics

correspond to great circles of S2. r is conjugate to p along any of these geodesics. If
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q lies beyond r along one of these geodesics then by deforming the great circle into a

shorter path one can travel from p to q with velocity less than that of light hence there

exists a timelike curve from p to q.

Now consider the case in which we have a 2d spacelike surface S. As discussed

above, we can introduce two future-directed null vector fields Ua
1 , Ua

2 on S that are

normal to S and consider the null geodesics which have one of these vectors as their

tangent on S. These generate a null hypersurface N . Let p be a point on a geodesic γ

in this family. We say that p is conjugate to S if there exists a Jacobi field along γ that

vanishes at p and, on S, is tangent to S. If p is conjugate to S then, roughly speaking,

infinitesimally nearby geodesics normal to S intersect at p.

The analogue of theorem 1 in this case is: p is conjugate to S if θ → −∞ at p

along one of the geodesics just discussed, in a congruence containing the generators of

N . (We saw earlier that θ depends only in the geodesics in N and not on how the

other geodesics in the congruence are chosen.)

4.11 Causal structure

Definition. Let (M, g) be a time-orientable spacetime and U ⊂M . The chronological

future of U , denoted I+(U), is the set of points of M which can be reached by a future-

directed timelike curve starting on U . The causal future of U , denoted J+(U), is the

union of U with the set of points of M which can be reached by a future-directed causal

curve starting on U . The chronological past I−(U) and causal past J−(U) are defined

similarly.

For example, let q be a point in Minkowski spacetime. Then I+(p) is the set of

points strictly inside the future light cone of p and J+(p) is the set of points on or

inside the future light cone of p, including p itself (Fig. 23).

Next we need to review some basic topological ideas. A subset S of M is open if,

for any point p ∈ S, there exists a neighbourhood V of p (i.e. a set of points whose

coordinates in some chart are a neighbourhood of the coordinates of p) such that V ⊂ S.

Small deformations of timelike curves remain timelike. Hence I±(U) are open subsets

of M .

We use an overbar to denote the closure of a set, i.e., the union of a set and its

limit points. In Minkowski spacetime, we have I±(p) = J±(p) so J±(p) are closed sets,

i.e., they contain their limit points. This is not true in general e.g. let (M, g) be the

spacetime obtained by deleting a point from 2d Minkowski spacetime, see Fig. 24. In

this example we see that J+(p) 6= I+(p) and J+(p) is not closed.

A point p ∈ S is an interior point if there exists a neighbourhood of p contained

in S. The interior of S, denoted int(S) is the set of interior points of S. If S is open
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Figure 23. Chronological future and causal future of a point in Minkowski spacetime.

Figure 24. Minkowski spacetime with a point deleted. Here J+(p) 6= I+(p).

then int(S) = S. The boundary of S is Ṡ = S̄\int(S). This is a topological boundary

rather than a boundary in the sense of manifold-with-boundary (to be defined later).

The boundary of I+(p) is İ+(p) = I+(p)\I+(p). In Minkowski spacetime, I+(p) is

the set of points along future-directed timelike geodesics starting at p and İ+(p) is the

set of points along future-directed null geodesics starting at p. These statements are

not true in general, they are true only locally in the following sense:

Theorem 1. Given p ∈ M there exists a convex normal neighbourhood of p. This is

an open set U with p ∈ U such that for any q, r ∈ U there exists a unique geodesic

connecting q, r that stays in U . The chronological future of p in the spacetime (U, g)

consists of all points in U along future-directed timelike geodesics in U that start at

p. The boundary of this region is the set of all points in U along future-directed null

geodesics in U that start at p.
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J+(U)

p

q

s

r

U

Figure 25. Proof of achronality of J̇+(U).

Proof. See Hawking and Ellis or Wald.

Corollary. If q ∈ J+(p)\I+(p) then there exists a null geodesic from p to q.

Proof (sketch). Let γ be a future-directed causal curve with γ(0) = p and γ(1) =

q. Since [0, 1] is compact, the set of points on γ is compact, hence we can cover a

neighbourhood of this set by finitely many convex normal neighbourhoods. Use the

above Theorem in each neighbourhood.

Lemma. Let S ⊂M . Then J+(S) ⊂ I+(S) and I+(S) = int(J+(S)).

Proof. See Hawking and Ellis (this is an exercise in Wald).

Since I+(S) ⊂ J+(S), I+(S) ⊂ J+(S) so the first result implies that J+(S) =

I+(S). The second result then implies J̇+(S) = İ+(S).

Definition. S ⊂M is achronal if no two points of S are connected by a timelike curve.

Theorem 2. Let U ⊂M . Then J̇+(U) is an achronal 3d submanifold of M .

Proof. (See Fig. 25.) Assume p, q ∈ J̇+(U) with q ∈ I+(p). Since I+(p) is open,

there exists r (near q) with r ∈ I+(p) but r /∈ J+(U). Similarly, since I−(r) is open,

there exists s (near p) with s ∈ I−(r) and s ∈ J+(U). Hence there exists a causal

curve from U to s to r so r ∈ J+(U), which is a contradiction. Hence we can’t have

q ∈ I+(p), which establishes achronality. For proof of the “submanifold” part see Wald.

For example, let M = R× S1 with the flat metric

ds2 = −dt2 + dφ2 (4.49)

where φ ∼ φ+2π parameterizes S1 (this is a 2d version of the “Einstein static universe”).

The diagram shows J+(p) (shaded). Its boundary J̇+(p) is a pair of null geodesic

segments which start at p and end at q.
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Note that q is a future endpoint of these geodesics. They could be extended to the

future beyond q but then they would leave J̇+(p). They also have a past endpoint at

p.

The next theorem characterises the behaviour of J̇+(U).

Theorem 3. Let U ⊂ M be closed. Then every p ∈ J̇+(U) with p /∈ U lies on a null

geodesic λ lying entirely in J̇+(U) and such that λ is either past-inextendible or has a

past endpoint on U .

Proof (sketch). Since U is closed, M\U is a manifold. We will work in this manifold.

Consider a compact neighbourhood V of p and a sequence of points pn ∈ I+(U) =

int(J+(U)) with limit point p. Let λn be a timelike curve from U to pn and let qn be

the past endpoint of λn in V :

Then one can show that qn has a limit point q ∈ J+(U) and there is a causal “limit

curve” λ from q to p lying in J+(U) (see Wald). We need to show λ ⊂ J̇+(U). Suppose

there is a point r ∈ λ such that r ∈ I+(U) = int(J+(U)). Then there is a timelike curve

γ from r′ ∈ U to r. But then we can get from r′ to r to p by following γ then λ. Hence

p ∈ J+(r′) but p /∈ I+(r′) (as p /∈ I+(U)) so theorem 1 implies that this curve must

be a null geodesic, which is a contradiction because it’s not null everywhere. Hence we

must have λ ⊂ J+(U)− I+(U) = J̇+(U).

Theorem 2 tells us that J̇+(U) is achronal so p /∈ I+(q). Theorem 1 then tells us

that λ must be a null geodesic. Now we repeat the argument starting at q, to get a

point r ∈ J̇+(U) with a null geodesic λ′ from r to q lying in J̇+(U), If λ′ were not

the past extension of λ we could “round off the corner” to construct a timelike curve

from r to p, violating achronality. This argument can be repeated indefinitely, hence λ

cannot have a past endpoint in M\U .

In the case of a globally hyperbolic spacetime, this theorem can be strengthened

as follows:

Theorem 4. Let S be a 2-dimensional orientable compact spacelike submanifold of

a globally hyperbolic spacetime. Then every p ∈ J̇+(S) lies on a future-directed null
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geodesic starting from S which is orthogonal to S and has no point conjugate to S

between S and p.

Finally, we can use the notation of this section to define what we mean by a Cauchy

horizon:

Definition. The future Cauchy horizon of a partial Cauchy surface Σ is H+(Σ) =

D+(Σ)\I−(D+(Σ)). Similarly for the past Cauchy horizon H−(Σ).

We don’t define H+(Σ) simply as Ḋ+(Σ) since this includes Σ itself. However,

one can show that Ḋ(Σ) = H+(Σ) ∪ H−(Σ). One can also show that H± are null

hypersurfaces in the same sense as J̇+(U) in Theorems 2 and 3 above. (See Wald for

details.)

4.12 Penrose singularity theorem

Theorem (Penrose 1965). Let (M, g) be globally hyperbolic with a non-compact

Cauchy surface Σ. Assume that the Einstein equation and the null energy condition

are satisfied and that M contains a trapped surface T . Let θ0 < 0 be the maximum

value of θ on T for both sets of null geodesics orthogonal to T . Then at least one of

these geodesics is future-inextendible and has affine length no greater than 2/|θ0|.

Proof. Assume that all future inextendible null geodesics orthogonal to T have affine

length greater than 2/|θ0|. Along any of these geodesics, we will have θ → −∞ (from

the Corollary in section 4.10), and hence a point conjugate to T , within affine parameter

no greater than 2/|θ0|.
Let p ∈ J̇+(T ), p /∈ T . From theorem 4 above, we know that p lies on a future-

directed null geodesic γ starting from T which is orthogonal to T and has no point

conjugate to T between T and p. It follows that p cannot lie beyond the point on γ

conjugate to T on γ.

Therefore J̇+(T ) is a subset of the compact set consisting of the set of points along

the null geodesics orthogonal to T , with affine parameter less than or equal to 2/|θ0|.
Since J̇+(T ) is closed this implies that J̇+(T ) is compact. Now recall (theorem 2 of

section 4.11) that J̇+(T ) is a manifold, which implies that it can’t have a boundary. If Σ

were compact this might be possible because the “ingoing” and “outgoing” congruences

orthogonal to T might join up:
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But since Σ is non-compact, this can’t happen and we’ll now reach a contradiction

as follows. Pick a timelike vector field T a (possible because our manifold is time-

orientable). By global hyperbolicity, integral curves of this vector field will intersect Σ

exactly once. They will intersect J̇+(T ) at most once (because this set is achronal by

theorem 2 of section 4.11). This defines a continuous one-to-one map α : J̇+(T )→ Σ.

This is a homeomorphism between J̇+(T ) and α(J̇+(T )) ⊂ Σ. Since the former is a

closed set, so must be the latter. Now J̇+(T ) is a 3d submanifold hence for any p ∈
J̇+(T ) we can find a neighbourhood V of p in J̇+(T ). Then α(V ) gives a neighbourhood

of α(p) in α(J̇+(T )) hence the latter set is open (in Σ). Since it is both open and closed,

and since Σ is connected (this follows from connectedness of M) we have α(J̇+(T )) = Σ.

But this is a contradiction because the set on the LHS is compact (because J̇+(T ) is).

�
The formation of trapped surfaces is routinely observed in numerical simulations

of gravitational collapse. There are also various mathematical results concerning the

formation of trapped surfaces. The Einstein equation possesses the property of Cauchy

stability, which implies that the solution in a compact region of spacetime depend con-

tinuously on the initial data. In a spacetime describing spherically symmetric gravita-

tional collapse, choose a compact region that includes a trapped surface (e.g. a 2-sphere

in region II of the Kruskal diagram). Cauchy stability implies that if one perturbs the

initial data (breaking spherical symmetry) then the resulting spacetime will also have

a trapped surface, for a small enough initial perturbation. This shows that trapped

surfaces occur generically in gravitational collapse.

A theorem due to Schoen and Yau (1983) establishes that asymptotically flat initial

data will contain a trapped surface if the energy density of matter is sufficiently large

in a small enough region. Christodoulou (2009) has proved that trapped surfaces can

be formed dynamically, even in the absence of matter and without any symmetry

assumptions, by sending sufficiently strong gravitational waves into a small enough

region.

The above theorem implies that if the maximal development of asymptotically flat

initial data contains a trapped surface then this maximal development is not geodesi-

cally complete. Such incompletness might arise because the maximal development is

extendible. However, this is (generically) excluded if the strong cosmic censorship

conjecture is correct. Hence it is expected that, generically, the incompleteness arises

because the maximal development is singular. In fact, a different singularity theorem

(due to Hawking and Penrose) eliminates the assumption that spacetime is globally

hyperbolic (at the cost of requiring the strong energy condition and a mild “generic-

ity” assumption on the spacetime curvature) and still proves existence of incomplete

geodesics. So even if the maximal development is extendible then the Hawking-Penrose
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theorem implies that this extended spacetime must be geodesically incomplete, i.e., sin-

gular.

Hence there are very good reasons to believe that gravitational collapse leads to

formation of a singularity. Notice that these theorems tell us nothing about the nature

of this singularity e.g. we do not know that it must be a curvature singularity as occurs

in spherically symmetric collapse.

5 Asymptotic flatness

We’ve already defined the notion of asymptotic flatness of an initial data set. In this

chapter, we will define what it means for a spacetime to be asymptotically flat. We’ll

then be able to define the term “black hole”.

5.1 Conformal compactification

Given a spacetime (M, g) we can define a new metric ḡ = Ω2g where Ω is a smooth pos-

itive function on M . We say that ḡ is obtained from g by a conformal transformation.

The metrics g, ḡ agree on the definitions of “timelike”, “spacelike” and “null” so they

have the same light cones, i.e., the same causal structure.

M

M

Ω = 0

The idea of conformal compactification is to choose Ω so

that “points at infinity” with respect to g are at “finite

distance” w.r.t. the “unphysical” metric ḡ. To do this

we need Ω → 0 “at infinity”. More precisely, we try to

choose Ω so that the spacetime (M, ḡ) is extendible in the

sense we discussed previously, i.e., (M, ḡ) is part of a larger

“unphysical” spacetime (M̄, ḡ). M is then a proper subset

of M̄ with Ω = 0 on the boundary ∂M of M in M̄ . This

boundary ∂M corresponds to “infinity” in (M, g). It is

easiest to see how this works by looking at some examples.

Minkowski spacetime

Let (M, g) be Minkowski spacetime. In spherical polars the metric is

g = −dt2 + dr2 + r2dω2 (5.1)

(We denote the metric on S2 by dω2 to avoid confusion with the conformal factor Ω.)

Define retarded and advanced time coordinates

u = t− r v = t+ r (5.2)
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In what follows it will be important to keep track of the ranges of the different coordi-

nates: since r ≥ 0 we have −∞ < u ≤ v <∞. The metric is

g = −dudv +
1

4
(u− v)2dω2 (5.3)

Now define new coordinates (p, q) by

u = tan p v = tan q (5.4)

so the range of (p, q) is finite: −π/2 < p ≤ q < π/2. This gives

g = (2 cos p cos q)−2
[
−4dpdq + sin2(q − p)dω2

]
(5.5)

“Infinity” in the original coordinates corresponds to |t| → ∞ or r → ∞. In the new

coordinates this corresponds to |p| → π/2 or |q| → π/2.

To conformally compactify this spacetime, define the positive function

Ω = 2 cos p cos q (5.6)

and let

ḡ = Ω2g = −4dpdq + sin2(q − p)dω2 (5.7)

Finally define

T = q + p ∈ (−π, π) χ = q − p ∈ [0, π) (5.8)

so

ḡ = −dT 2 + dχ2 + sin2 χdω2 (5.9)

Now dχ2 + sin2 χdω2 is the unit radius round metric on S3. If we had T ∈ (−∞,∞)

and χ ∈ [0, π] then ḡ would be the metric of the Einstein static universe R× S3, given

by the product of a flat time direction with the unit round metric on S3. The ESU can

be visualised as an infinite cylinder, whose axis corresponds to the time direction. In

our case the restrictions on the ranges of p, q imply that M is just a finite portion of

the ESU, as shown in Fig. 26.

Let (M̄, ḡ) denote the ESU. This is an extension of (M, ḡ). The boundary ∂M of M

in M̄ corresponds to “infinity” in Minkowski spacetime. This consists of (i) the points

labelled i± i.e. T = ±π, χ = 0 (ii) the point labelled i0, i.e., T = 0, χ = π (iii) a pair

of null hypersurfaces I± (I is pronounced “scri”) with equations T = ±(π− χ), which

are parameterized by χ ∈ (0, π) and (θ, φ) and hence have the topology of cylinders

R× S2 (since (0, π) is diffeomorphic to R).

It is convenient to project the above diagram onto the (T, χ)-plane to obtain the

Penrose diagram of Minkowski spacetime shown in Fig. 27. A Penrose diagram is a
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χ = 0

T

χ = π

T = −π: i−

T = π: i+

i0

I+

I−

ESU

M

Figure 26. Minkowski spacetime is mapped to a subset of the Einstein static universe.

T

χ

i−

i+

i0

I−

I+

r = constant

t = constant

radial null geodesic

r = 0

Figure 27. Penrose diagram of Minkowski spacetime.

subset of R2 endowed with a flat Lorentzian metric (in this case −dT 2 + dχ2). Each

point of the interior of a Penrose diagram represents an S2. Points of the boundary
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can represent an axis of symmetry (where r = 0), points at “infinity” of our original

spacetime with metric g or, as we shall see, singularities.

Let’s understand how the geodesics of g look on a Penrose diagram. This is easiest

for radial geodesics, i.e., constant θ, φ. Remember that the causal structure of g and ḡ

is the same. Hence radial null curves of g are null curves of the flat metric −dT 2 +dχ2,

i.e., straight lines at 45◦. These all start at I−, pass through the origin, and end at

I+. For this reason, I− is called past null infinity and I+ is called future null infinity.

Similarly, radial timelike geodesics start i− and end at i+ so i− is called past timelike

infinity and i+ is called future timelike infinity. Finally, radial spacelike geodesics start

and end at i0 so i0 is called spatial infinity.

One can also plot the projection of non-radial curves onto the Penrose diagram.

This projection makes things look “more timelike” w.r.t. the 2d flat metric (because

moving the final term in (5.9) to the LHS gives a negative contribution). Hence a

non-radial timelike curve remains timelike when projected and a non-radial null curve

looks timelike when projected.

The behaviour of geodesics has an analogue for fields. Roughly speaking, massless

radiation “comes in from” I− and “goes out to” I+. For example, consider a massless

scalar field ψ in Minkowski spacetime, i.e., a solution of the wave equation ∇a∇aψ = 0.

For simplicity, assume it is spherically symmetric ψ = ψ(t, r).

Exercise. By deriving an equation for rψ, show that the general spherically symmetric

solution of the wave equation in Minkowski spacetime is

ψ(t, r) =
1

r
(f(u) + g(v)) =

1

r
(f(t− r) + g(t+ r)) (5.10)

where f and g are arbitrary functions. This is singular at r = 0 (and hence not a

solution there) unless g(x) = −f(x) which gives

ψ(t, r) =
1

r
(f(u)− f(v)) =

1

r
(F (p)− F (q)) (5.11)

where F (x) = f(tanx). If we let F0(q) denote the limiting value of rψ on I− (where

p = −π/2) then we have F (−π/2)− F (q) = F0(q) so F (q) = F (−π/2)− F0(q). Hence

we can write the solution as

ψ =
1

r
(F0(q)− F0(p)) (5.12)

which is uniquely determined by the function F0 governing the behaviour of the solution

at I−. Similarly it is uniquely determined by the behaviour at I+.

2d Minkowski
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i0R

i+

i0L

i−

I+
RI+

L

I−L I−R

Figure 28. Penrose diagram of 2d Minkowski spacetime, showing left and right moving null

geodesics.

As another example of these ideas, consider the Penrose diagram of 2d Minkowski

spacetime with metric

g = −dt2 + dr2 (5.13)

Following the same coordinate transformations as before, the only difference is that now

we have −∞ < r <∞ hence −∞ < u, v <∞, −π/2 < p, q < π/2 and T, χ ∈ (−π, π).

The Penrose diagram is shown in Fig. 28. In this case, we have “left” and “right”

portions of spatial infinity and future/past null infinity.

Kruskal spacetime

In this case, we know that the spacetime (M, g) has two asymptotically flat regions.

it is natural to expect that “infinity” in each of these regions has the same structure

as in (4d) Minkowski spacetime. Hence we expect “infinity” in Kruskal spacetime to

correspond to two copies of infinity in Minkowski spacetime. To construct the Penrose

diagram for Kruskal we would define new coordinates P = P (U) and Q = Q(V ) (so

that lines of constant P or Q are radial null geodesics) such that that the range of

P,Q is finite, say (−π/2, π/2), then we would need to find a conformal factor Ω so that

the resulting unphysical metric ḡ can be extended smoothly onto a bigger manifold M̄

(analogous to the Einstein static universe we used for Minkowski spacetime). M is then

a subset of M̄ with a boundary that has 4 components, corresponding to places where

either P or Q is ±π/2. We identify these 4 components as future/past null infinity in
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I
II

III
IV i0

i+i+
′

i0
′

i−i−
′

I+I+′

I−′ I−

t = constant
r = constant

r = constant

r = 0

r = 0

Figure 29. Penrose diagram of the Kruskal spacetime.

region I, which we denote as I± and future/past null infinity in region IV, which we

denote as I±′ .
Doing this explicitly is fiddly. Fortunately we don’t need to do it: now we’ve

understood the structure of infinity we can deduce the form of the Penrose diagram

from the Kruskal diagram. This is because both diagrams show radial null curves as

straight lines at 45◦. The only important difference is that “infinity” corresponds to a

boundary of the Penrose diagram. It is conventional to use the freedom in choosing Ω

to arrange that the curvature singularity at r = 0 is a horizontal straight line in the

Penrose diagram. The result is shown in Fig. 29.

In contrast with the conformal compactification of Minkowski spacetime, it turns

out that the unphysical metric is singular at i± (and i±
′
). This can be understood

because lines of constant r meet at i±, and this includes the curvature singularity

r = 0. Less obviously, it turns out that one can’t choose Ω to make the unphysical

metric smooth at i0.

Spherically symmetric collapse

The Penrose diagram for spherically symmetric gravitational collapse is easy to

deduce from the form of the Kruskal diagram. It is shown in Fig. 30.
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r = 0

r
=

0

i0

i+

I+

I−

Figure 30. Penrose diagram for spherically symmetric gravitational collapse.

5.2 Asymptotic flatness

An asymptotically flat spacetime is one that “looks like Minkowski spacetime at in-

finity”. In this section we will define this precisely. Infinity in Minkowski spacetime

consists of I±, i± and i0. However, we saw that i± are singular points in the con-

formal compactification of the Kruskal spacetime. Since we want to regard the latter

as asymptotically flat, we cannot include i± in our definition of asymptotic flatness.

We also mentioned that i0 is not smooth in the Kruskal spacetime so we will also not

include i0. (However, it is possible to extend the definition to include i0, see Wald

for details.) So we will define a spacetime to be asymptotically flat if it has the same

structure for null infinity I± as Minkowski spacetime.

First, recall that a manifold-with-boundary is defined in the same way as a manifold

except that the charts are now maps φ : M → Rn/2 ≡ {(x1, . . . , xn) : x1 ≤ 0}. The

boundary ∂M of M is defined to be the set of points which have x1 = 0 in some chart.

Definition. A time-orientable spacetime (M, g) is asymptotically flat at null infinity

if there exists a spacetime (M̄, ḡ) such that

1. There exists a positive function Ω on M such that (M̄, ḡ) is an extension of

(M,Ω2g) (hence if we regard M as a subset of M̄ then ḡ = Ω2g on M).

2. Within M̄ , M can be extended to obtain a manifold-with-boundary M ∪ ∂M

3. Ω can be extended to a function on M̄ such that Ω = 0 and dΩ 6= 0 on ∂M
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4. ∂M is the disjoint union of two components I+ and I−, each diffeomorphic to

R× S2

5. No past (future) directed causal curve starting in M intersects I+ (I−)

6. I± are “complete”. We’ll define this below.

Conditions 1,2,3 are just the requirement that there exist an appropriate conformal

compactification. The condition dΩ 6= 0 ensures that Ω has a first order zero on ∂M ,

as in the examples discussed above. This is needed to ensure that the spacetime metric

approaches the Minkowski metric at an appropriate rate near I±. Conditions 4,5,6

ensure that infinity has the same structure as null infinity of Minkowski spacetime. In

particular, condition 5 ensures that I+ lies “to the future of M” and I− lies “to the

past of M”.

Example. Consider the Schwarzschild solution in outgoing EF coordinates (u, r, θ, φ),

for which I+ corresponds to r →∞ with finite u. Let r = 1/x with x > 0. This gives

g = − (1− 2Mx) du2 + 2
dudx

x2
+

1

x2

(
dθ2 + sin2 θdφ2

)
(5.14)

Hence by choosing a conformal factor Ω = x we obtain the unphysical metric

ḡ = −x2 (1− 2Mx) du2 + 2dudx+ dθ2 + sin2 θdφ2 (5.15)

which can be smoothly extended across x = 0. The surface x = 0 is I+. It is parame-

terized by (u, θ, φ) and is hence diffeomorphic to R×S2. Of course we’ve only checked

the above definition at I+ here. But one can do the same at I− using ingoing EF

coordinates and the same conformal factor Ω = 1/r (recall that r is the same for both

coordinate charts). Hence the Schwarzschild spacetime is asymptotically flat at null

infinity. Similarly, the Kruskal spacetime is asymptotically flat (in fact both regions I

and IV are asymptotically flat).

Let’s now see how the above definition implies that the metric must approach the

Minkowski metric near I+ (of course I− is similar).

Exercise (examples sheet 2). Let ∇̄ denote the Levi-Civita connection of ḡ and R̄ab

the Ricci tensor of ḡ. Show that on M

Rab = R̄ab + 2Ω−1∇̄a∇̄bΩ + ḡabḡ
cd
(
Ω−1∇̄c∇̄dΩ− 3Ω−2∂cΩ∂dΩ

)
(5.16)

We will consider the case in which (M, g) satisfies the vacuum Einstein equation. This

assumption can be weakened: our results will apply also to spacetimes for which the
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energy-momentum tensor decays sufficiently rapidly near I+. The vacuum Einstein

equation is Rab = 0. Multiply by Ω to obtain

ΩR̄ab + 2∇̄a∇̄bΩ + ḡabḡ
cd
(
∇̄c∇̄dΩ− 3Ω−1∂cΩ∂dΩ

)
= 0 (5.17)

Since ḡ and Ω are smooth at I+, the first three terms in this equation admit a smooth

limit to I+. It follows that so must the final term which implies that Ω−1ḡcd∂cΩ∂dΩ

can be smoothly extended to I+. This implies that ḡcd∂cΩ∂dΩ must vanish on I+ i.e.

dΩ is null (w.r.t ḡ) on I+. But dΩ is normal to I+ (as Ω = 0 on I+) hence I+ must

be a null hypersurface in (M̄, ḡ).

Now the choice of Ω in our definition is far from unique. If Ω satisfies the definition

then so will Ω′ = ωΩ where ω is any smooth function on M̄ that is positive on M ∪∂M .

We can use this “gauge freedom” to simplify things further. If we replace Ω with Ω′

then we must replace ḡab with ḡ′ab = ω2ḡab. The primed version of the quantity we just

showed can be smoothly extended to I+ is then

Ω
′−1ḡ

′cd∂cΩ
′∂dΩ

′ = ω−3ḡcd
(
Ω∂cω∂dω + 2ω∂cΩ∂dω + ω2Ω−1∂cΩ∂dΩ

)
= ω−1

(
2na∂a logω + Ω−1ḡcd∂cΩ∂dΩ

)
on I+ (5.18)

where

na = ḡab∂bΩ (5.19)

is normal to I+ and hence also tangent to the null geodesic generators of I+. We can

therefore choose ω to satisfy

na∂a logω = −1

2
Ω−1ḡcd∂cΩ∂dΩ on I+ (5.20)

since this is just an ordinary differential equation along each generator of I+. Pick an

S2 cross-section of I+, i.e., an S2 ⊂ I+ which intersects each generator precisely once.

There is a unique solution of this differential equation for any (positive) choice of ω on

this cross-section. We’ve now shown that the RHS of (5.18) vanishes on I+, i.e., that

we can choose a gauge for which

Ω−1ḡcd∂cΩ∂dΩ = 0 on I+ (5.21)

Evaluating (5.17) on I+ now gives

2∇̄a∇̄bΩ + ḡabḡ
cd∇̄c∇̄dΩ = 0 on I+ (5.22)

Contracting this equation gives ḡcd∇̄c∇̄dΩ = 0. Substituting back in we obtain

∇̄a∇̄bΩ = 0 on I+ (5.23)
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(Ω, u, θ, φ)

(u, θ, φ)

na

S2 I+

Figure 31. Coordinates near future null infinity.

and hence

∇̄an
b = 0 on I+ (5.24)

In particular we have

na∇̄an
b = 0 on I+ (5.25)

so, in this gauge, na is tangent to affinely parameterized (w.r.t. ḡ) null geodesic gener-

ators of I+. Furthermore, (5.24) shows that these generators have vanishing expansion

and shear.

We introduce coordinates near I+ as follows (see Fig. 31). In our choice of gauge,

we still have the freedom to choose ω on a S2 cross-section of I+. A standard result is

that any Riemannian metric on S2 is conformal to the unit round metric on S2. Hence

we can choose ω so that the metric on our S2 induced by ḡ (i.e. the pull-back of ḡ

to this S2) is the unit round metric. Introduce coordinates (θ, φ) on this S2 so that

the unit round metric takes the usual form dθ2 + sin2 θdφ2. Now assign coordinates

(u, θ, φ) to the point parameter distance u along the integral curve of na through the

point on this S2 with coordinates (θ, φ). This defines a coordinate chart on I+ with

the property that the generators of I+ are lines of constant θ, φ with affine parameter

u.

On I+ consider the vectors that are orthogonal (w.r.t. ḡ) to the 2-spheres of

constant u, i.e., orthogonal to ∂/∂θ and ∂/∂φ. Such vectors form a 2d subspace of

the tangent space. In 2d, there are only two distinct null directions. Hence there are

two distinct null directions orthogonal to the 2-spheres of constant u. One of these is

tangent to I+ so pick the other one, which points into M .

Consider the null geodesics whose tangent at I+ is in this direction. Extend (u, θ, φ)

off I+ by defining them to be constant along these null geodesics. Finally, since dΩ 6= 0

on I+, we can use Ω as a coordinate near I+. We now have a coordinate chart (u,Ω, θ, φ)

defined in a neighbourhood of I+, with I+ given by Ω = 0.
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By construction we have a coordinate chart with na = ∂/∂u on I+. Hence nµ = δµu .

But the definition of na implies ∂µΩ = ḡµνn
ν from which we deduce ḡuµ = δΩ

µ at Ω = 0.

Since (u, θ, φ) don’t vary along the null geodesics pointing into M , the tangent vector

to these geodesics must be proportional to ∂/∂Ω. Since the geodesics are null we must

therefore have ḡΩΩ = 0 for all Ω. We also know that these geodesics are orthogonal to

∂/∂θ and ∂/∂φ on I+ hence we have ḡΩθ = ḡΩφ = 0 at Ω = 0.

Now consider the gauge condition (5.23). Writing this out in our coordinate chart,

it reduces to

0 = Γ̄Ω
µν =

1

2
ḡΩρ (ḡρµ,ν + ḡρν,µ − ḡµν,ρ) =

1

2
(ḡuµ,ν + ḡuν,µ − ḡµν,u) at Ω = 0 (5.26)

where we used ḡΩρ = ḡνρ(dΩ)ν = nρ = δρu. Taking µ and ν to be θ or φ, we have

ḡuµ,ν = ḡuν,µ = 0 so we learn that ḡµν,u = 0 at Ω = 0, i.e., the θ, φ components of the

metric ḡ on I+ don’t depend on u. Since we know that this metric is the unit round

metric when u = 0, it must be the unit round metric for all u.

We have now deduced the form of the unphysical metric on I+:

ḡ|Ω=0 = 2dudΩ + dθ2 + sin2 dφ2 (5.27)

For small Ω 6= 0, the metric components will differ from the above result by O(Ω)

terms. However, by setting ν = Ω in (5.26) and taking µ to be u, θ or φ, we learn that

ḡuµ,Ω = 0 at Ω = 0 so smoothness of ḡ implies that ḡuµ = O(Ω2) for µ = u, θ, φ.

Finally we can write down the physical metric g = Ω−2ḡ. It is convenient to define

a new coordinate r = 1/Ω so that I+ corresponds to r →∞. After a finite shift in r,

the metric can be brought to the form

g = −2dudr + r2
(
dθ2 + sin2 θdφ2

)
+ . . . (5.28)

for large r, where the ellipsis refers to corrections that are subleading at large r. The

leading terms written above are simply the metric of Minkowski spacetime. If one

converts this to inertial frame coordinates (t, x, y, z) so that the leading order metric is

diag(−1, 1, 1, 1) then the correction terms are all of order 1/r. Hence the metric of an

asymptotically flat spacetime does indeed approach the Minkowski metric at I+.

Finally we can explain condition 6 of our definition of asymptotic flatness. Noth-

ing in the above construction guarantees that the range of u is (−∞,∞) as it is in

Minkowski spacetime. We would not want to regard a spacetime as asymptotically flat

if I+ “ends” at some finite value of u. Recall that u is the affine parameter along the

generators of I+ so if this happens then the generators of I+ would be incomplete.

Condition 6 eliminates this possibility.
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I
II

III
IV

I+

I−

black hole

white hole

Figure 32. Black hole and white hole regions in the Kruskal spacetime.

Definition. I+ is complete if, in the gauge (5.23), the generators of I+ are complete

(i.e. the affine parameter extends to ±∞). Similarly for I−.

This completeness assumption will be important when we discuss weak cosmic

censorship.

5.3 Definition of a black hole

We can now make precise our definition of a black hole as a region of an asymptotically

flat spacetime from which it is impossible to send a signal to infinity. I+ is a subset of

our unphysical spacetime (M̄, ḡ) so we can define J−(I+) ⊂ M̄ . The set of points of

M that can send a signal to I+ is M ∩ J−(I+). We define the black hole region to be

the complement of this region, and the future event horizon to be the boundary of the

black hole region:

Definition. Let (M, g) be a spacetime that is asymptotically flat at null infinity.

The black hole region is B = M\[M ∩ J−(I+)] where J−(I+) is defined using the

unphysical spacetime (M̄, ḡ). The future event horizon is H+ = Ḃ (the boundary of

B in M), equivalently H+ = M ∩ J̇−(I+). Similarly, the white hole region is W =

M\[M ∩ J+(I−)] and the past event horizon is H− = Ẇ = M ∩ J̇+(I−).

One can construct examples of spacetimes with a non-empty black hole region

simply by deleting sets of points from Minkowski spacetime. However, we can elimi-

nate such trivial examples by restricting attention to spacetimes that are the maximal

development of geodesically complete, asymptotically flat initial data.

In the Kruskal spacetime, no causal curve from region II or IV can reach I+ hence

B is the union of regions II and IV (including the boundary U = 0 where r = 2M).

H+ is the surface U = 0. W is the union of regions III and IV (including the boundary

V = 0). H− is the surface V = 0. See Fig. 32.

Theorems 2 and 3 of section 4.11 imply that H± are null hypersurfaces. Theorem

3 (time reversed) implies that the generators of H+ cannot have future endpoints.
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However, they can have past endpoints. This happens in the spacetime describing

spherically symmetric gravitational collapse, with Penrose diagram:

The generators of H+ have a past endpoint at p, which is the point at which the

black hole forms. So null generators can enter H+ but they cannot leave it. Note that

the sets W and H− are empty in this spacetime.

We will need a extra technical condition to prove useful things about black holes:

Definition. An asymptotically flat spacetime (M, g) is strongly asymptotically pre-

dictable if there exists an open region V̄ ⊂ M̄ such that M ∩ J−(I+) ⊂ V̄ and (V̄ , ḡ)

is globally hyperbolic.

This definition implies that (M∩V̄ , g) is a globally hyperbolic subset ofM . Roughly

speaking, there is a globally hyperbolic region M ∩ V̄ of spacetime consisting of the

region not in B together with a neighbourhood of H+. It ensures that physics is

predictable on, and outside, H+. A simple consequence of this definition is the result

that a black hole cannot bifurcate (split into two):

Theorem. Let (M, g) be strongly asymptotically predictable and let Σ1, Σ2 be Cauchy

surfaces for V̄ with Σ2 ⊂ I+(Σ1). Let B be a connected component of B ∩ Σ1. Then

J+(B) ∩ Σ2 is contained within a connected component of B ∩ Σ2.

Proof. (See Fig. 33.) Global hyperbolicity implies that every causal curve from Σ1

intersects Σ2 and vice-versa. Note that J+(B) ⊂ B hence J+(B) ∩ Σ2 ⊂ B ∩ Σ2.

Assume J+(B) ∩ Σ2 is not contained within a single connected component of B ∩ Σ2.

Then we can find disjoint open sets O,O′ ⊂ Σ2 such that J+(B) ∩ Σ2 ⊂ O ∪ O′ with

J+(B) ∩ O 6= ∅, J+(B) ∩ O′ 6= ∅. Then B ∩ I−(O) and B ∩ I−(O′) are non-empty

and B ⊂ I−(O) ∪ I−(O′). Now p ∈ B cannot lie in both I−(O) and I−(O′) for then

we could divide future-directed timelike geodesics from p into two sets according to

whether they intersected O or O′, and hence divide the future-directed timelike vectors

at p into two disjoint open sets, contradicting connectedness of the future light-cone at

p. Hence the open sets B ∩ I−(O) and B ∩ I−(O′) are disjoint open sets whose union

is B. This contradicts the connectedness of B.
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Σ1

Σ2

B

O O′

Figure 33. Bifurcation of a black hole.

Figure 34. Penrose diagram of M < 0 Schwarzschild solution. The curvature singularity at

r = 0 is naked.

5.4 Weak cosmic censorship

In our Penrose diagram for spherically symmetric gravitational collapse, the singularity

at r = 0 is hidden behind the event horizon: no signal from the singularity can reach

I+. (More precisely: no inextendible incomplete causal geodesic reaches I+.) This

is not true for the Kruskal spacetime, where a signal from the white hole curvature

singularity can reach I+: it is a naked singularity. Similarly, the curvature singularity

of the M < 0 Schwarzschild solution is naked: see Fig. 34.

The singularity theorems tell us that gravitational collapse results in the formation

of a singularity (i.e. geodesic incompleteness). But could this singularity be naked?

If we have a spherically symmetric collapsing star then Birkhoff’s theorem tells

us that the exterior of the star is given by the Schwarzschild solution, with the same
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5.4 Weak cosmic censorship

(positive) mass as the star. This gives the standard diagram for gravitational collapse

to form a black hole. However, this is just a consequence of spherical symmetry and

Birkhoff’s theorem. With spherical symmetry, the dynamics of the gravitational field

is trivial: there are no gravitational waves (and no electromagnetic waves if there is a

Maxwell field).

In order to make the dynamics more interesting we will assume that the matter

in our spacetime includes a scalar field. This allows us to maintain the convenience of

spherical symmetry, i.e., the use of Penrose diagrams, whilst circumventing Birkhoff’s

theorem. If the scalar field is non-trivial outside the collapsing matter then Birkhoff’s

theorem doesn’t apply. We emphasize that the only reason for including this scalar

field is to make the dynamics richer and therefore give us an idea of what is possible

in the more general situation without spherical symmetry.

It is now tempting to draw the following diagram describing collapse to form a

naked singularity:

(With the scalar field, we can no longer define a sharp boundary to the collapsing

matter so the surface of the star is not precisely defined.) Imagine starting from initial

data on Σ as shown. This data describes a collapsing star. The initial data is geodesi-

cally complete and asymptotically flat. When the star collapses to zero size, a timelike

singularity forms. This is naked because it can send a signal to I+.

This diagram is misleading. Note the presence of a future Cauchy horizon H+(Σ)

which bounds the maximal development of Σ. The spacetime beyond H+(Σ) is not

determined by data on Σ. Hence we cannot say what happens beyond H+(Σ): one

would need extra information (new laws of physics) to do so. So it is incorrect to draw

a diagram as above. Instead we should draw just the maximal development of the

initial data on Σ:
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This spacetime does not have a singularity which can send a signal to I+. But

the spacetime shown is pathological in two respects. First, even though we started

from geodesically complete, asymptotically flat initial data, the maximal development

is extendible. Hence strong cosmic censorship is violated. Second, the spacetime does

not satisfy our definition of asymptotic flatness. This is because I+ is not complete:

only part of it is present. The weak cosmic censorship property asserts that the latter

behaviour does not occur:

Conjecture (weak cosmic censorship). Let (Σ, hab, Kab) be a geodesically com-

plete, asymptotically flat, initial data set. Let the matter fields obey hyperbolic equa-

tions and satisfy the dominant energy condition. Then generically the maximal devel-

opment of this initial data is an asymptotically flat spacetime (in particular it has a

complete I+) that is strongly asymptotically predictable.

Just like strong cosmic censorship, this conjecture refers only to the maximal de-

velopment, i.e., to the region of spacetime that can be predicted uniquely from the

initial data. This conjecture captures the idea that a ”naked singularity would lead to

an incomplete I+” without referring to any actual singularity.

The word ”generically” is included because it is known that there exist examples

which violate the conjecture if this word is omitted. However, such examples are ”fine-

tuned”, i.e., if one introduces an appropriate measure on the space of initial data then

the set of data which violates the conjecture is of measure zero. For example, consider

gravity coupled to a massless scalar field, with spherical symmetry. This system was

studied in the early 1990s by Christodoulou (rigorously) and Choptuik (numerically).

One can construct a 1-parameter family of initial data labelled by a parameter p with

the following property. There exists p∗ such that for p < p∗, the scalar field simply

disperses whereas for p > p∗ it collapses to form a black hole. These cases with p 6= p∗
respect the weak cosmic censorship conjecture. However, the ”critical” solution with

p = p∗ violates the conjecture. But this solution is fine-tuned and hence non-generic.

In spite of the name, weak cosmic censorship is not implied by strong cosmic

censorship: the two conjectures are logically independent. This is shown in the following

Penrose diagrams:
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The first diagram violates strong but not weak, the second violates weak but not

strong and the diagram we drew previously violates both weak and strong.

Historically, a very popular model for gravitational collapse consists of gravity

coupled to a pressureless perfect fluid (”dust”), with spherical symmetry. For initial

data consisting of a homogeneous ball of dust (i.e. constant density), it is known that

gravitational collapse leads to formation of a black hole in the standard way. However,

Christodoulou showed that if one considers a spherically symmetric but inhomogenous

ball of dust (i.e., the density ρ depends on radius r) then both cosmic censorship

conjectures are false (if one interprets ”generic” as meaning ”generic within the class

of spherically symmetric initial data”). Generically, a singularity forms at the centre

of the ball before an event horizon forms. However, it is believed that this model is

unphysical because of the neglect of pressure.

For the case of gravity coupled to a massless scalar field, Christodoulou has proved

that both cosmic censorship conjectures are true, again within the restricted class of

spherically symmetric initial data. In this model, generic initial data either disperses

(and settles down to flat spacetime at late time), or undergoes gravitational collapse

to form a black hole.

Further evidence for the validity of weak cosmic censorship comes from the Penrose

inequality (to be discussed later) and many numerical simulations e.g. of gravitational

collapse, or black hole collisions.

5.5 Apparent horizon

Note that the definition of B and H+ is non-local: to determine whether or not p ∈ B
we must establish whether there exists a causal curve from p to I+. This requires

knowledge of the behaviour of the spacetime to the future of p, it can’t be determined

by measurements in a neighbourhood of p. This makes it difficult to determine the

location of H+ e.g. in a numerical simulation. However, determining whether or not a

spacelike 2-surface is trapped can be done locally. Furthermore, these must lie inside

B (if weak cosmic censorship is correct):

Theorem. Let T be a trapped surface in a strongly asymptotically predictable space-

time obeying the null energy condition. Then T ⊂ B.

Proof (sketch). Assume there exists p ∈ T such that p /∈ B, i.e., p ∈ J−(I+). Then

there exists a causal curve from p to I+. One can use strong asymptotic predictability

to show that this implies that J̇+(T ) must intersect I+, i.e., there exists q ∈ I+ with

q ∈ J̇+(T ). Theorem 3 of section 4.10 implies that q lies on a null geodesic γ from

r ∈ T that is orthogonal to T and has no point conjugate to r along γ. Since T is

trapped, the expansion of the null geodesics orthogonal to T is negative at r and hence
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(from section 4.10) θ → ∞ within finite affine parameter along γ. So there exists a

point s conjugate to r along γ, a contradiction. �
In a numerical simulation one considers a foliation of the spacetime by Cauchy

surfaces Σt labelled by a time function t. Then “the black hole region at time t” is

Bt ≡ B ∩ Σt and the “event horizon at time t” is Ht ≡ H+ ∩ Σt. We can’t determine

Bt just from the solution on Σt. However, we can investigate whether there exist

trapped surfaces on Σt. If such surfaces exist then the above theorem implies that Bt

is non-empty.

Definition. Let Σt be a Cauchy surface in a globally hyperbolic spacetime (M, g).

The trapped region Tt of Σ is the set of points p ∈ Σt for which there exists a trapped

surface S with p ∈ S ⊂ Σt. The apparent horizon At is the boundary of Tt.

(Note that several different definitions of apparent horizon appear in the literature.)

If weak cosmic censorship is correct then Tt ⊂ B which implies that At ⊂ B so the

apparent horizon always lies inside (or on) the event horizon. It is natural to hope that

Tt is a reasonable approximation to Bt, and that At is a reasonable approximation to

Ht. Whether or not this is actually true can depend on how the surfaces Σt are chosen.

For spherically symmetric Cauchy surfaces in the Kruskal spacetime, one has At = Ht.

However, one can find non-spherically symmetric Cauchy surfaces which enter the black

hole region and come arbitrarily close to the singularity but do not contain trapped

surfaces (Iyer and Wald 1991).

By continuity, one expects At to be a marginally trapped surface. This is how its

location is determined in numerical simulations.

6 Charged black holes

In this chapter, we will discuss the Reissner-Nordstrom solution, which describes a

charged, spherically symmetric black hole. Large imbalances of charge don’t occur in

nature, so matter undergoing gravitational collapse would be expected to be almost

neutral. Furthermore, a charged black hole would preferentially attract particles of

opposite charge and hence gradually lose its charge. Hence charged black holes are

unlikely to be important in astrophysics. However, they have played an important role

in quantum gravity, especially in string theory.

6.1 The Reissner-Nordstrom solution

The action for Einstein-Maxwell theory is

S =
1

16π

∫
d4x
√
−g
(
R− F abFab

)
(6.1)
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6.1 The Reissner-Nordstrom solution

where F = dA with A a 1-form potential. Note that the normalisation of F used here

differs from the standard particle physics normalisation. The Einstein equation is

Rab −
1

2
Rgab = 2

(
Fa

cFbc −
1

4
gabF

cdFcd

)
(6.2)

and the Maxwell equations are

∇bFab = 0 dF = 0 (6.3)

There is a generalisation of Birkhoff’s theorem to this theory:

Theorem. The unique spherically symmetric solution of the Einstein-Maxwell equa-

tions with non-constant area radius function r is the Reissner-Nordstrom solution:

ds2 = −
(

1− 2M

r
+
e2

r2

)
dt2 +

(
1− 2M

r
+
e2

r2

)−1

dr2 + r2dΩ2

A = −Q
r
dt− P cos θdφ e =

√
Q2 + P 2 (6.4)

This solution has 3 parameters: M,Q,P . We will show later that these are the mass,

electric charge and magnetic charge respectively (there is no evidence that magnetic

charge occurs in nature but it is allowed by the equations).

Several properties are similar to the Schwarzschild solution: the RN solution is

static, with timelike Killing vector field ka = (∂/∂t)a. The RN solution is asymptoti-

cally flat at null infinity in the same way as the Schwarzschild solution.

If r is constant then the above theorem doesn’t apply. In this case, one obtains the

Robinson-Bertotti (AdS2 × S2) solution discussed on examples sheet 2.

To discuss the properties of this solution, it is convenient to define

∆ = r2 − 2Mr + e2 = (r − r+)(r − r−) r± = M ±
√
M2 − e2 (6.5)

so the metric is

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dΩ2 (6.6)

If M < e then ∆ > 0 for r > 0 so the above metric is smooth for r > 0. There is

a curvature singularity at r = 0. This is a naked singularity, just like in the M < 0

Schwarzschild spacetime. Dynamical formation of such a singularity is excluded by the

cosmic censorship hypotheses. If one considers a spherically symmetric ball of charged

matter with M < e then electromagnetic repulsion dominates over gravitational at-

traction so gravitational collapse does not occur. Note that elementary particles (e.g.

electrons) can have M < e but these are intrinsically quantum mechanical.
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6.2 Eddington-Finkelstein coordinates

6.2 Eddington-Finkelstein coordinates

The special case M = e will be discussed later so consider the case M > e. ∆ has

simple zeros at r = r± > 0. These are coordinate singularities. To see this, we can

define Eddington-Finkelstein coordinates in exactly the same way as we did for the

Schwarzschild solution. Start with r > r+ and define

dr∗ =
r2

∆
dr (6.7)

Integrating gives

r∗ = r +
1

2κ+

log
∣∣r − r+

r+

∣∣+
1

2κ−
log
∣∣r − r−

r−

∣∣+ const. (6.8)

where

κ± =
r± − r∓

2r2
±

(6.9)

Now let

u = t− r∗ v = t+ r∗ (6.10)

In ingoing EF coordinates (v, r, θ, φ), the RN metric becomes

ds2 = −∆

r2
dv2 + 2dvdr + r2dΩ2 (6.11)

This is now smooth for any r > 0 hence we can analytically continue the metric into

a new region 0 < r < r+. There is a curvature singularity at r = 0. A surface of

constant r has normal n = dr and hence is null when grr = ∆/r2 = 0. It follows that

the surfaces r = r± are null hypersurfaces.

Exercise. Show that r decreases along any future-directed causal curve in the region

r− < r < r+.

It follows from this that no point in the region r < r+ can send a signal to I+

(since r = ∞ at I+). Hence this spacetime describes a black hole. The black hole

region is r ≤ r+ and the future event horizon is the null hypersurface r = r+.

Similarly, if one uses outgoing EF coordinates one obtains the metric

ds2 = −∆

r2
du2 − 2dudr + r2dΩ2 (6.12)

and again one can analytically continue to a new region 0 < r ≤ r+ and this is a white

hole.
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r constant →

t constant →

I
II

III
IV

V +

r
=
r+

U+

r
=
r
+

Figure 35. Reissner-Nordstrom solution in (U+, V +) coordinates.

6.3 Kruskal-like coordinates

To understand the global structure, define Kruskal-like coordinates

U± = −e−κ±u V ± = ±eκ±v (6.13)

Starting in the region r > r+, use coordinates (U+, V +, θ, φ) to obtain the metric

ds2 = −r+r−
κ2

+r
2
e−2κ+r

(
r − r−
r−

)1+κ+/|κ−|

dU+dV + + r2dΩ2 (6.14)

where r(U+, V +) is defined implicitly by

− U+V + = e2κ+r

(
r − r+

r+

)(
r−

r − r−

)κ+/|κ−|
(6.15)

The RHS is a monotonically increasing function of r for r > r−. Initially we have

U+ < 0 and V + > 0 which gives r > r+ but now we can analytically continue to

U+ ≥ 0 or V + ≤ 0. In particular, the metric is smooth and non-degenerate when

U+ = 0 or V + = 0. We obtain a diagram very similar to the Kruskal diagram: see

Fig. 35. Just as for Kruskal, we have a pair of null hypersurfaces which intersect

in the “bifurcation 2-sphere” U+ = V + = 0, where ka = 0. Surfaces of constant t

are Einstein-Rosen bridges connection regions I and IV. The major difference with the

Kruskal diagram is that we no longer have a curvature singularity in regions II and III

because r(U+, V +) > r−. However, from our EF coordinates, we know that it is possible

to extend the spacetime into a region with r < r−. Hence the above spacetime must be

extendible. Phrasing things differently, we know (from the EF coordinates) that radial
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VI
III′

II
V

V −

r
=
r−

U−

r
=
r−

r = 0 r = 0

Figure 36. Reissner-Nordstrom solution in (U−, V −) coordinates.

null geodesics reach r = r− in finite affine parameter. Hence such geodesics will reach

U+V + = −∞ in finite affine parameter so we have to investigate what happens there.

To do this, start in region II and use ingoing EF coordinates (v, r, θ, φ) (as we

know these cover regions I and II). We can now define the retarded time coordinate u

in region II as follows. First define a time coordinate t = v − r∗ in region II with r∗
defined by (6.8). The metric in coordinates (t, r, θ, φ) takes the static RN form given

above, with r− < r < r+. Now define u by u = t − r∗ = v − 2r∗. Having defined u in

region II we can now define the Kruskal coordinates U− < 0 and V − < 0 in region II

using the formula above. In these coordinates, the metric is

ds2 = −r+r−
κ2
−r

2
e2|κ−|r

(
r+ − r
r+

)1+|κ−|/κ+
dU−dV − + r2dΩ2 (6.16)

where r(U−, V −) < r+ is given by

U−V − = e−2|κ−|r
(
r − r−
r−

)(
r+

r+ − r

)|κ−|/κ+
(6.17)

This can now be analytically continued to U− > 0 or V − > 0, giving the diagram

shown in Fig. 36. We have new regions V and VI in which 0 < r < r−. These regions

contain the curvature singularity at r = 0 (U−V − = −1), which is timelike. Region

III′ is isometric to region III and so, by introducing new coordinates (U+′ , V +′) this

can be analytically to the future to give further new regions I′, II′ and IV′ as shown in

Fig. 37. In this diagram, I′ and IV′ are new asymptotically flat regions isometric to

I and IV. This procedure can be repeated indefinitely, to the future and past, so the

maximal analytic extension of the RN solution contains infinitely many regions. The
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I′
II′

III′
IV′

V +

r
=
r+

U+

r
=
r
+

Figure 37. Regions I′, II′ and IV′ of the RN solution.

resulting Penrose diagram is shown in Fig. 38. It extends to infinity in both directions.

By an appropriate choice of conformal factor, one can arrange that the singularity is a

straight line.

6.4 Cauchy horizons

Consider a partial Cauchy surface Σ extending from spatial infinity in region I to spatial

infinity in region IV. Assume that Σ is geodesically complete and asymptotically flat

(with 2 ends). (An Einstein-Rosen bridge is an example of such a surface.). See Fig. 39.

Note that D+(Σ) is bounded to the future by a Cauchy horizon H+(Σ) and D−(Σ) is

bounded to the past by a Cauchy horizon H−(Σ). Both Cauchy horizons have r = r−.

The existence of these Cauchy horizons means that most of the above Penrose

diagram is unphysical. We should take seriously only the part of the diagram corre-

sponding to D(Σ) since this is the part that is uniquely determined by initial data on Σ.

The solution outside D(Σ) is not determined by this data: to obtain the above Penrose

diagram one has to assume analyticity or spherical symmetry. But if we just assume

that spacetime is smooth then there are infinitely many ways of extending D(Σ).

The extendibility of D(Σ) appears to violate strong cosmic censorship. But recall

that the latter applies to generic initial data: violation of strong cosmic censorship

would require that D(Σ) is generically extendible for a sufficiently small perturbation

of the initial data on Σ. (This could be a perturbation that breaks spherical symmetry

or it could be a perturbation that preserves spherical symmetry but introduces a small

amount of matter: a popular model is a massless scalar field.)

There is a lot of evidence that D(Σ) is not extendible when the initial data on

Σ is perturbed, i.e., strong cosmic censorship is respected. The physical mechanism
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Figure 38. Penrose diagram of the maximally entended Reissner-Nordstrom solution.

for this can be understood as follows. Consider two observers A,B as shown in Fig.

40. A crosses H+(Σ) in region II whereas B stays in region I. Assume that B sends

light signals to A at proper time intervals of 1 second. If B lives forever (!) then he

sends infinitely many signals. From the Penrose diagram, it is clear that A receives

all of these signals within a finite proper time as she crosses H+(Σ). Hence signals

from region I undergo an infinite blueshift at H+(Σ). Therefore a tiny perturbation in

region I will have an enormous energy (as measured by A) at H+(Σ). This suggests

that the gravitational back reaction of a tiny perturbation in region I will become large
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6.5 Extreme RN

Figure 39. Partial Cauchy surface Σ, its domain of dependence and Cauchy horizons.

in region II. In other words, region II exhibits an instability. The effect of this might be

to give a singularity, rather than a Cauchy horizon, in region II, thus rendering D(Σ)

inextendible in agreement with strong cosmic censorship.

A tractable model for studying this in detail is to consider Einstein-Maxwell theory

coupled to a massless scalar field, assuming spherical symmetry. In this case, results

of Dafermos (2012) strongly suggest that small perturbations of the initial data on

Σ lead to a spacetime in which the Cauchy horizons are replaced by null curvature

singularities. Hence strong cosmic censorship is respected (at least within the class of

spherically symmetric initial data). For a charged black hole formed by gravitational

collapse of (almost) spherically symmetric charged matter, it seems likely that the

singularity will be partially null (near i+) and partially spacelike.

6.5 Extreme RN

The RN solution with M = e is called extreme RN. The metric is

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2dΩ2 (6.18)
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6.5 Extreme RN

Figure 40. Argument for instability of Cauchy horizon in Reissner-Nordstrom spacetime.

Starting in the region r > M one can define dr∗ = dr/(1−M/r)2, i.e.,

r∗ = r + 2M log
∣∣r −M

M

∣∣− M2

r −M
(6.19)

and introduce ingoing EF coordinates v = t+ r? so that the metric becomes

ds2 = −
(

1− M

r

)2

dv2 + 2dvdr + r2dΩ2 (6.20)

which can be analytically extended into the region 0 < r < M , which is a black

hole region. Similarly one can use outgoing EF coordinates to uncover a white hole

region. Each of these can be analytically extended across an inner horizon. The Penrose

diagram is shown in Fig. 41.

Note that H± are Cauchy horizons for a surface of constant t. A novel feature of

this solution is that a surface of constant t is not an Einstein-Rosen bridge connecting

two asymptotically flat ends. Consider the proper length of a line of constant t, θ, φ

from r = r0 > M to r = M : ∫ r0

M

dr

1−M/r
=∞ (6.21)

Hence a surface of constant t exhibits an “infinite throat” shown in Fig. 42.

Part III Black Holes March 15, 2024 89 H.S. Reall



6.5 Extreme RN

0 < r < M

0 < r < M

0 < r < M
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I+

I−

I−

H −
, r

=
M

H
+ , r

=
M

Σ (t constant)

r > M

r > M

Figure 41. Penrose diagram of the extreme RN solution.

S2

Figure 42. Infinite “throat” on a constant t surface of the extreme RN solution.

To understand the geometry near the horizon, let r = M(1 + λ). To leading order

in λ,

ds2 ≈ −λ2dt2 +M2dλ
2

λ2
+M2dΩ2 (6.22)

Part III Black Holes March 15, 2024 90 H.S. Reall



6.6 Majumdar-Papapetrou solutions

This is the Robinson-Bertotti metric: a product of 2d anti-de Sitter spacetime (AdS2)

with S2 (see examples sheet 2).

6.6 Majumdar-Papapetrou solutions

Introduce a new radial coordinates ρ = r −M and assume P = 0. The extreme RN

metric becomes

ds2 = −H−2dt2 +H2
(
dρ2 + ρ2dΩ2

)
H = 1 +

M

ρ
(6.23)

this is a special case of the Majumdar-Papapetrou solution:

ds2 = −H(x)−2dt2 +H(x)2
(
dx2 + dy2 + dz2

)
A = H−1dt (6.24)

where x = (x, y, z) and H obeys the Laplace equation in 3d Euclidean space:

∇2H = 0 (6.25)

Choosing

H = 1 +
N∑
i=1

Mi

|x− xi|
(6.26)

gives a static solution describing N extreme RN black holes of masses Mi at positions

xi (each of these is an S2, not a point). Physically, such a solution exists because

Mi = Qi for all i hence there is an exact cancellation of gravitational attraction and

electromagnetic repulsion between the black holes.

7 Rotating black holes

In this chapter we will discuss the Kerr solution, which describes a stationary rotating

black hole. The solution is considerably more complicated than the spherically sym-

metric solutions that we have discussed so far. We will start by explaining why the

Kerr solution is believed to be the unique stationary black hole solution.

7.1 Uniqueness theorems

Black holes form by gravitational collapse, a time-dependent process. However, we

would expect an isolated black hole eventually to settle down to a time-independent

equilibrium state (this is actually a very fast process, occuring on a time scale set by

the radius of the black hole: microseconds for a solar mass black hole). Hence it is

desirable to classify all such equilibrium states, i.e., all possible stationary black hole

solutions of the vacuum Einstein (or Einstein-Maxwell) equations.
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First we will need to weaken slightly our definition of “stationary” to cover rotating

black holes:

Definition. A spacetime asymptotically flat at null infinity is stationary if it admits

a Killing vector field ka that is timelike in a neighbourhood of I±. It is static if it is

stationary and ka is hypersurface-orthogonal.

It is conventional to normalize ka so that k2 → −1 at I±. Sometimes the term

“strictly stationary/static” is used if ka is timelike everywhere, not just near I±. So

Minkowski spacetime is strictly static. The Kruskal spacetime is static but not strictly

static (because ka is spacelike in regions II, III).

So far, we have discussed only spherically symmetric black holes. But rotating

black holes cannot be spherically symmetric. However, they can be axisymmetric, i.e.

“symmetric under rotations about an axis”. For a stationary spacetime we define this

as follows.

Definition. A spacetime asymptotically flat at null infinity is stationary and axisym-

metric if (i) it is stationary; (ii) it admits a Killing vector field ma that is spacelike

near I±; (iii) ma generates a 1-parameter group of isometries isomorphic to U(1); (iv)

[k,m] = 0.

(We can also define the notion of axisymmetry in a non-stationary spacetime by

deleting (i) and (iv).) For such a spacetime, one can choose coordinates so that k = ∂/∂t

and m = ∂/∂φ with φ ∼ φ+ 2π.

Now recall that a spherically symmetric vacuum spacetime must be static, by

Birkhoff’s theorem. The converse of this is untrue: a static vacuum spacetime need

not be spherically symmetric e.g. consider the spacetime outside a cube-shaped object.

However, if the only object in the spacetime is a black hole then we have:

Theorem (Israel 1967, Bunting & Masood 1987). If (M, g) is a static, asymp-

totically flat, vacuum black hole spacetime that is suitably regular on, and outside an

event horizon, then (M, g) is isometric to the Schwarzschild solution.

We will not attempt to describe precisely what “suitably regular” means here. This

theorem establishes that static vacuum multi black hole solutions do not exist. There

is an Einstein-Maxwell generalisation of this theorem, which states that such a solution

is either Reissner-Nordstrom or Majumdar-Papapetrou.

For stationary black holes, we have the following:

Theorem (Hawking 1973, Wald 1992). If (M, g) is a stationary, non-static, asymp-

totically flat analytic solution of the Einstein-Maxwell equations that is suitably regular

on, and outside an event horizon, then (M, g) is stationary and axisymmetric.
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This is sometimes stated as “stationary implies axisymmetric” for black holes. But

this theorem has the unsatisfactory assumption that the spacetime be analytic, i.e.,

the metric components can be expressed as convergent Taylor series about any point.

This is unphysical: analyticity implies that the full spacetime is determined by its

behaviour in the neighbourhood of a single point. If one accepts the above result, or

simply assumes axisymmetry, then

Theorem (Carter 1971, Robinson 1975). If (M, g) is a stationary, axisymmetric,

asymptotically flat vacuum spacetime suitably regular on, and outside, a connected

event horizon then (M, g) is a member of the 2-parameter Kerr (1963) family of solu-

tions. The parameters are mass M and angular momentum J .

These results lead to the expectation that the final state of gravitational collapse

is generically a Kerr black hole. (There is also strong evidence for this coming from

numerical simulations.) This implies that the final state is fully characterized by just 2

numbers: M and J . In contrast, the initial state can be arbitrarily complicated. Nearly

all information about the initial state is lost during gravitational collapse (either by

radiation to infinity, or by falling into the black hole), with just the 2 numbers M,J

required to describe the final state on, and outside, the event horizon.

There is an Einstein-Maxwell generalization of the above theorem, which states

that (M, g) should belong to the 4-parameter Kerr-Newman (1965) solution described

in the next section.

7.2 The Kerr-Newman solution

This is a rotating, charged solution of Einstein-Maxwell theory. In Boyer-Lindquist

coordinates, it is

ds2 = −∆

Σ

(
dt− a sin2 θdφ

)2
+

sin2 θ

Σ

(
(r2 + a2)dφ− adt

)2
+

Σ

∆
dr2 + Σdθ2

A =
1

Σ

[
−Qr(dt− a sin2 θdφ) + P cos θ

(
(r2 + a2)dφ− adt

)]
(7.1)

where

Σ = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2 + e2 e =
√
Q2 + P 2 (7.2)

At large r, the coordinates (t, r, θ, φ) reduce to spherical polar coordinates in Minkowski

spacetime. In particular, (θ, φ) have their usual interpretation as angles on S2 so

0 < θ < π and φ ∼ φ + 2π. It can be shown that the KN solution is asymptotically

flat at null infinity.
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The solution is stationary and axisymmetric with two commuting Killing vector

fields:

ka =

(
∂

∂t

)a
ma =

(
∂

∂φ

)a
(7.3)

ka is timelike near infinity although, as we will discuss, it is not globally timelike. The

solution possesses a discrete isometry t → −t, φ → −φ which simultaneously reverses

the direction of time and the sense of rotation.

The solution has 4 parameters: M,a,Q, P . We’ll see later that M is the mass,

Q the electric charge, P the magnetic charge and a = J/M where J is the angular

momentum. When a = 0 the KN solution reduces to the RN solution. Note that

φ → −φ has the same effect as a → −a so there is no loss of generality in assuming

a ≥ 0.

7.3 The Kerr solution

Set Q = P = 0 in the KN solution to get the Kerr solution of the vacuum Einstein

equation. Let’s analyze the structure of this solution. As we did for RN, write

∆ = (r − r+)(r − r−) r± = M ±
√
M2 − a2 (7.4)

The solution with M2 < a2 describes a naked singularity so let’s assume M2 > a2

(and discuss M = a later). The metric is singular at θ = 0, π but these are just the

usual coordinate singularities of spherical polars. The metric is also singular at ∆ = 0

(i.e. r = r±) and at Σ = 0 (i.e. r = 0, θ = π/2). Starting in the region r > r+, the

first singularity we have to worry about is at r = r+. We will now show that this is a

coordinate singularity. To see this, define Kerr coordinates (v, r, θ, χ) for r > r+ by

dv = dt+
r2 + a2

∆
dr dχ = dφ+

a

∆
dr (7.5)

which implies that in the new coordinates we have χ ∼ χ+ 2π and

ka =

(
∂

∂v

)a
ma =

(
∂

∂χ

)a
(7.6)

The metric is (exercise)

ds2 = −
(
∆− a2 sin2 θ

)
Σ

dv2 + 2dvdr − 2a sin2 θ
(r2 + a2 −∆)

Σ
dvdχ

− 2a sin2 θdχdr +

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdχ2 + Σdθ2 (7.7)
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This metric is smooth and non-degenerate at r = r+. It can be analytically continued

through the surface r = r+ into a new region with 0 < r < r+.

Proposition. The surface r = r+ is a null hypersurface with normal

ξa = ka + ΩHm
a (7.8)

where

ΩH =
a

r2
+ + a2

(7.9)

Proof. Exercise: Determine ξµ and show that ξµdx
µ|r=r+ is proportional to dr. Hence

(i) ξa is normal to the surface r = r+ and (ii) ξµξµ|r=r+ = 0 because ξr = 0.

Just as for RN, the region r ≤ r+ is (part of) the black hole region of this spacetime

with r = r+ (part of) the future event horizon H+.

In BL coordinates we have ξ = ∂/∂t + ΩH∂/∂φ. Hence ξµ∂µ (φ− ΩHt) = 0 so

φ = ΩHt+const. on orbits (integral curves) of ξa. Note that φ = const. on orbits of ka.

Hence particles moving on orbits of ξa rotate with angular velocity ΩH with respect

to a stationary observer (i.e. someone on an orbit of ka). In particular, they rotate

with this angular velocity w.r.t. a stationary observer at infinity. Since ξa is tangent

to the generators of H+, it follows that these generators rotate with angular velocity

ΩH w.r.t. a stationary observer at infinity, so we interpret ΩH as the angular velocity

of the black hole.

7.4 Maximal analytic extension

The Kerr coordinates are analogous to the ingoing EF coordinates we used for RN.

One can similarly define coordinates analogous to outgoing EF coordinates and use

these to construct an analytic extension into a white hole region. Then, just as for

RN, one can define Kruskal-like coordinates that cover all of these regions, as well as

a new asymptotically flat region, i.e., there are regions analogous to regions I to IV of

the analytically extended RN solution.

Just as for RN, the spacetime can be analytically extended across null hypersurfaces

at r = r− in regions II and III. The resulting maximal analytic extension is similar to

that of RN except for the behaviour near the singularity. In the Kerr case, it turns out

that the curvature singularity has the structure of a ring and by passing through the

ring one can enter a new asymptotically flat region with r < 0. One also finds that ma

becomes timelike near the singularity. The orbits of ma are closed (because φ ∼ φ+2π)

hence there are closed timelike curves near the singularity.

The Kerr solution is not spherically symmetric so one can’t draw a Penrose diagram

for it. However, if one considers the submanifold of the spacetime corresponding to the
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Figure 43. Penrose diagram of the maximally extended Kerr solution. The dotted lines

denote the “ring” singularity at r = 0, θ = π/2.

axis of symmetry (θ = 0 or θ = π) then, since this submanifold is two-dimensional, one

can draw a Penrose diagram for it. Note that this submanifold is “totally geodesic”,

i.e., a geodesic initially tangent to it will remain tangent. (The same is true for the

“equatorial plane” θ = π/2.) The resulting diagram takes the following form shown in

Fig. 43.

Most of this diagram is unphysical because, just as for RN, the null hypersurfaces

r = r− are Cauchy horizons for a geodesically complete, asymptotically flat (with 2
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ends) surface Σ. Hence the spacetime beyond r = r− is not determined uniquely by

the data on Σ (unless one makes the unphysical assumption of analyticity). By the

same argument as for RN, these Cauchy horizons are expected to be unstable against

small perturbations in region I (or IV), with the perturbed spacetime exhibiting null

or spacelike singularities instead of Cauchy horizons, in agreement with strong cosmic

censorship.

When we studied the Schwarzschild solution, we saw that it describes the metric

outside a spherical star. This was a consequence of Birkhoff’s theorem. In contrast, the

Kerr solution does not describe the spacetime outside a rotating star. This solution is

expected to describe only the “final state” of gravitational collapse. One can’t obtain

a solution describing gravitational collapse to form a Kerr black hole simply by “gluing

in” a ball of collapsing matter as we did for Schwarzschild. In particular, the space-

time during such collapse would be non-stationary because the collapse would lead to

emission of gravitational waves.

Finally, the special case M = a is called the extreme Kerr solution. It is a black hole

solution with several properties similar to those of the extreme RN solution. In par-

ticular, surfaces of constant t exhibit an “infinite throat” and H± are Cauchy horizons

for surfaces of constant t.

7.5 Geodesics of Kerr-Newman

The Schwarzschild or Reissner-Nordstrom spacetimes have a lot of symmetry, which

is the reason that the geodesic equation in these spacetimes is integrable, i.e., it can

be reduced to first order ODEs. The Kerr-Newman solution only has two commuting

Killing vectors, which is usually not enough to render the geodesic equation integrable.

Remarkably, there is a “hidden symmetry” which ensures integrability.

Let’s start with the Hamiltonian version of the geodesic equation in a general space-

time with coordinates xµ. The Lagrangian for geodesics is L(x, ẋ) = (1/2)gµν(x)ẋµẋν

where a dot denotes a derivative w.r.t. an affine parameter τ . The momentum conju-

gate to xµ is

pµ =
∂L

∂ẋµ
= gµν ẋ

ν (7.10)

so the Hamiltonian is H = pµẋ
µ − L which simplifies to

H(x, p) =
1

2
gµν(x)pµpν (7.11)

Hamilton’s equations of motion are

ẋµ =
∂H

∂pµ
= gµνpν (7.12)
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(recovering the definition of pµ) and

ṗµ = − ∂H
∂xµ

= −1

2
gνρ,µ pνpρ (7.13)

If we eliminate pµ using (7.10) then it is easy to see that these equations are equivalent

to the geodesic equation for xµ(τ) (exercise). The Lagrangian is independent of τ so

H is conserved along a geodesic (it is proportional to gµν ẋ
µẋν).

The Kerr-Newman metric is independent of t, φ and so pt and pφ are constant

along a geodesic. These are the usual constants associated with the Killing vectors

k,m. Hence we have 3 conserved quantities along a geodesic in any stationary and

axisymmetric spacetime. What is special about Kerr-Newman is the existence of fourth

conserved quantity, the Carter constant:

Q(x, p) ≡ p2
θ +

1

sin2 θ

(
pφ + apt sin2 θ

)2 − 2Ha2 cos2 θ (7.14)

If we have a function f(x, p) then its time derivative along a geodesic is given by its

Poisson bracket with H:

df

dτ
=

∂f

∂xµ
ẋµ +

∂f

∂pµ
ṗµ =

∂f

∂xµ
∂H

∂pµ
− ∂f

∂pµ

∂H

∂xµ
≡ {f,H} (7.15)

On examples sheet 3 you will prove {Q,H} = 0 hence Q is constant along any geodesic!

Carter discovered this conserved quantity via Hamilton-Jacobi theory, which we’ll de-

scribe below.

Notice that Q is quadratic in pµ. Hence, using (7.10) we can write Q as an expres-

sion quadratic in ẋµ: Q = Kµν ẋ
µẋν where Kµν is a symmetric tensor. Our conservation

law is

0 =
dQ

dτ
= ẋρQ;ρ = Kµν;ρẋ

µẋν ẋρ (7.16)

where we used the geodesic equation in the final step. Now, at any point p, consider a

geodesic with tangent vector V µ at p. From the above we have Kµν;ρV
µV νV ρ = 0 at

p. This holds for any V µ, which implies (e.g. differentiate 3 times w.r.t. V µ)

K(µν;ρ) = 0 (7.17)

A tensor satisfying this equation is called a Killing tensor. Examples of Killing tensors

are obtained by taking outer products of Killing vectors and/or the metric tensor.

The Kerr-Newman spacetime admits a non-trivial Killing tensor, i.e., one that is not

obtained this way. The existence of the Carter constant arises from this Killing tensor.
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To write out the geodesic equations we’ll need the inverse metric, which you will

determine on examples sheet 3:

g−1 =
1

Σ

{
− 1

∆

(
(r2 + a2)

∂

∂t
+ a

∂

∂φ

)2

+ ∆

(
∂

∂r

)2

+
1

sin2 θ

(
∂

∂φ
+ a sin2 θ

∂

∂t

)2

+

(
∂

∂θ

)2
}

(7.18)

We now use ẋµ = gµνpν and write pt = −E, pφ = h to obtain

Σ
dt

dτ
=

[
(r2 + a2)2

∆
− a sin2 θ

]
E − 2Mrah

∆
(7.19)

Σ
dφ

dτ
=

2MraE

∆
+

(
1

sin2 θ
− a2

∆

)
h (7.20)

We’ll write the conserved Hamiltonian as H = −(1/2)σ where σ is constant and

conventionally the affine parameter is normalized so that σ ∈ {1, 0,−1} for time-

like/null/spacelike geodesics. Writing out this conservation law and using (7.14) to

eliminate p2
θ gives

1

∆

(
Σ
dr

dτ

)2

− 1

∆

(
(r2 + a2)E − ah

)2
+ σr2 = −Q (7.21)

where we substituted pr = grrṙ from (7.10). Similarly substituting pθ = gθθθ̇ in (7.14)

gives (
Σ
dθ

dτ

)2

+
1

sin2 θ

(
h− aE sin2 θ

)2
+ σa2 cos2 θ = Q (7.22)

This equation suggests a physical interpretation for Q. Recall that, in Newtonian

theory, motion in a spherically symmetric potential admits a conserved angular mo-

mentum L. The equations of motion can be written in terms of Lz and L2. We already

know that for a massive particle h is analogous to Lz/µ (where µ is rest mass). The

Schwarzschild and Reissner-Nordstrom spacetimes are spherically symmetric, so they

should admit a conserved quantity analogous to L2. In these spacetimes, by comparing

the above equation with the corresponding Newtonian equation for θ, one sees that Q

corresponds to L2/µ2. In the Kerr-Newman spacetime we therefore also interpret Q as

analogous to “squared total angular momentum per unit rest mass”, even though there

is no isometry that gives rise to this conservation law.

Equations (7.19) to (7.22) are a set of first order ODEs that determine Kerr-

Newman geodesics. They are straightforward to solve numerically on a computer.
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Note that the factors of Σ (which depends on both r and θ) imply that (7.21) and

(7.22) are coupled together. There are two common approaches to decoupling them.

One is to switch to using r as a parameter along the geodesic. We do this by writing

these equations in the form(
Σ
dr

dτ

)2

= R(r)

(
Σ
dθ

dτ

)2

= Θ(θ) (7.23)

Taking square roots and dividing the equations then gives

dr√
R(r)

= ± dθ√
Θ(θ)

(7.24)

which can be integrated to determine θ in terms of r along the geodesic. The integrals

are rather complicated. They can be written in terms of elliptic functions but often it

is more useful just to evaluate them numerically. One must also be careful near turning

points in r. Using r as a parameter also enables (7.19) and (7.20) to be integrated.

An alternative approach is to introduce a non-affine parameter τ̃ defined by dτ̃/dτ =

Σ−1 along the geodesic. This gives dxµ/dτ̃ = Σdxµ/dτ . So now our (r, θ) equations

are decoupled: (dr/dτ̃)2 = R(r) and (dθ/dτ̃)2 = Θ(θ). With suitable initial conditions,

these can be integrated, at least numerically, to determine r(τ̃) and θ(τ̃). Plugging

r(τ̃) into the RHS of (7.19) and (7.20) one can then integrate to determine t(τ̃) and

φ(τ̃). Finally we can solve dτ/dτ̃ = Σ to determine τ(τ̃).

Carter discovered his constant using Hamilton-Jacobi theory, which we’ll review

briefly. In a general spacetime, given any point q we can find a convex normal neigh-

bourhood of q, within which there exists a unique geodesic connecting any pair of

points. Given such a neighbourhood, introduce a coordinate chart xµ and define a

function S(τ, xµ; q) as

S(τ, x; q) =

∫ τ

0

L(x(τ ′), ẋ(τ ′))dτ ′ (7.25)

where the integral is evaluated along the unique geodesic xµ(τ ′) with xµ(0) = xµq (the

coordinates of q) and xµ(τ) = xµ (NB xµ(τ ′) denotes the geodesic and xµ its endpoint).

Now consider how S changes if we vary xµ with τ held fixed. This implies that the

geodesic xµ(τ) must vary. But we know that varying the integral on the RHS just gives

the Euler-Lagrange equations plus a surface term. Since we’re considering a geodesic,

the EL equations vanish, leaving just the surface term:

δS = [gµν(x(τ ′))δxµ(τ ′)ẋν(τ ′)]τ0 = gµν(x)δxµẋν(τ) (7.26)

using δxµ(0) = 0 since p is fixed and δxµ(τ) = δxµ. Hence we have

∂S

∂xµ
= gµν(x)ẋν(τ) ⇒ ẋµ(τ) = gµνS,ν (7.27)
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from which we can read off ẋµ(τ) if we know S. We can also vary τ with xµ held fixed.

We do this simply by rescaling the affine parameter along the geodesic: xµnew(τ ′) =

xµ(τ ′/(1+δτ/τ)) satisfies the geodesic equation and the boundary conditions xµnew(0) =

xµq and xµnew(τ + δτ) = xµ. This gives δxµ(τ ′) = −(τ ′δτ/τ)ẋµ(τ ′). Hence when we vary

τ in (7.25) we get two terms, one from varying the upper limit of integration and the

other from varying the integrand. As before, the latter gives a term proportional to

the EL equations, and so vanishes, plus a surface term of the form (7.26). Hence

δS = L(x(τ), ẋ(τ))δτ+[gµν(x(τ ′))(−τ ′δτ/τ)ẋµ(τ ′)ẋν(τ ′)]τ0 = −1

2
gµν(x(τ))ẋµ(τ)ẋν(τ)δτ

Eliminating ẋµ(τ) with (7.27) gives the Hamilton-Jacobi equation:

∂S

∂τ
= −1

2
gµνS,µS,ν (7.28)

Note that S depends on the choice of q. A different choice of q will give a different

solution of this equation.

Now we reverse the argument. Let S(τ, x) be a solution of the Hamilton-Jacobi

equation in some region. Given a point q we define a curve xµ(τ) through q by solving

the ODE

ẋµ(τ) = gµν(x(τ))S,ν(τ, x(τ)) (7.29)

with the initial condition xµ(0) = xµq . We claim that this curve is a geodesic. To see

this, first note that (7.10) gives the conjugate momentum along the curve as

pµ(τ) = S,µ(τ, x(τ)) (7.30)

and differentiating w.r.t. τ gives

ṗµ =
d

dτ
[S,µ(τ, x(τ))] = S,τµ + S,µν ẋ

ν = S,τµ + gνρS,µνpρ (7.31)

but we can differentiate the HJ equation to obtain

S,τµ = −1

2
gνρ,µS,νS,ρ − gνρS,νµS,ρ = −1

2
gνρ,µ pνpρ − gνρS,νµpρ (7.32)

so ṗµ = −1
2
gνρ,µ pνpρ and we’ve shown that our curve satisfies equations (7.10) and

(7.13) so it is a geodesic, as claimed.

Now consider the HJ equation in the Kerr-Newman spacetime. Using (7.18) this is

0 = 2
∂S

∂τ
− 1

Σ∆

(
(r2 + a2)

∂S

∂t
+ a

∂S

∂φ

)2

+
1

Σ sin2 θ

(
∂S

∂φ
+ a sin2 θ

∂S

∂t

)2

+
∆

Σ

(
∂S

∂r

)2

+
1

Σ

(
∂S

∂θ

)2

(7.33)
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Remarkably, this can be solved by separation of variables: make the Ansatz

S =
1

2
στ − Et+ Lφ+ Sr(r) + Sθ(θ) (7.34)

where σ, E and L are constants. Note from (7.30) that E, L are the usual conserved

quantities along the geodesic associated with the Killing vectors, and the HJ equation

gives gµνpµpν = −σ, so σ is the usual conserved quantity coming from the metric. After

multiplying by Σ, the HJ equation separates into

∆

(
dSr
dr

)2

− 1

∆

(
−(r2 + a2)E + aL

)2
+ σr2 = −Q (7.35)

(
dSθ
dθ

)2

+
1

sin2 θ

(
L− aE sin2 θ

)2
+ σa2 cos2 θ = Q (7.36)

where the separation constant Q is the Carter constant. Using pr = dSr/dr and

pθ = dSθ/dθ these are equations (7.21) and (7.22).

7.6 The ergosphere and Penrose process

In BL coordinates, consider the norm of the Killing vector field ka:

k2 = gtt = −
(
∆− a2 sin2 θ

)
Σ

= −
(

1− 2Mr

r2 + a2 cos2 θ

)
(7.37)

Hence ka is timelike in region I if and only if r2 − 2Mr + a2 cos2 θ > 0 i.e. if, and only

if r > M +
√
M2 − a2 cos2 θ. Hence ka is spacelike in the following region outside H+

r+ = M +
√
M2 − a2 < r < M +

√
M2 − a2 cos2 θ (7.38)

This region is called the ergosphere. Its surface is called the ergosurface. The latter

intersects H+ at the poles θ = 0, π, as shown in Fig. 44.

A stationary observer is someone with 4-velocity parallel to ka. Such observers

do not exist in the ergosphere because ka is spacelike there. Any causal curve in the

ergosphere must rotate (relative to observers at infinity) in the same direction as the

black hole.

Consider a particle with 4-momentum P a = µua (where µ is rest mass and ua is

4-velocity). Let the particle approach a Kerr black hole along a geodesic. The energy

of the particle according to a stationary observer at infinity is the conserved quantity

along the geodesic

E = −k · P (7.39)
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7.6 The ergosphere and Penrose process

θ = 0

θ = π

ergosurface
ergosphere

Figure 44. Ergosphere of a Kerr black hole.

Suppose that the particle decays at a point p inside the ergosphere into two other

particles with 4-momenta P a
1 and P a

2 (Fig. 45). From the equivalence principle, we

know that the decay must conserve 4-momentum (because we can use special relativity

in a local inertial frame at p) hence

P a = P a
1 + P a

2 ⇒ E = E1 + E2 (7.40)

where Ei = −k · Pi. Since ka is spacelike within the ergoregion, it is possible that

E1 < 0. We must then have E2 = E + |E1| > E. It can be shown that the first

particle must fall into the black hole and the second one can escape to infinity. This

particle emerges from the ergoregion with greater energy than the particle that was

sent in! Energy is conserved because the particle that falls into the black hole carries in

negative energy, so the energy (mass) of the black hole decreases. This Penrose process

is a method for extracting energy from a rotating black hole.

How much energy can be extracted in this process? A particle crossing H+ must

have −P · ξ ≥ 0 because both P a and ξa are future-directed causal vectors. But

ξa = ka + ΩHm
a hence

E − ΩHL ≥ 0 (7.41)

where E is the energy of the particle and

L = m · P (7.42)
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7.6 The ergosphere and Penrose process

P

P1

P2

Figure 45. Decay of a particle inside the ergosphere.

is its conserved angular momentum. Hence we have L ≤ E/ΩH (recall our convention

a > 0 so ΩH > 0). The particle carries energy E and angular momentum L into the

black hole. If the black hole now settles down to a Kerr solution then this new Kerr

solution will have slightly different mass and angular momentum: δM = E and δJ = L.

Therefore

δJ ≤ δM

ΩH

=
2M(M2 +

√
M4 − J2)

J
δM (7.43)

Exercise. Show that this is equivalent to δMirr ≥ 0 where the irreducible mass is

Mirr =

[
1

2

(
M2 +

√
M4 − J2

)]1/2

(7.44)

Inverting this expression gives

M2 = M2
irr +

J2

4M2
irr

≥M2
irr (7.45)

Hence in the Penrose process it is not possible to reduce the mass of the black hole

below the initial value of Mirr: there is a limit to the amount of energy that can be

extracted.

Exercise. Show that A = 16πM2
irr is the “area of the event horizon” of a Kerr black

hole, i.e., the area of the intersection ofH+ with a partial Cauchy surface (e.g. a surface

v = const in Kerr coordinates).

Hence δA ≥ 0 in the Penrose process: the area of the event horizon is non-

decreasing. This is a special case of the second law of black hole mechanics. The

explicit expression for A is

A = 8π
(
M2 +

√
M4 − J2

)
(7.46)
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8 Mass, charge and angular momentum

8.1 Charges in curved spacetime

On an orientable n-dimensional manifold with a metric, we denote the volume form by

εa1...an . This can be shown to obey

εa1...apcp+1...cnεb1...bpcp+1...cn = ±p!(n− p)!δa1[b1
. . . δ

ap
bp] (8.1)

where the upper (lower) sign holds for Riemannian (Lorentzian) signature.

Definition. The Hodge dual of a p-form X is the (n− p)-form ? X defined by

(? X)a1...an−p =
1

p!
εa1...an−pb1...bpX

b1...bp (8.2)

Lemma. For a p-form X

? (? X) = ±(−1)p(n−p)X (8.3)

(? d ? X)a1...ap−1 = ±(−1)p(n−p)∇bXa1...ap−1b (8.4)

where the upper (lower) sign holds for Riemannian (Lorentzian) signature.

Proof. Use (8.1).

For example, in 3d Euclidean space, the usual operations of vector calculus can be

written using differential forms as

∇f = df div X = ? d ? X curl X = ? dX (8.5)

where f is a function and X denotes the 1-form Xa obtained from a vector field Xa. The

final equation shows that the exterior derivative can be thought of as a generalization

of the curl operator.

Another example is Maxwell’s equations

∇aFab = −4πjb ∇[aFbc] = 0 (8.6)

where ja is the current density vector. These can be written as

d ? F = −4π ? j, dF = 0 (8.7)

The first of these implies d ? j = 0, which is equivalent to ∇aj
a = 0, i.e., ja is a

conserved current. The second of these implies (by the Poincaré lemma) that locally

there exists a 1-form A such that F = dA.
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8.1 Charges in curved spacetime

Now consider a spacelike hypersurface Σ. We define the total electric charge on Σ

to be

Q = −
∫

Σ

?j (8.8)

(The orientation of Σ is fixed by regarding Σ as a boundary of J−(Σ) and choosing the

orientation used in Stokes’ theorem.) Using Maxwell’s equations we can write

Q =
1

4π

∫
Σ

d ? F (8.9)

Hence if Σ is a manifold with boundary ∂Σ then Stokes’ theorem gives

Q =
1

4π

∫
∂Σ

?F (8.10)

This expresses the total charge on Σ in terms of an integral of ?F over ∂Σ. It is the

curved space generalisation of Gauss’ law Q ∼
∫

E · dS.

For example, consider Minkowski spacetime in spherical polar coordinates, choosing

the orientation so that the volume form is r2 sin θdt∧dr∧dθ∧dφ. Let Σ be the surface

t = 0. If we regard this as the boundary of the region t ≤ 0 then Stokes’ theorem fixes

the orientation of Σ as dr ∧ dθ ∧ dφ. Now let ΣR be the region r ≤ R of Σ, whose

boundary is S2
R: the sphere t = 0, r = R. Stokes tells us to pick the orientation of S2

R

to be dθ ∧ dφ. Consider a Coulomb potential

A = −q
r
dt ⇒ F = − q

r2
dt ∧ dr (8.11)

Taking the Hodge dual gives

(?F )θφ = r2 sin θF tr = q sin θ (8.12)

and hence the charge on ΣR is

Q[ΣR] =
1

4π

∫
S2
R

?F =
1

4π

∫
dθdφ q sin θ = q (8.13)

so our definition of Q indeed gives the correct result.

For an asymptotically flat hypersurface in Minkowski spacetime we can take the

limit R→∞ to express the total charge on Σ as an integral at infinity. Motivated by

this, we now define the total charge for any asymptotically flat end:

Definition. Let (Σ, hab, Kab) be an asymptotically flat end. Then the electric and

magnetic charges associated to this end are
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8.2 Komar integrals

Σ′

Σ

R

Figure 46. Region R bounded by Σ,Σ′.

Q =
1

4π
lim
r→∞

∫
S2
r

?F P =
1

4π
lim
r→∞

∫
S2
r

F (8.14)

where S2
r is a sphere xixi = r2 where xi are the coordinates used in the definition of an

asymptotically flat end.

Exercise (examples sheet 3). Show that these definitions agree with Q,P used in

the Kerr-Newman solution.

Hence the charges can be non-zero even when no charged matter is present in the

spacetime (i.e. ja = 0). Consider a surface of constant t in Kerr-Newman (or Reissner-

Nordstrom). The total charge on this surface is zero. But when we convert it to a

surface integral at infinity, we get two terms because the surface has two asymptotically

flat ends. Hence the charges of these two ends must be equal in magnitude with opposite

sign.

8.2 Komar integrals

If (M, g) is stationary then there exists a conserved energy-momentum current

Ja = −Tabkb d ? J = 0 (8.15)

Hence one can define the total energy of matter on a spacelike hypersurface Σ as

E[Σ] = −
∫

Σ

?J (8.16)

This is conserved: if Σ,Σ′ bound a spacetime region R (Fig. 46) then

E[Σ′]− E[Σ] = −
∫
∂R

?J = −
∫
R

d ? J = 0 (8.17)

Note that we need not require that the energy-momentum tensor Tab used above is

the one appearing on the RHS of the Einstein equation. It could be the time-dependent

energy momentum tensor of a test field in a stationary vacuum spacetime.
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8.2 Komar integrals

Now if we had ?J = dX for some 2-formX then we could convert E[Σ] to an integral

over ∂Σ as we did in the previous section. We could then define the total energy for a

general asymptotically flat end. Unfortunately, this is not possible. However, consider

(?d ? dk)a = −∇b(dk)ab = −∇b∇akb +∇b∇bka = 2∇b∇bka (8.18)

where we using Killing’s equation. Now recall

Lemma. A Killing vector field ka obeys

∇a∇bk
c = Rc

badk
d (8.19)

Hence we have

(?d ? dk)a = −2Rabk
b = 8πJ ′a (8.20)

where we used Einstein’s equation (so henceforth Tab must be the one appearing in

Einstein’s equation) and

J ′a = −2

(
Tab −

1

2
Tgab

)
kb (8.21)

Therefore

d ? dk = 8π ? J ′ (8.22)

So ?J ′ is exact (and conserved: d ? J ′ = 0). It follows that

−
∫

Σ

?J ′ = − 1

8π

∫
Σ

d ? dk = − 1

8π

∫
∂Σ

?dk (8.23)

The LHS appears to be a measure of the energy-momentum content of spacetime.

Exercise. Consider a static, spherically symmetric, perfect fluid star. Let Σ be the

region r ≤ r0 of a surface of constant t where r0 > R. Show that the RHS of (8.23) is

the Schwarzschild parameter M . Show that, in the Newtonian limit, (p� ρ, |Φ| � 1,

|Ψ| � 1), the LHS of (8.23) is the total mass of the fluid.

Hence M is the mass of the star in the Newtonian limit. This motivates the

following definition:

Definition. Let (Σ, hab, Kab) be an asymptotically flat end in a stationary spacetime.

The Komar mass (or Komar energy) is

MKomar = − 1

8π
lim
r→∞

∫
S2
r

?dk (8.24)

with S2
r defined as above.
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8.3 Hamiltonian formulation of GR

The Komar mass is a measure of the total energy of the spacetime. This energy

comes both from matter and from the gravitational field. For example, the first part of

the above exercise shows that the Komar mass of a Schwarzschild black hole is non-zero,

even when no matter is present in the spacetime.

The only property of ka that we used above is the Killing property. In an axisym-

metric spacetime we have a Killing vector field ma that generates rotations about the

axis of symmetry. Using this we can define the angular momentum of an axisymmetric

spacetime:

Definition. Let (Σ, hab, Kab) be an asymptotically flat end in an axisymmetric space-

time. The Komar angular momentum is

JKomar =
1

16π
lim
r→∞

∫
S2
r

?dm (8.25)

Exercise (examples sheet 3). Show that MKomar = M and JKomar = J for the

Kerr-Newman solution.

8.3 Hamiltonian formulation of GR

The Komar mass can be defined only in a stationary spacetime. How do we define

energy in a non-stationary spacetime? Energy is defined as the value of the Hamilto-

nian. So we need to consider the Hamiltonian formulation of GR. For simplicity we’ll

work in vacuum, i.e., no matter fields present. It is also convenient to change our units.

Previously we have set G = 1. But in this section we will set 16πG = 1 instead.

Recall that in the 3+1 decomposition of spacetime, we consider a spacetime foliated

with surfaces of constant t, so that the metric takes the form

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (8.26)

where N is the lapse function and N i the shift vector. If one substitutes this into the

Einstein-Hilbert action then the resulting action is, neglecting surface terms,

S =

∫
dtd3xL =

∫
dtd3x

√
hN

(
(3)R +KijK

ij −K2
)

(8.27)

where (3)R is the Ricci scalar of hij, Kij is the extrinsic curvature of a surface of constant

t, with trace K, and ij indices on the RHS are raised with hij, the inverse of hij. The

extrinsic curvature can be written

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
(8.28)
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8.3 Hamiltonian formulation of GR

where a dot denotes a t-derivative and Di is the covariant derivative associated to hij
on a surface of constant t.

The action S is a functional of N , N i and hij. Note that it does not depend on time

derivatives of N or N i. Varying N gives the hamiltonian constraint for a surface of

constant t. Similarly, varying N i gives the momentum constraint. Varying hij gives the

evolution equation for hij. There are no evolution equations for N,N i: these functions

are not dynamical but can be freely specified, which amounts to a choice of coordinates.

To introduce the Hamiltonian formulation of GR, we need to determine the mo-

menta conjugate to N , N i and hij. Since the action does not depend on time derivatives

of N and N i, it follows that their conjugate momenta are identically zero. The mo-

mentum conjugate to hij is

πij ≡ δS

δḣij
=
√
h
(
Kij −Khij

)
(8.29)

Note that the factor of
√
h means that πij is not a tensor, it is an example of a tensor

density. (A tensor density of weight p transforms under a coordinate transformation in

the same way as hp times a tensor.)

Now we define the Hamiltonian as the Legendre transform of the Lagrangian:

H =

∫
d3x

(
πijḣij − L

)
(8.30)

If we integrate by parts and neglect surface terms, this gives

H =

∫
d3x
√
h
(
NH +N iHi

)
(8.31)

where

H = −(3)R + h−1πijπij −
1

2
h−1π2 (8.32)

Hi = −2hikDj

(
h−1/2πjk

)
(8.33)

with π ≡ hijπij. In the Hamiltonian formalism, hij and πij are the dynamical variables.

N and N i play the role of Lagrange multipliers, i.e., we demand δH/δN = δH/δN i = 0,

which gives H = Hi = 0. These are simply the Hamiltonian and momentum con-

straints. The equations of motion are given by Hamilton’s equations:

ḣij =
δH

δπij
π̇ij = − δH

δhij
(8.34)

The first of these just reproduces the definition of πij. The second equation is quite

lengthy.
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8.3 Hamiltonian formulation of GR

Now we’ve determined the Hamiltonian for GR, we can define the energy of a

solution as the value of the Hamiltonian. But (8.31) vanishes for any solution of the

constraint equations!

The resolution of this puzzle is that we need to add a boundary term to the Hamil-

tonian. To calculate the variational derivatives in (8.34) we need to integrate by parts

in order to remove derivatives from δπij and δhij. This generates surface terms. We

need to investigate whether neglecting these terms is legitimate. If the constant t sur-

faces are compact then there won’t be any surface terms. So in this case, referred to

as a closed universe, the Hamiltonian really does evaluate to zero on a solution. This

remains true when matter is included. Hence, in GR, the total energy of a closed uni-

verse is exactly zero. (This leads to speculation about quantum creation of a closed

universe from nothing...)

Now consider the case in which the surfaces constant t are not spatially compact.

Let’s assume that each of these surfaces is asymptotically flat with 1 end. Hence we can

introduce “almost Cartesian” coordinates so that as r →∞ we have hij = δij +O(1/r)

and πij = O(1/r2). Hence the natural boundary conditions on the variations of hij and

πij are δhij = O(1/r) and δπij = O(1/r2). We also assume our time foliation is chosen

so that t, xi approach “inertial” coordinates in Minkowski spacetime at large r. More

precisely, assume that N = 1 +O(1/r) and N i → 0 as r →∞.

Consider the region of our constant t surface contained within a sphere of constant

r, with boundary S2
r . When we vary πij, the resulting surface term on S2

r is∫
S2
r

dA
(
−2N ihiknjh

−1/2δπjk
)

(8.35)

where dA is the area element, and nj the outward unit normal, of S2
r . Now dA = O(r2)

but our boundary conditions imply that the expression in brackets decays faster than

1/r2 as r → ∞ hence the whole expression vanishes as r → ∞. So we don’t need to

worry about the surface term that arises when we vary πij.

When we vary hij, surface terms arise in two ways. First, the variation of h−1/2 in

Hi is within a derivative so we need to integrate by parts, generating a surface term.

This is very similar to the surface term above and vanishes as r → ∞. Second, we

have the variation of the term (3)R in H. You know the variation of the Ricci scalar

because this is what you need to calculate when you derive the Einstein equation from

the Einstein-Hilbert action. The only difference is that we are now varying a 3d, rather

than a 4d, Ricci scalar:

δ(3)R = −Rijδhij +DiDjδhij −DkDk

(
hijδhij

)
(8.36)
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8.4 ADM energy

When we calculate δH, we need to integrate by parts twice to eliminate these derivatives

on δhij. The first integration by parts gives the surface term

S1 = −
∫
S2
r

dA N
[
niDjδhij − nkDk(h

ijδhij)
]

(8.37)

and the second integration by parts gives another surface term

S2 =

∫
S2
r

dA
(
njδhijD

iN − hijδhijnkDkN
)

(8.38)

Our boundary conditions implies that S2 → 0 as r →∞. On the other hand, we have

lim
r→∞

S1 = − lim
r→∞

∫
S2
r

dA ni (∂jδhij − ∂iδhjj) (8.39)

Here we have used the fact that hij → δij so (a) Dk → ∂k as r →∞ and (b) we don’t

need to distinguish between “upstairs” and “downstairs” indices. But we can rewrite

this as

lim
r→∞

S1 = −δEADM (8.40)

where

EADM = lim
r→∞

∫
S2
r

dA ni (∂jhij − ∂ihjj) (8.41)

In general, δEADM will be non-zero. But now consider

H ′ = H + EADM (8.42)

Since H ′ and H differ by a surface term, they will give the same equations of motion.

However, when we vary hij in H ′, the boundary term S1 coming from the variation of

H will be cancelled by the variation of the surface term EADM . Hence no surface terms

arise in the variation of H ′ so H ′ must be the Hamiltonian for General Relativity with

asymptotically flat initial data. The need for this surface term was first pointed out by

Regge and Teitelboim (1974).

8.4 ADM energy

Now that we have a satisfactory variational principle, we can evaluate the Hamiltonian

on a solution. As before, we have that H = 0 so the value of H ′ is the value of the

surface term EADM . Hence EADM must be the energy of our initial data set. This is

the Arnowitt-Deser-Misner energy (1962). We now return to G = 1 units to obtain the

following
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8.4 ADM energy

Definition. The ADM energy of an asymptotically flat end is

EADM =
1

16π
lim
r→∞

∫
S2
r

dA ni (∂jhij − ∂ihjj) (8.43)

If we have asymptotically flat initial data with several asymptotically flat ends

then one can define a separate ADM energy for each asymptotic end. In a stationary,

asymptotically flat spacetime, it can be shown that EADM = MKomar if one chooses the

surfaces of constant t to be orthogonal to the timelike Killing vector field as r →∞.

Exercise (examples sheet 3). Show that EADM = M for a constant t surface in the

Kerr-Newman solution.

There is also a notion of the total 3-momentum of an asymptotically flat end:

Definition. The ADM 3-momentum of an asymptotically flat end is

Pi =
1

8π
lim
r→∞

∫
S2
r

dA (Kijnj −Kni) (8.44)

In Newtonian gravity, the energy density of the gravitational field is negative. So one

might wonder whether the ADM energy in GR could also be negative. Since EADM = M

for a surface of constant t in the Schwarzschild spacetime, it follows that EADM < 0

for M < 0 Schwarzschild. But in this case, the surface of constant t is singular (not

geodesically complete). We could also arrange that EADM < 0 if we included matter

with negative energy density. But if we exclude these unphysical possibilities then we

have the positive energy theorem:

Theorem (Schoen & Yau 1979, Witten 1981). Let (Σ, hab, Kab) be an initial data

set that is geodesically complete and asymptotically flat. Assume that the energy-

momentum tensor satisfies the dominant energy condition. Then EADM ≥
√
PiPi, with

equality if, and only if, (Σ, hab, Kab) arises from a surface in Minkowski spacetime.

In the case of a spacetime containing black holes, one might not want to assume

anything about the black hole interior. In this case, one can allow Σ to have an inner

boundary corresponding to an apparent horizon and the result still holds (Gibbons,

Hawking, Horowitz & Perry 1983).

There is a natural way of regarding (EADM , Pi) as a 4-vector defined at spatial

infinity i0. We then define the ADM mass by

MADM =
√
E2
ADM − PiPi ≥ 0 (8.45)
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9 Black hole mechanics

9.1 Killling horizons and surface gravity

Definition. A null hypersurface N is a Killing horizon if there exists a Killing vector

field ξa defined in a neighbourhood of N such that ξa is normal to N .

Theorem (Hawking 1972). In a stationary, analytic, asymptotically flat vacuum

black hole spacetime, H+ is a Killing horizon.

Proof. See Hawking and Ellis.

The result extends to Einstein-Maxwell theory or theories where the matter fields

obey hyperbolic equations. As mentioned previously, it would be desirable to eliminate

the assumption of analyticity because analyticity implies that the full spacetime is

determined by its behaviour in a neighbourhood of a single point.

Note that H+ is not necessarily a Killing horizon of the stationary Killing vector

field ka. For example, in the Kerr solution, we have ξa = ka + ΩHm
a where ma is

the Killing field corresponding to axisymmetry. One can show (see Hawking and Ellis)

that this behaviour is general: if ξa is not tangent to ka then one can construct a linear

combination ma of ξa and ka so that the spacetime is stationary and axisymmetric.

If N is a Killing horizon w.r.t. a Killing vector field ξa then it is also a Killing

horizon w.r.t. the Killing vector field cξa where c is any non-zero constant. In a

stationary, asymptotically flat spacetime, it is conventional to normalise the generator

of time translations so that kaka → −1 at infinity. We then normalize ξa so that so

that ξa = ka + ΩHm
a.

Since ξaξa = 0 on N , it follows that the gradient of ξaξa is normal to N , i.e.,

proportional to ξa. Hence there exists a function κ on N such that

∇a(ξ
bξb)|N = −2κξa (9.1)

The function κ is called the surface gravity of the Killing horizon. The LHS can be

rearranged to give 2ξb∇aξb = −2ξb∇bξa using Killing’s equation. Hence we have

ξb∇bξ
a|N = κξa (9.2)

which shows that κ measures the failure of integral curves of ξa to be affinely parame-

terized. If we let na be the tangent to the affinely parameterized generators of N then

we have ξa = fna for some function f on N . Then using n · ∇na = 0 we have, on N ,

ξb∇bξ
a = fnanb∂bf = f−1ξaξb∂bf and hence

κ = ξa∂a log |f | (9.3)
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9.1 Killling horizons and surface gravity

Example. The Reissner-Nordstrom solution in ingoing EF coordinates is

ds2 = −∆

r2
dv2 + 2dvdr + r2dΩ2 (9.4)

where ∆ = (r − r+)(r − r−) and r± = M ±
√
M2 − e2. The stationary Killing vector

field is k = ∂/∂v. At r = r± we have ∆ = 0 so ka = (dr)a, which is normal to the

null hypersurfaces r = r±. Hence these surfaces are Killing horizons. To calculate the

surface gravity we use

d(kbkb) = d(−∆/r2) = (−∆′/r2 + 2∆/r3)dr (9.5)

Evaluating at r = r± gives

d(kbkb)|r=r± = −(r± − r∓)

r2
±

dr = −(r± − r∓)

r2
±

k|r=r± (9.6)

hence the surface gravities are

κ = κ± =
(r± − r∓)

2r2
±

(9.7)

For Schwarzschild we have e = 0 so r+ = 2M , r− = 0 and hence κ = 1/4M is the

surface gravity of H+. For extreme RN we have r+ = r− and κ = 0.

Exercise. In the Kruskal spacetime, H+ is the surface U = 0 and H− the surface

V = 0. Use (2.34) to show that these are Killing horizons of ka (the time translation

Killing vector field). Calculate the LHS of (9.1). Use (2.31) to relate dr to d(UV ).

Hence show that the surface gravity of H± is ±1/(4M).

This is an example of a bifurcate Killing horizon i.e. a pair of intersecting null

hypersurfaces N± that are each Killing horizons with respect to the same Killing vector

field. At the bifurcation surface B = N+ ∩ N−, the Killing field can’t be normal to

both N+ and N− so it must vanish on B. Any vector Xa tangent to B is tangent to

both N+ and N−, which implies that Xa must be spacelike so B is a spacelike surface.

For the Kruskal spacetime this is the 2-sphere {U = V = 0}.
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9.2 Interpretation of surface gravity

9.2 Interpretation of surface gravity

The main reason that κ is important is because ~κ/(2π) is the Hawking temperature

of the hole (see later). There is also a classical interpretation of κ.

In a static, asymptotically flat spacetime, consider a particle of unit mass that is

“at rest”, i.e., following an orbit of ka. Such orbits are not geodesics so the particle is

accelerating. This acceleration requires a force, let’s assume it is provided by a massless

inelastic string attached to the particle, with the other end of the string held by an

observer at infinity. Let F be the force in the string (i.e. the tension) measured at

infinity. Then F → κ as we consider orbits closer and closer to a Killing horizon of

ka (for the Schwarzschild solution this is proved on examples sheet 3). Hence κ is the

force per unit mass required at infinity to hold a test particle at rest near the horizon.

The local force on the particle is certainly not κ. In a general stationary spacetime,

the 4-velocity of a particle on an orbit of ka is

ua =
ka√
−k2

(9.8)

where the normalisation is fixed by the condition u2 = −1. The proper acceleration of

the particle is therefore

Aa = u · ∇ua =
k · ∇ka

−k2
+

ka

2(−k2)2
k · ∇(k2) (9.9)

In the first term, Killing’s equation gives kb∇bka = −kb∇akb = −(1/2)∂a(k
2). In the

second term k · ∇(k2) = 2kakb∇akb = 0. Hence we have

Aa =
∂a(−k2)

2(−k2)
=

1

2
∂a log(−k2) (9.10)

Since k2 → 0 at a Killing horizon, it follows that Aa must diverge at the horizon. For

Schwarzschild we have (viewing Aa as a 1-form)

A =
1

2
d log

(
1− 2M

r

)
=

M

r2 (1− 2M/r)
dr (9.11)

and so the norm of A is (using grr = (1− 2M/r))

|A| ≡
√
gabAaAb =

√
M2

r4(1− 2M/r)
=

M

r2
√

1− 2M/r
(9.12)

which diverges as r → 2M . Hence the local tension (i.e. the force exerted on the

particle by the string) is very large if the particle is near the horizon. A physical string

would break if the particle were too near the horizon.
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9.3 Zeroth law of black holes mechanics

Proposition. Consider a null geodesic congruence that contains the generators of a

Killing horizon N . Then θ = σ̂ = ω̂ = 0 on N .

Proof. ω̂ = 0 on N because the generators are hypersurface orthogonal.

Let ξa be a Killing field normal to N . On N we can write ξa = hUa where Ua is

tangent to the (affinely parameterized) generators of N and h is a function on N . Let

N be specified by an equation f = 0. Then we can write Ua = h−1ξa + fV a where V a

is a smooth vector field. We can then calculate

Bab = ∇bUa = (∂bh
−1)ξa + h−1∇bξa + (∂bf)Va + f∇bVa (9.13)

so evaluating on N and using Killing’s equation gives

B(ab)|N =
(
ξ(a∂b)h

−1 + V(a∂b)f
)
N (9.14)

But both ξa and ∂af are parallel to Ua on N . Hence when we project onto T⊥, both

terms are eliminated:

B̂(ab)|N = P c
aB(cd)P

d
b = 0 (9.15)

Hence θ and σ̂ vanish on N .

Theorem (zeroth law of black hole mechanics). κ is constant on the future event

horizon of a stationary black hole spacetime obeying the dominant energy condition.

Proof. Note that Hawking’s theorem implies that H+ is a Killing horizon w.r.t some

Killing vector field ξa. From the above result we know that θ = 0 along the generators of

H+ hence dθ/dλ = 0 along these generators. We also have σ̂ = ω̂ = 0 so Raychaudhuri’s

equation gives

0 = Rabξ
aξb|H+ = 8πTabξ

aξb|H+ (9.16)

where we used Einstein’s equation and ξ2|H+ = 0 in the second equality. This implies

J · ξ|H+ = 0 (9.17)

where Ja = −Tabξb. Now ξa is a future-directed causal vector field hence (by the

dominant energy condition), so is Ja (unless Ja = 0). Hence the above equation implies

Ja is parallel to ξa on H+. Therefore

0 = ξ[aJb]|H+ = −ξ[aTb]cξ
c|H+ = − 1

8π
ξ[aRb]cξ

c|H+ (9.18)

where we used Einstein’s equation in the final equality. On examples sheet 4, it is

shown that this implies

0 =
1

8π
ξ[a∂b]κ (9.19)

Hence ∂aκ is proportional to ξa so t · ∂κ = 0 for any vector field ta that is tangent to

H+. Hence κ is constant on H+ (assuming H+ is connected).
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9.4 First law of black hole mechanics

The Kerr solution is specified by two parameters M,a. Consider a small variation of

these parameters. This will induce small changes in J and A (the horizon area). Using

the formula for A one can check that, to first order (exercise)

κ

8π
δA = δM − ΩHδJ (9.20)

We can define a linearized metric perturbation to be the difference of the Kerr metric

with parameters (M + δM, a + δa) and the Kerr metric with parameters (M,a). The

above formula tells us how this linearized perturbation of the Kerr solution changes A

etc. Remarkably, it turns out that this formula holds for any linearized perturbation

of the metric of the Kerr solution. Consider a hypersurface Σ which extends from

the bifurcation surface B to infinity and, near infinity, is asymptotically orthogonal to

the timelike Killing vector field. Σ is actually a manifold with boundary because it

includes B. Let hab be the induced metric and Kab the extrinsic curvature of Σ. Then

(Σ\B, hab, Kab) is an asymptotically flat end. Now consider a linearized perturbation

hab → hab+δhab, Kab → Kab+δKab and assume that this obeys the constraint equations

to linear order. Then the perturbed initial data satisfies equation (9.20) where δA is the

change in the area of B, δM is the change in the ADM energy and δJ is the change in

the ADM angular momentum (we have not defined the latter but for an axisymmetric

spacetime it agrees with the Komar angular momentum).

This result was proved by Sudasky and Wald in 1992. (A more restricted version,

applying only to stationary axisymmetric perturbations, was obtained by Bardeen,

Carter and Hawking in 1973.) The proof can be extended to any stationary black hole

solution, not just Kerr. For example, it holds for stationary black holes in theories

containing matter fields even when one cannot write down the solution explicitly. The

result even holds for more general diffeomorphism-covariant theories of gravity involving

higher derivatives of the metric. In the particular case of Einstein-Maxwell theory, there

is an additional term −ΦHδQ on the RHS where Q is the electric charge and ΦH is

the electrostatic potential difference between the event horizon and infinity (examples

sheet 4).

In this version of the first law of black hole mechanics, we are comparing two

different spacetimes: a stationary black hole and a perturbed stationary black hole.

There is a another version of the first law, due to Hartle and Hawking (1972) in which

we perturb a black hole by throwing in a small amount of matter and wait for it to

settle down to a stationary solution again. In this case, (9.20) relates the change in

horizon area to the energy and angular momentum of the matter that crosses the event

horizon, rather than to a change in the ADM energy and angular momentum (indeed
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the latter don’t change, they are conserved). We will prove this “physical process”

version of the first law. (The other version is sometimes called the “equilibrium state”

version when restricted to stationary perturbations.)

We treat the matter as a small perturbation of a Kerr black hole, i.e., the energy

momentum tensor is O(ε). We can define energy and angular momentum 4-vectors for

the matter

Ja = −T abkb La = T abm
b (9.21)

If we treat the matter as a test field then these are exactly conserved. However, we

want to include the gravitational backreaction of the matter, which induces an O(ε)

change in the metric, which will not be stationary and axisymmetric in general, hence

Ja and La will not be exactly conserved. However, this is a second order effect so ∇aJ
a

and ∇aL
a will be O(ε2). We will work to linear order in ε so we can assume that Ja

and La are conserved.

Assume that the matter crosses H+ to the future of the bifurcation sphere B. Let

N be the portion of H+ to the future of B:

The energy and angular momentum of the matter that crosses N are (examples

sheet 3)

δM = −
∫
N
?J δJ = −

∫
N
?L (9.22)

(Do not confuse angular momentum J in δJ with the energy momentum current Ja
appearing in the first integral!) We can introduce Gaussian null coordinates (r, λ, yi)

on H+ as described in section 4.6, taking the surface S used there to be B. We choose

the affine parameter λ of the generators of H+ to vanish on B, so N is the portion

λ > 0 of H+. In these coordinates, H+ is the surface r = 0 and the metric on H is

ds2|H+ = 2drdλ+ hij(λ, y)dyidyj (9.23)

We order (y1, y2) so that the volume form on H+ is

η =
√
h dλ ∧ dr ∧ dy1 ∧ dy2 (9.24)
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9.4 First law of black hole mechanics

using
√
−g =

√
h. The orientation of N used in (9.22) is the one used in Stokes’

theorem, viewing N as the boundary of the region r > 0. This is dλ ∧ dy1 ∧ dy2. We

then have, on N
(?J)λ12 =

√
hJr =

√
hJλ =

√
hU · J (9.25)

where U = ∂/∂λ is tangent to the generators of N . Hence

δM = −
∫
N
dλd2y

√
hU · J (9.26)

and similarly

δJ = −
∫
N
dλd2y

√
hU · L (9.27)

Since Ja and La are O(ε), the perturbation to the spacetime metric contributes to

these integrals only at O(ε2) hence we can evaluate the integrals by working in the

Kerr spacetime. Hence N is a Killing horizon of ξ = k+ΩHm so on N we have ξ = fU

for some function f and we have equation (9.3)

ξ · ∂ log |f | = κ ⇒ U · ∂f = κ ⇒ ∂f

∂λ
= κ (9.28)

hence f = κλ + f0(y). But we know that ξ = 0 on B hence f = 0 at λ = 0 so f0 = 0.

We have shown that

ξa = κλUa on N (9.29)

From the definition of Ja we have

δM =

∫
N
dλd2y

√
hTabU

akb =

∫
N
dλd2y

√
hTabU

a
(
ξb − ΩHm

b
)

=

∫
N
dλd2y

√
hTabU

aU bκλ− ΩH

∫
N
dλd2y

√
hU · L (9.30)

The final integral is −δJ . In the first integral the Einstein equation gives 8πTabU
aU b =

RabU
aU b (as Ua is null). Here Rab is the O(ε) Ricci tensor of the perturbed spacetime.

Hence we have

δM − ΩHδJ =
κ

8π

∫
N
dλd2y

√
hλRabU

aU b (9.31)

Raychaudhuri’s equation gives

dθ

dλ
= −RabU

aU b (9.32)

where we have used the fact that generators of N have ω̂ = 0 and neglected θ2, σ̂2

because these are O(ε2) (since θ and σ̂ vanish for the unperturbed spacetime). Hence
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Σ1

Σ2

H1

H2

Figure 47. Second law of black hole mechanics, showing a horizon generator.

we have

δM − ΩHδJ = − κ

8π

∫
d2y

∫ ∞
0

√
hλ

dθ

dλ
dλ

= − κ

8π

∫
d2y

{[√
hλθ

]∞
0
−
∫ ∞

0

(
√
h+ λ

d
√
h

dλ

)
θdλ

}
(9.33)

Now recall that d
√
h/dλ = θ

√
h = O(ε). This is multiplied by θ in the final integral,

giving a negligible O(ε2) contribution. If we assume that the black hole settles down to

a new stationary solution at late time then
√
h must approach a finite limit as λ→∞.

We have ∫ ∞
0

√
h θdλ =

∫ ∞
0

d
√
h

dλ
dλ = δ

√
h (9.34)

the RHS is finite hence the integral on the LHS must converge so θ = o(1/λ) as λ→∞.

This implies that the boundary term on the RHS of (9.33) vanishes, leaving

δM − ΩHδJ =
κ

8π

∫
d2y δ

√
h =

κ

8π
δ

∫
d2y
√
h =

κ

8π
δA (9.35)

9.5 Second law of black hole mechanics

Theorem (Hawking 1972). Let (M, g) be a strongly asymptotically predictable

spacetime satisfying the Einstein equation with the null energy condition. Let U ⊂M

be a globally hyperbolic region for which J−(I+) ⊂ U (such U exists because the

spacetime is strongly asymptotically predictable). Let Σ1, Σ2 be spacelike Cauchy

surfaces for U with Σ2 ⊂ J+(Σ1). Let Hi = H+ ∩Σi. Then area(H2) ≥ area(H1). (See

Fig. 47.)
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Proof. We will make the additional assumption that inextendible generators of H+ are

future complete, i.e., H+ is “non-singular”. (This assumption can be eliminated with

a bit more work.) First we will show θ ≥ 0 on H+. So assume θ < 0 at p ∈ H+. Let

γ be the (inextendible) generator of H+ through p and let q be slightly to the future

of p along γ. By continuity we have θ < 0 at q. But then we know from section 4.10

that there exists a point r (to the future of q) conjugate to p on γ (here we use the

assumption that γ is future-complete). Theorem 2 of section 4.10 then tells us that

we can deform γ to obtain a timelike curve from p to r, violating achronality of H+.

Hence θ ≥ 0 on H+.

Let p ∈ H1. The generator of H+ through p cannot leave H+ (as generators

can’t have future endpoints) so it must intersect H2 (as Σ2 is a Cauchy surface). This

defines a map φ : H1 → H2. Now area(H2) ≥ area(φ(H1)) ≥ area(H1) where the first

inequality follows because φ(H1) ⊂ H2 and the second inequality follows from θ ≥ 0.

�
For example, consider the formation of a Schwarzschild black hole in spherically

symmetric gravitational collapse. We can draw a Finkelstein diagram:

Now consider two well-separated non-rotating black holes such that the metric near

each is well approximated by the Schwarzschild solution. Let the mass parameters be

M1 and M2. Assume that these black holes collide and merge into a single black hole

which settles down to a Schwarzschild black hole of mass M3. The above theorem

implies that the horizon areas obey

A3 ≥ A1 + A2 ⇒ 16πM2
3 ≥ 16πM2

1 + 16πM2
2 (9.36)

hence

M3 ≥
√
M2

1 +M2
2 (9.37)

The energy radiated as gravitational radiation in this process is M1 + M2 −M3. In

principle, this energy could be used to do work. The efficiency of this process is limited

by the second law because

efficiency =
M1 +M2 −M3

M1 +M2

≤ 1−
√
M2

1 +M2
2

M1 +M2

≤ 1− 1√
2

(9.38)
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with the final inequality arising from dividing the numerator and denominator by M1

and then maximising w.r.t M2/M1.

Finally we can discuss the Penrose inequality. Consider initial data which is asymp-

totically flat and contains a trapped surface behind an apparent horizon of area Aapp.

Let Ei denote the ADM energy of this data (“i” for initial). If weak cosmic censorship

is correct, the spacetime resulting from this data will be a strongly asymptotically pre-

dictable black hole spacetime. We would expect this to “settle down” to a stationary

black hole at late time. By the uniqueness theorems, this should be described by a

Kerr solution with mass Mf and angular momentum Jf (“f” for final). Now since the

apparent horizon must lie inside the event horizon we expect Aapp ≤ Ai where Ai is the

area of the intersection of H+ with the initial surface Σ. The second law tells us that

Ai ≤ AKerr(Mf , Jf ) (the horizon area of the final Kerr black). But from (7.46) we have

AKerr(Mf , Jf ) = 8π
(
M2

f +
√
M4

f − J2
f

)
≤ 16πM2

f (9.39)

Finally, we have Mf ≤ Ei because gravitational radiation carries away energy in this

process. Putting this together gives

Aapp ≤ 16πE2
i ⇒ Ei ≥

√
Aapp

16π
(9.40)

This refers only to quantities that can be calculated from the initial data! If standard

beliefs about the gravitational collapse process are correct then this inequality must be

satisfied by any initial data set. If one could find initial data that violated this inequality

then some aspect of the above argument (e.g. weak cosmic censorship) must be false.

No counterexample has been found. Indeed, in the case of time-symmetric initial data

(Kab = 0) with matter obeying the weak energy condition, the above inequality has

been proved (Huisken and Ilmanen 1997). Note that the inequality can be regarded as

a stronger version of the positive mass theorem.

10 Quantum field theory in curved spacetime

10.1 Introduction

The laws of black hole mechanics have a remarkable similarity to the laws of thermo-

dynamics. At rest, a black hole has energy E = M . Consider a thermodynamic system

with the same energy and angular momentum as the black hole. This is governed by

the first law of thermodynamics

dE = TdS + µdJ (10.1)
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where µ is the chemical potential that enforces conservation of angular momentum.

This is identical to the first law of black hole mechanics if we make the identifications

T = λκ S = A/(8πλ) µ = ΩH (10.2)

for some constant λ. Furthermore, if we do this then the zeroth law of thermodynamics

(the temperature is constant in a body in thermodynamic equilibrium) becomes the

zeroth law of black hole mechanics. The second law of thermodynamics (the entropy

is non-decreasing in time) becomes the second law of black hole mechanics.

This similarity suggests that black holes might be thermodynamic objects. Another

reason for believing this is that if black holes do not have entropy then one could violate

the second law of thermodynamics simply by throwing some matter into a black hole:

the total entropy of the universe would effectively decrease according to an observer

who remains outside the hole. This led Bekenstein (1972) to suggest that black holes

have an entropy proportional to their area, as above.

There is a serious problem with this proposal: if (10.2) is correct then a black hole

has a temperature and hence must emit radiation just like any other hot body in empty

space. But, by definition, a black hole cannot emit anything!

These different ideas were all drawn together into a consistent picture by Hawking’s

famous discovery (1974) that, if one treats matter quantum mechanically then a black

hole does emit radiation, with a blackbody spectrum at the Hawking temperature

TH =
~κ
2π

(10.3)

Hence black holes are indeed thermodynamic objects, and the laws of black hole me-

chanics are the laws of thermodynamics applied to these objects. Hawking’s calculation

determines the correct value of λ to use in (10.2).

In this chapter, we will explain Hawking’s result. In order to do this we need to

study quantum field theory in curved spacetime. QFT is usually studied in Minkowski

spacetime and the standard approach relies heavily on the symmetries of Minkowski

spacetime. We will see that several familiar features of flat spacetime QFT are absent,

or ambiguous in curved spacetime.

10.2 Quantization of the free scalar field

Let (M, g) be a globally hyperbolic spacetime. Perform a 3 + 1 decomposition of the

metric as explained in section 3.1:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (10.4)
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Let Σt denote a (Cauchy) surface of constant t. The future-directed unit normal to

this is na = −N(dt)a. The metric on Σt is hij and we have
√
−g = N

√
h.

Consider a massive real Klein-Gordon field with action

S =

∫
M

dtd3x
√
−g
(
−1

2
gab∂aΦ∂bΦ−

1

2
m2Φ2

)
(10.5)

and equation of motion

gab∇a∇bΦ−m2Φ = 0 (10.6)

The canonical momentum conjugate to Φ is obtained by varying the action:

Π(x) =
δS

δ(∂tΦ(x))
= −
√
−ggtµ∂µΦ = −N

√
h(dt)νg

νµ∂µΦ =
√
hnµ∂µΦ (10.7)

To quantize, we promote Φ and Π to operators and impose the canonical commutation

relations (units: ~ = 1)

[Φ(t, x),Π(t, x′)] = iδ(3)(x− x′) [Φ(t, x),Φ(t, x′)] = 0 [Π(t, x),Π(t, x′)] = 0

(10.8)

We now want to introduce a Hilbert space of states that these operators act on. Let

S be the space of complex solutions of the KG equation. Global hyperbolicity implies

that a point of S is specified uniquely by initial data Φ, ∂tΦ on Σ0. For α, β ∈ S we

can define

(α, β) = −
∫

Σ0

d3x
√
hnaj

a(α, β) (10.9)

where ja is defined by

j(α, β) = −i (ᾱdβ − βdᾱ) (10.10)

Note that this can be calculated just from the initial data on Σ0. Now

∇aja = −i
(
ᾱ∇2β − β∇2ᾱ

)
= −im2(ᾱβ − βᾱ) = 0 (10.11)

so j is conserved. It follows that we can replace Σ0 by any surface Σt in (10.9) and get

the same result. Note the following properties:

(α, β) = (β, α) (10.12)

which implies that (, ) is a Hermitian form. It is non-degenerate: if (α, β) = 0 for all

β ∈ S then α = 0. However,

(α, β) = −(β̄, ᾱ) (10.13)

so (α, α) = −(ᾱ, ᾱ) so (, ) is not positive definite.
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In Minkowski spacetime, (, ) is positive definite on the subspace Sp of S consisting

of positive frequency solutions. A basis for Sp are the positive frequency plane waves:

ψp(x) =
1

(2π)3/2(2p0)1/2
eip·x p0 =

√
p2 +m2 (10.14)

where x denotes inertial frame coordinates (t,x). These modes (solutions) are positive

frequency in the sense that, if k = ∂/∂t then they have negative imaginary eigenvalue

w.r.t. Lk:
Lkψp = −ip0ψp (10.15)

The complex conjugate of ψp is a negative frequency plane wave. These are orthogonal

to the positive frequency plane waves so we have the orthogonal decomposition

S = Sp ⊕ S̄p (10.16)

where (, ) is positive definite on Sp and negative definite on S̄p.
In curved spacetime, we do not have a definition of “positive frequency” except

when the spacetime is stationary (see below). Hence there is no preferred way to

decompose S as above. Instead, we simply choose a subspace Sp for which (, ) is

positive definite and (10.16) holds. In general there will be many ways to do this.

In the quantum theory, we define the creation and annihilation operators associated

to a mode f ∈ Sp of a real scalar field (Φ† = Φ) by

a(f) = (f,Φ) a(f)† = −(f̄ ,Φ) (10.17)

e.g. taking f = ψp in Minkowski spacetime gives the usual a(f) = ap. The canonical

commutation relations imply (examples sheet 4)

[a(f), a(g)†] = (f, g) [a(f), a(g)] = [a(f)†, a(g)†] = 0 (10.18)

e.g. in Minkowski spacetime with f = ψp and g = ψq, the first condition gives [ap, a
†
q] =

δ(3)(p− q).

We define a vacuum state |0〉 by the conditions

a(f)|0〉 = 0 ∀f ∈ Sp 〈0|0〉 = 1 (10.19)

Given a basis {ψi} for Sp, we define the N -particle states as

a†i1 . . . a
†
iN
|0〉 (10.20)

where

ai = a(ψi) (10.21)
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(Here the index i might be continuous e.g. in flat spacetime, basis elements are usually

labelled by 3-momentum p.) We then choose the Hilbert space to be the Fock space

spanned by the vacuum state, the 1-particle states, the 2-particles states etc. The fact

that elements of Sp have positive Klein-Gordon norm implies that this Hilbert space

has a positive definite inner product e.g.

||a(f)†|0〉||2 = 〈0|a(f)a(f)†|0〉 = 〈0|[a(f), a(f)†]|0〉 = (f, f) > 0 (10.22)

In a general curved spacetime there is no preferred choice of Sp, instead there will be

many inequivalent choices. Let S ′p be another choice of positive frequency subspace.

Then any f ′ ∈ S ′p can be decomposed uniquely as f ′ = f + ḡ with f, g ∈ Sp. Hence

a(f ′) = (f,Φ) + (ḡ,Φ) = a(f)− a(g)† (10.23)

so a(f ′)|0〉 6= 0 hence |0〉 is not the vacuum state if one uses S ′p as the positive frequency

subspace. In fact it can be shown that the vacuum state defined using S ′p does not even

belong to the Hilbert space that one defines using Sp! Since the vacuum state depends

on the choice of Sp, so does the definition of 1-particle states etc. So there is no natural

notion of particles in a general curved spacetime.

Why doesn’t this issue arise in Minkowski spacetime? In a stationary spacetime,

one can use the time translation symmetry to identify a preferred choice of Sp. Let

ka be the (future-directed) time-translation Killing vector field. Since this generates a

symmetry, it follows that Lk (the Lie derivative w.r.t. k) commutes with ∇2−m2 and

therefore maps S to S. It can be shown that Lk is anti-hermitian w.r.t (, ) (examples

sheet 4) and hence has purely imaginary eigenvalues. We say that an eigenfunction has

positive frequency if the eigenvalue is negative imaginary:

Lku = −iωu ω > 0 (10.24)

(The flat spacetime solutions (10.14) have positive frequency.) Such solutions have

positive KG norm (examples sheet 4) so we define Sp to be the space spanned by

these positive frequency eigenfunctions. Complex conjugation shows that the solution

ū is a negative frequency eigenfunction. The anti-hermitian property implies that

eigenfunctions with distinct eigenvalues are orthogonal so we indeed have an orthogonal

decomposition as in (10.16).

10.3 Bogoliubov transformations

Let {ψi} be an orthonormal basis for Sp:

(ψi, ψj) = δij ⇒ (ψ̄i, ψ̄j) = −δij (10.25)
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The orthogonality of the decomposition (10.16) implies

(ψi, ψ̄j) = 0 (10.26)

Expanding the quantum field in this basis gives

Φ =
∑
j

(
cjψj + djψ̄j

)
(10.27)

We define the annihilation operators ai by (10.21) then (10.17) gives ai = ci and a†i = di
so

Φ =
∑
i

(
aiψi + a†i ψ̄i

)
(10.28)

For such a basis we have

[ai, a
†
j] = δij [ai, aj] = 0 (10.29)

Let S ′p be a different choice for the positive frequency subspace, with orthonormal basis

{ψ′i}. This will be related to the first basis by a Bogoliubov transformation:

ψ′i =
∑
j

(
Aijψj +Bijψ̄j

)
ψ̄′i =

∑
j

(
B̄ijψj + Āijψ̄j

)
(10.30)

A,B are called Bogoliubov coefficients. For S ′p we define annihilation operators a′i =

a(ψ′i).

Exercise. Substitute (10.30) into a′i = (ψ′i,Φ) to obtain

a′i =
∑
j

(
Āijaj − B̄ija

†
j

)
(10.31)

Show also that the requirement that the second basis obeys the conditions (10.25) and

(10.26) implies that∑
k

(
ĀikAjk − B̄ikBjk

)
= δij i.e. AA† −BB† = 1 (10.32)

∑
k

(AikBjk −BikAjk) = 0 i.e. ABT −BAT = 0 (10.33)

10.4 Particle production in a non-stationary spacetime
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time

M−

M0

M+

stationary

stationary

Consider a globally hyperbolic spacetime (M, g)

which is stationary at early time, then becomes

non-stationary, and finally becomes stationary

again. Write M = M− ∪M0 ∪M+ where (M±, g)

are stationary but (M0, g) is non-stationary.

In the spacetimes (M±, g), stationarity implies

that there is a preferred choice of positive fre-

quency subspace S±p and hence the notion of parti-

cles is well-defined at early time and again at late

time. Global hyperbolicity implies that any solu-

tion of the KG equation in (M±, g) extends uniquely to (M, g). Hence we have two

choices of positive frequency subspace for (M, g): S+
p and S−p .

Let {u±i } denote an orthonormal basis for S±p and let a±i be the associated annihi-

lation operators. The bases are related by a Bogoliubov transformation:

u+
i =

∑
j

(
Aiju

−
j +Bijū

−
j

)
(10.34)

from (10.31) we have

a+
i =

∑
j

(
Āija

−
j − B̄ija

−†
j

)
(10.35)

Denote the vacua defined w.r.t. S±p as |0±〉 i.e. a±i |0±〉 = 0. Assume that no particles

are present at early time so the state is |0−〉. The particle number operator for the ith

late-time mode is N+
i = a+†

i a
+
i , so the expected number of such particles present is

〈0− |N+
i |0−〉 = 〈0− |a+†

i a
+
i |0−〉 =

∑
j,k

〈0− |a−k (−Bik)(−B̄ij)a
−†
j |0−〉

=
∑
j,k

BikB̄ij〈0− |a−k a
−†
j |0−〉 =

∑
j

BijB̄ij = (BB†)ii (10.36)

using the expression for the commutator in the penultimate step. The expected total

number of particles present at late time is tr(BB†) = tr(B†B), which vanishes iff B = 0

i.e. iff S+
p = S−p , which will not be true generically. In this example, one can say that

a time-dependent gravitational field results in particle production. But we emphasise

that this interpretation is possible here only because of the assumed stationarity at

early and late times.
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10.5 Rindler spacetime

Consider the geometry near the event horizon of a Schwarzschild black hole. Define a

new radial coordinate x by

r = 2M +
x2

8M
(10.37)

then the metric becomes (exercise)

ds2 = −κ2x2dt2 + dx2 + (2M)2dΩ2 + . . . (10.38)

where κ = 1/(4M) is the surface gravity and the ellipsis denotes terms that are sub-

leading near x = 0. The first two terms of the above metric are

ds2 = −κ2x2dt2 + dx2 x > 0 (10.39)

This is called Rindler spacetime. It is a popular toy model for understanding physics

near a black hole horizon. There is a coordinate singularity at x = 0 which can be

removed by introducing Kruskal-like coordinates

U = −xe−κt V = xeκt (10.40)

with the result

ds2 = −dUdV = −dT 2 + dX2 (10.41)

where (T,X) are defined by

U = T −X V = T +X (10.42)

so Rindler spacetime is flat. But it corresponds to just part of Minkowski spacetime

because U < 0 and V > 0: see Fig. 48.

This is analogous to region I of the Kruskal spacetime. There is another Rindler

region analogous to region IV of Kruskal. We will refer to these two Rindler regions

as R and L respectively. The lines U = 0 and V = 0 correspond to a bifurcate Killing

horizon of k = ∂/∂t with surface gravity ±κ. In (U, V ) coordinate we have

k = κ

(
V

∂

∂V
− U ∂

∂U

)
(10.43)

Orbits of k (i.e. lines of constant x) are worldlines of observers whose proper accel-

eration (9.10) is Aa = (1/x)(dx)a with norm |A| = 1/x. Such a “Rindler observer”

would naturally regard k as the generator of time translations, and use it to define

“positive frequency”. However, this differs from the conventional definition of positive
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Rindlerk

k

k

k

I
II

III
IV

VU

Figure 48. Rindler spacetime is the shaded subset of Minkowski spacetime.

frequency in Minkowski spacetime, which uses ∂/∂T . Let’s investigate how the stan-

dard Minkowski vacuum state appears to a Rindler observer. We will use Sp to denote

the usual Minkowski definition of positive frequency.

Consider the massless Klein-Gordon equation (wave equation). In inertial coordi-

nates this is (
− ∂2

∂T 2
+

∂2

∂X2

)
Φ = 0 (10.44)

The general solution consists of a “right-moving” part and and a “left-moving” part:

Φ = f(U) + g(V ) (10.45)

The standard Minkowski basis of positive frequency solutions is

up(T,X) = cpe
−i(ωT−pX) ω = |p| (10.46)

where cp is a normalization constant. This can also be written as

up =

{
cpe
−iωU if p > 0 (right movers)

cpe
−iωV if p < 0 (left movers)

(10.47)

We now want to find a basis of positive frequency solutions for Rindler spacetime. A

solution with frequency σ w.r.t. k has time dependence e−iσt so the wave equation is

0 = ∇a∇aΦ =
1√
−g

∂µ
(√
−ggµν∂νΦ

)
=

1

x2

[
x∂x (x∂xΦ) +

σ2

κ2
Φ

]
(10.48)

with solutions Φ ∝ e−iσtxiP where P = ±σ/κ. If σ > 0 then the P > 0 solution is a

right-moving mode because x increases with t along lines of constant phase. Similarly
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the P < 0 solution is a left-moving mode. We can now define a basis of positive

frequency solutions in R by

uRP = CP e
−i(σt−P log x) σ = κ|P | (10.49)

for some normalisation constant CP .

We will want to relate these to the standard Minkowski modes. To do this, it

is useful to extend the definition of the Rindler modes to the whole of Minkowski

spacetime. We do this by defining uRP = 0 in L. The solution is then uniquely determined

throughout Minkowski spacetime. Converting to the Kruskal-like coordinates gives

uRP =


{
CP e

iσ
κ

log(−U) U < 0

0 U > 0

}
P > 0 (right movers){

0 V < 0

CP e
−iσ

κ
log(V ) V > 0

}
P < 0 (left movers)

(10.50)

(These are solutions everywhere since they have the form (10.45).) We would like to

choose the constant CP so that the above modes have unit norm w.r.t. the KG inner

product in Rindler spacetime. However, there is a problem here, which also arises

for the Minkowski modes (10.46): these modes are not normalizable. To deal with

this problem one can instead consider wavepackets constructed as superpositions of

positive frequency modes and work with a basis of such wave packets. We won’t do

this but it means we will encounter certain integrals below that do not converge. We

will manipulate them as if they did converge, a more rigorous treatment would use the

wavepacket basis. We also won’t need to choose a value of CP here.

The modes uRP do not supply a basis for solutions in Minkowski spacetime (e.g.

because they vanish in L). We can obtain a second set of modes, which is non-vanishing

in L and vanishing in R, by applying the isometry (U, V )→ (−U,−V ):

ūLP =


{
CP e

iσ
κ

log(U) U > 0

0 U < 0

}
P > 0{

0 V > 0

CP e
−iσ

κ
log(−V ) V < 0

}
P < 0

(10.51)

The reason for the overbar on the LHS is that the isometry preserves ka hence these

modes will be positive frequency w.r.t. ka. But ka is past-directed in L. Hence it is

more natural to use −ka to define the notion of positive frequency in L. The above

modes are negative frequency w.r.t. −ka hence the overbar. (However, nothing will

depend on how we define positive frequency in L.) Now {uRP , ūRP , uLP , ūLP} is a basis for

solutions in Minkowski spacetime.
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We now discuss a useful condition which ensures that a mode is positive frequency

w.r.t. ∂/∂T . To decompose a right-moving mode f(U) into Minkowski modes of

frequency ω we perform a Fourier transform:

f(U) =

∫ ∞
−∞

dω

2π
e−iωU f̃(ω) (10.52)

where

f̃(ω) =

∫ ∞
−∞

dUeiωUf(U) (10.53)

Assume that, in the lower half of the complex U -plane, f(U) is analytic with maxθ∈[−π,0] |f(Reiθ)| →
0 as R → ∞. Then, for ω < 0, we can close the contour in the lower half-plane to

deduce that f̃(ω) = 0 (Jordan’s lemma). Hence such f(U) is positive frequency w.r.t.

∂/∂T , i.e., an element of Sp.
To apply this result, consider for P > 0 and U > 0:

ūLP = CP e
iσ
κ

logU = CP e
iσ
κ

[log(−U)−iπ] = CP e
πσ
κ ei

σ
κ

log(−U) (10.54)

where we define the logarithm in the complex plane by taking a branch cut along the

negative imaginary axis:

log z = log |z|+ i arg z arg z ∈ (−π/2, 3π/2) (10.55)

Hence we have

uRP + e−
πσ
κ ūLP = CP e

iσ
κ

log(−U) P > 0 (10.56)

for all U . This is analytic in the lower half U -plane. It does not decay as |U | → ∞
but this is a consequence of working with non-normalizable modes (the integral (10.53)

does not converge). Modulo this technicality, we deduce that the above combination

of Rindler modes is an element of Sp. For P < 0 we have

uRP + e−
πσ
κ ūLP = CP e

−πσ
κ e−i

σ
κ

log(−V ) P < 0 (10.57)

which is similarly analytic in the lower half V -plane and therefore a superposition of

the positive frequency left-moving Minkowski modes. Similarly

uLP + e−
πσ
κ ūRP =

{
CP e

−πσ
κ e−i

σ
κ

log(−U) P > 0

CP e
iσ
κ

log(−V ) P < 0
(10.58)

which is also analytic in the lower half U, V planes and therefore an element of Sp. So

we have a new set of positive frequency (w.r.t. ∂/∂T ) modes

v
(1)
P = D

(1)
P

(
uRP + e−

πσ
κ ūLP

)
v

(2)
P = D

(2)
P

(
uLP + e−

πσ
κ ūRP

)
(10.59)
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where D
(i)
P are normalization constants. Notice that uRP can be expressed as linear

combinations of v
(1)
P and v̄

(2)
P . Since the latter has negative frequency, it follows that

uRP is a mixture of both positive and negative Minkowski space modes (and similarly

for uLP ).

This new set of modes, together with their complex conjugates, forms a basis for

S. Since v
(i)
P are positive frequency w.r.t. ∂/∂T it follows that {v(1)

P , v
(2)
P ∀P} is a basis

for Sp. Hence the vacuum state defined using annihilation operators a
(1)
P and a

(2)
P for

this basis will agree with that defined using the usual Minkowski modes:

a
(i)
P |0〉 = 0 (10.60)

where |0〉 is the standard Minkowski vacuum state.

To fix the normalisation, we use the orthogonality of uRP and ūLP , and the properties

of the KG norm to obtain

(v
(1)
P , v

(1)
P ) = |D(1)

P |
2
[
(uRP , u

R
P )− e−2πσ

κ (uLP , u
L
P )
]

= 2|D(1)
P |

2e−
πσ
κ sinh(πσ/κ)(uRP , u

R
P ) (10.61)

using the fact that the L modes have the same norm as the R modes. A similar result

holds for v
(2)
P . So we normalize by choosing

D
(i)
P =

e
πσ
2κ√

2 sinh(πσ/κ)
(10.62)

We then have (exercise)

uRP =
1√

2 sinh(πσ/κ)

(
e
πσ
2κ v

(1)
P − e

−πσ
2κ v̄

(2)
P

)
(10.63)

and hence, using (10.17), the annihilation operators for the R Rindler modes are

bRP ≡ (uRP ,Φ) =
1√

2 sinh(πσ/κ)

[
e
πσ
2κ (v

(1)
P ,Φ)− e−

πσ
2κ (v̄

(2)
P ,Φ)

]
=

1√
2 sinh(πσ/κ)

[
e
πσ
2κ a

(1)
P + e−

πσ
2κ a

(2)†
P

]
(10.64)

In R, the number operator for Rindler particles of momentum P is NR
P = bR†P b

R
P . How

many such particles does a Rindler observer see in the Minkowski vacuum state? The

expected number is (using (10.60))

〈0|NR
P |0〉 =

e−
πσ
κ

2 sinh(πσ/κ)
〈0|a(2)

P a
(2)†
P |0〉 =

1

e
2πσ
κ − 1

〈0|[a(2)
P , a

(2)†
P ]|0〉

=
1

e
2πσ
κ − 1

(v
(2)
P , v

(2)
P ) (10.65)
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using (10.18). The RHS involves the norm of the mode v
(2)
P which, by (10.61) and

(10.62), is the same as that of the mode uRP . Although this mode is not normalizable,

we will assume that it is, with the justification that this can be made rigorous by using

a basis of wavepackets. Hence we have

〈0|NR
P |0〉 =

1

e
2πσ
κ − 1

(10.66)

Consider a Rindler observer at fixed x. Her 4-velocity is

1

κx

∂

∂t
=
A

κ

∂

∂t
(10.67)

where A = 1/x is the magnitude of her proper acceleration. Hence, according to her,

the frequency of a R mode is σ̂ = Aσ/κ. So

〈0|NR
P |0〉 =

1

e
2πσ̂
A − 1

(10.68)

This is the Planck spectrum of thermal radiation at the Unruh temperature

TU =
A

2π
(10.69)

in units where Boltzmann’s constant kB = 1. A uniformly accelerating observer per-

ceives the Minkowski vacuum state as a thermal state at the temperature TU . This is

a physical effect: if the observer carries a sufficiently sensitive particle detector then

it will detect particles! However, for plausible values of a, the effect is very small. In

physical units we have

TU ≈
(

A

1019ms−2

)
K (10.70)

10.6 Wave equation in Schwarzschild spacetime

To discuss Hawking radiation we first need to understand the behaviour of solutions

of the wave equation in the Schwarzschild spacetime. Work in Schwarzschild coordi-

nates.We can decompose a KG field Φ into spherical harmonics Ylm(θ, φ):

Φ =
∞∑
l=0

l∑
m=−l

1

r
φlm(t, r)Ylm(θ, φ) (10.71)

The wave equation ∇a∇aΦ = 0 reduces to (examples sheet 4)[
∂2

∂t2
− ∂2

∂r2
∗

+ Vl(r∗)

]
φlm = 0 (10.72)
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Vl

r∗

I+H+

Figure 49. Effective potential for the wave equation in the Schwazschild spacetime.

where

Vl(r∗) =

(
1− 2M

r

)(
l(l + 1)

r2
+

2M

r3

)
(10.73)

where on the RHS we view r as a function of r∗. This has the form of a 2d wave

equation with a potential Vl(r∗) sketched in Fig. 49.

Note that Vl(r∗) vanishes as r∗ → ∞ (r → ∞, i.e., I±) and as r∗ → −∞ (r →
2M+, i.e., H±). Consider a solution describing a wavepacket localized at some finite

value of r∗ at time t0. At late time t → ∞ we expect the solution to consist of a

superposition of two wavepackets, propagating to the “left” (r∗ → −∞) and to the

“right” (r∗ → ∞). Time reversal implies that at early time t → −∞ the solution

consists of a superposition of wavepackets propagating in from the left and the right.

Hence we expect

φlm ≈ f±(t− r∗) + g±(t+ r∗) = f±(u) + g±(v) as t→ ±∞ (10.74)

where f± and g± are each localized around some particular value of u or v and hence

vanish for |u| → ∞ or |v| → ∞. The full solution is uniquely determined by its

behaviour for t→∞ or t→ −∞ i.e. by either f+, g+ or by f−, g−.

At late time the term f+(u) describes an outgoing wavepacket propagating to I+

whereas g+(v) describes an ingoing wavepacket propagating to H+. More precisely,

if we evaluate the above solution on I+ (where v → ∞ with finite u) we obtain the

result f+(u). Similarly we can evaluate on H+ (where u→∞ with finite v) to obtain

the result g+(v). Hence the solution is uniquely determined (for all t) by specifying its

behaviour on I+ ∪H+.

We will define an “out” mode to be a solution which vanishes on H+ and a “down”

mode to be a solution which vanishes on I+. From what we have just said, any solution

of (10.72) can be written uniquely as a superposition of an out mode and a down mode.

Out modes and down modes are orthogonal since we can evaluate the integral defining

the KG inner product at late time, when the out modes are non-zero only near r∗ =∞
and the down modes are non-zero only near r∗ = −∞.
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H+

H− I−

I+

out mode

H+

H− I−

I+

up mode

Figure 50. Out modes vanish on H+. Up modes vanish on I−.

Similarly, at early time, the solution is a superposition of a wavepacket g−(v)

propagating in from I− and a wavepacket f−(u) propagating out from H−. So the

solution is uniquely determined by its behaviour on I− ∪H−. We define an “in” mode

to be a solution which vanishes on H− and an “up” mode to be a solution which

vanishes on I−. Any solution can be written uniquely as a superposition of an in mode

and an up mode.

The late time modes can be written in terms of the early time modes and vice

versa. For example, an out mode is a superposition of an in mode and an up mode; an

up mode is a superposition of an out mode and a down mode, see Fig. 50.

This spacetime is stationary so we can consider modes with definite frequency i.e.

eigenfunctions of Lk with eigenvalue −iω. Such modes have time dependence e−iωt. A

mode with frequency ω > 0 has the form

Φωlm =
1

r
e−iωtRωlm(r)Ylm(θ, φ) ω > 0 (10.75)

More generally, we say that a solution has positive frequency if it can be written as a

superposition of such modes. Setting φlm = e−iωtRωlm above gives the “radial equation”[
− d2

dr2
∗

+ Vl(r∗)

]
Rωlm = ω2Rωlm (10.76)

This has the form of a Schrödinger equation with potential Vl(r∗). Since Vl(r∗) vanishes

as |r∗| → ∞ we expect the solutions to behave for |r∗| → ∞ as

Rωlm ∼ e±iωr∗ ⇒ Φωlm ∝ e−iω(t∓r∗) =

{
e−iωu

e−iωv

}
(10.77)

The upper (lower) choice of sign corresponds to outgoing (ingoing) waves.

10.7 Hawking radiation
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I+

I−

H+

Consider a massless scalar field in the spacetime

describing spherically symmetric gravitational col-

lapse, with the Penrose diagram shown. Out-

side the collapsing matter, the spacetime is de-

scribed by the Schwarzschild solution, which is

static. However, the spacetime is not stationary

because the geometry inside the collapsing matter

is not stationary. Hence we expect particle cre-

ation. The surprising result is that this particle

creation is not a transient effect, but there is a

steady flux of particles from the black hole at late

time.

We will introduce bases analogous to those used above. At early time, there is no

past event horizon so there is no analogue of the “up” modes, we have just the “in”

modes, i.e., wavepackets propagating in from I−. The geometry near I− is static so

there is a natural notion of “positive frequency” there. Let fi be a basis of “in” modes

that are positive frequency near I−.

At late time, we can define “out” and “down” modes as before, i.e., as wavepackets

that vanish on H+ and I+ respectively. The geometry near I+ is static so we can

define a notion of “positive frequency” there. Let pi be a basis of positive frequency

out modes. The geometry is not static everywhere on H+ so there is no natural notion

of positive frequency for the down modes. We pick an arbitrary basis {qi, q̄i} for these

modes.

We have two different bases for S, i.e., {fi, f̄i} and {pi, qi, p̄i, q̄i}. We will assume

that both bases are orthonormal, i.e., (fi, fj) = δij and

(pi, pj) = (qi, qj) = δij (pi, qj) = 0 (10.78)

where the orthogonality of the out and down modes was discussed above. Let ai, bi be

annihilation operators for the “in” and “out” modes respectively:

ai = (fi,Φ) bi = (pi,Φ) (10.79)

We can expand

pi =
∑
j

(
Aijfj +Bij f̄j

)
(10.80)

so from (10.31)

bi = (pi,Φ) =
∑
j

(
Āijaj − B̄ija

†
j

)
(10.81)
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H+

H− I−

I+

pi

p
(2)
i p

(1)
i

Figure 51. Backwards propagation of an out mode in Kruskal spacetime.

We assume that there are no particles present at early time, i.e., that the state is the

vacuum state defined using the modes fi:

ai|0〉 = 0 (10.82)

The expected number of particles present in the ith “out” mode is then

〈0|b†ibi|0〉 = (BB†)ii (10.83)

To calculate this we need to determine the Bogoliubov coefficients Bij.

u

pi

2π/ωi

We will choose our “out” basis elements pi so

that at I+ they are wavepackets localized around

some particular retarded time ui and containing

only positive frequencies localized around some

value ωi, as shown.

We define the “in” basis element fi to be a

(positive frequency) wavepacket on I− whose de-

pendence on v is the same as the dependence of pi
on u at I+.

Consider first Kruskal spacetime. Imagine propagating the wavepacket pi back-

wards in time from I+ ∪ H+. Part of the wavepacket would be “reflected” to give a

wavepacket on I− (an in mode) and part would be “transmitted” to give a wavepacket

crossing H− (an up mode) as shown in Fig. 51. So we can write

pi = p
(1)
i + p

(2)
i (10.84)

where p
(1)
i is the “in” part and p

(2)
i the “up” part. Let

Ri =

√
(p

(1)
i , p

(1)
i ) Ti =

√
(p

(2)
i , p

(2)
i ) (10.85)
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p
(1)
i

p
(2)
i

pi

Figure 52. Backwards propagation of an out mode in collapse spacetime.

(Both KG norms are positive because there is no mixing of frequencies in Kruskal

spacetime.) Then from the normalisation of pi and the fact that “in” and “up” modes

are orthogonal, we have

R2
i + T 2

i = 1 (10.86)

Ri is called the reflection coefficient, i.e., the fraction of the wavepacket that is reflected

to I− and Ti is called the transmission coefficient, i.e., the fraction that crosses H−.

The time reversal symmetry of the Schwarzschild spacetime implies that Ri, Ti are also

the reflection and transmission coefficients for the “in” wavepacket fi propagating in

from I−. Specifically, Ti is the fraction of fi that crosses H+ and Ri is the fraction

reflected to I+.

Let’s now include the collapsing matter in our spacetime. We will be interested in

the case of a wavepacket pi that is localized around a late retarded time ui. See Fig.

52. The reflected wavepacket will be localized around a late advanced time vi. In this

case, the scattering of the wavepacket occurs outside the collapsing matter and hence

behaves just as in Kruskal spacetime. So we can write (10.84) as above, where p
(1)
i is

defined to be the part of the wavepacket that is scattered outside the collapsing matter.

This does not experience the time-dependent geometry of the collapsing matter and so

just gives a positive frequency mode at I−. From the above arguments we know that

the norm of p
(1)
i is Ri which is the same as the fraction of the mode fi that is reflected

to I+ in the Kruskal spacetime.

On the other hand, the part of the wavepacket that would have entered H− in the

Kruskal spacetime now enters the collapsing matter. This is the part p
(2)
i in (10.84).

It propagates through the collapsing matter and out to I−. Since it has travelled
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through a time-dependent geometry, the resulting solution will be a mixture of positive

and negative frequency modes at I−. Hence it is p
(2)
i that determines Bij. We can

decompose both p
(1)
i and p

(2)
i as in (10.80) hence we have (as B

(1)
ij = 0)

Aij = A
(1)
ij + A

(2)
ij Bij = B

(2)
ij (10.87)

At early time it is clear that p
(1)
i and p

(2)
i are well-separated wavepackets and hence

they are orthogonal w.r.t. the KG inner product. Hence (since pi has unit norm and

R2
i +T 2

i = 1) the norm of p
(2)
i must be Ti, which is the same as the fraction of the mode

fi which crosses H+ in the Kruskal spacetime.

To calculate Bij we must determine the behaviour of p
(2)
i on I−. On I+, the

wavepacket pi has oscillations with characteristic frequency near to ωi, modulated by

a smooth profile (e.g. a Gaussian function) localized around some retarded time ui.

There will be infinitely many of these oscillations along I+. When these are propagated

backwards in time, there will be infinitely many oscillations between the line u = ui
and the event horizon at u =∞. See Fig. 53. This means that an observer who crosses

H+ would observe infinitely many oscillations of the field in a finite affine time, i.e.,

the proper frequency of the field measured by the observer would diverge at H+.

Let γ denote a generator of H+ and extend γ to the past until it intersects I−.

We can define our advanced time coordinate v so that γ intersects I− at v = 0. Our

wavepacket will be localized around some value v0 < 0 on I−, with infinitely many

oscillations in v0 < v < 0. Hence the arguments just given imply that the field oscillates

very rapidly near γ all the way back to I−. Since the field is oscillating so rapidly near

γ, we can use the geometric optics approximation.

In geometric optics we write the scalar field as Φ(x) = A(x)eiλS(x) and assume that

λ � 1. To leading order in λ the wave equation reduces to (∇S)2 = 0, i.e., surfaces

of constant phase S are null hypersurfaces. The generators of these hypersurfaces are

null geodesics.

Consider a null geodesic congruence containing the generators of these surfaces of

constant S, and also the generators of H+ (which is the surface S = ∞). We can

introduce a null vector Na as in section 4.4 such that N · U = −1 where Ua is the

tangent vector to the geodesics and U · ∇Na = 0. We can decompose a deviation

vector for this congruence into the sum of a part orthogonal to Ua and a term βNa

parallelly transported along the geodesics (equation (4.17)). On H+, the former is

tangent to H+ but the latter points off H+ and hence towards a generator of a surface

of constant S. Choose β = −ε where ε > 0 is small. Then −εNa is a deviation vector

from γ to a generator γ′ of a surface of constant S.
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v = 0

v0 < 0

Figure 53. Surfaces of constant phase accumulate near event horizon and past extension of

horizon generators.

H+

γ

γ′

Na Ua

−εNa

Spherical symmetry implies that we

can choose Nµ such that N θ = Nφ = 0.

Outside the collapsing matter we know

that ∂/∂V is tangent to the affinely pa-

rameterized generators of H+, so we can

choose Ua = (∂/∂V )a there. Since Nµ is

null and not parallel to Uµ we must then

have NV = 0. From U ·N = −1 we obtain

N = C
∂

∂U
(10.88)

for some positive constant C (since gUV is constant on H+ outside the matter). Hence,

outside the collapsing matter, the deviation vector −εNa connects γ to a null geodesic

γ′ with

U = −Cε (10.89)

Fom the definition of U we have

u = −1

κ
log(−U) (10.90)
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Hence, at late time, γ′ is an outgoing null geodesic with

u = −1

κ
log(Cε) (10.91)

Let F (u) denote the phase of the wavepacket pi on I+. Then the phase everywhere

along γ′ must be

S = F

(
−1

κ
log(Cε)

)
(10.92)

At I−, γ, γ′ are ingoing radial null geodesics. In (u, v) coordinates this implies that Ua

is a multiple of ∂/∂u. The metric near I− has the form

ds2 = −dudv +
1

4
(u− v)2dΩ2 (10.93)

so spherical symmetry and the fact that N is null and not parallel to U implies

N = D−1 ∂

∂v
at I− (10.94)

for some positive constant D, which implies that γ′ intersects I− at

v = −D−1ε (10.95)

Combining with (10.92), we learn that the phase on I− is, for small v < 0,

S = F

(
−1

κ
log(−CDv)

)
(10.96)

Hence on I− we have

p
(2)
i ≈

{
0 v > 0

A(v) exp
[
iF
(
− 1
κ

log(−CDv)
)]

small v < 0
(10.97)

where the amplitude A(v) is a smooth positive function. This shows that, on I−,

most of our late time wavepacket is squeezed into a small region near v = 0 where the

logarithm varies rapidly. To determine Bij we now have to decompose this function

into positive and negative frequency “in” modes on I−.

So far we have been working with normalizable wavepackets built by superposing

modes of definite frequency. But now we will assume that pi contains only the single

positive frequency ωi > 0 so F (u) = −ωiu. This means that pi is neither normalizable

nor localized at late time (as assumed above) but it makes the rest of the calculation

easier. The result is the same as a more rigorous calculation using wavepackets. We

will also use ω to label the modes i.e. we will write pω instead of pi (there will be
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additional labels (l,m) but we will suppress these). For this function pω we have on

I−:

p(2)
ω ≈

{
0 v > 0

Aω(v) exp
[
iω
κ

log(−CDv)
]

small v < 0
(10.98)

Similarly we will use a basis of “in” modes fσ such that fσ has frequency σ > 0, i.e.,

fσ = (2πNσ)−1e−iσv on I− where Nσ is a normalization constant. Writing p
(2)
ω in terms

of {fσ, f̄σ} is therefore just a Fourier transform w.r.t. v on I−. Since p
(2)
ω is squeezed

into a small range of v near v = 0 (or would be if it were a wavepacket), its Fourier

transform will involve mainly high frequency modes, i.e. large σ. For such modes, the

Fourier transform is dominated by the region where p
(2)
ω oscillates most rapidly, i.e.,

near v = 0. So we can use the above expression and approximate the amplitude Ai(v)

as a constant. The Fourier transform is therefore

p̃(2)
ω (σ) = Aω

∫ 0

−∞
dv eiσv exp

[
i
ω

κ
log(−CDv)

]
(10.99)

with inverse

p(2)
ω (v) =

∫ ∞
−∞

dσ

2π
e−iσvp̃(2)

ω (σ) (10.100)

=

∫ ∞
0

dσNσp̃
(2)
ω (σ)fσ(v) +

∫ ∞
0

dσN̄σp̃
(2)
ω (−σ)f̄σ(v)

the first term picks out the positive frequency components and second term the negative

frequency components. Hence in (10.80) we have

A(2)
ωσ = Nσp̃

(2)
ω (σ) Bωσ = N̄σp̃

(2)
ω (−σ) ω, σ > 0 (10.101)

The integral in (10.99) is not convergent but this is an artefact of working with non-

normalizable states. It would converge if we used wavepackets so we will manipulate it

as if it converged. We will want to extend the integrand into the complex v-plane so

we define the logarithm with a branch cut in the lower half plane:

log z = log |z|+ i arg z arg z ∈ (−π/2, 3π/2) (10.102)

which makes the integrand in (10.99) analytic in the lower half plane. If σ > 0 then

the integrand in p̃
(2)
ω (−σ) decays as v → ∞ in the lower half v-plane. Consider the

semi-circular contour shown in Fig. 54. The integral around this contour vanishes by

Cauchy’s theorem. The integral around the curved part of the semi-circle vanishes as

R → ∞ (at least it would if we were working with wavepackets, by Jordan’s lemma).
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R→∞

Figure 54. Choice of contour in complex v-plane.

Hence we have, for σ > 0

p̃(2)
ω (−σ) = −Aω

∫ ∞
0

dv e−iσv exp
[
i
ω

κ
log(−CDv)

]
= −Aω

∫ ∞
0

dv e−iσv exp
[
i
ω

κ
(log(CDv) + iπ)

]
= −Aωe−ωπ/κ

∫ 0

−∞
dv eiσv exp

[
i
ω

κ
log(−CDv)

]
= −e−ωπ/κp̃(2)

ω (σ) (10.103)

therefore

|Bωσ| = e−ωπ/κ|A(2)
ωσ| (10.104)

We now return to using wavepackets, for which the corresponding result is

|Bij| = e−ωiπ/κ|A(2)
ij | (10.105)

Now the normalization of p(2) gives (upon substituting in the decomposition of p(2) in

terms of f, f̄)

T 2
i = (p

(2)
i , p

(2)
i ) =

∑
j

(
|A(2)

ij |2 − |Bij|2
)

=
(
e2ωiπ/κ − 1

)∑
j

|Bij|2

=
(
e2ωiπ/κ − 1

)
(BB†)ii (10.106)

hence the expected number of late time “out” particles of type i is

〈0|b†ibi|0〉 =
Γi

(e2ωiπ/κ − 1)
(10.107)
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where Γi ≡ T 2
i . As explained above, Γi is the “absorption cross-section” for the mode

fi (the “in” mode with the same profile as the “out mode” pi), i.e., the fraction of

this mode that is absorbed by the black hole. This result is exactly the spectrum of a

blackbody at the Hawking temperature

TH =
κ

2π
(10.108)

This result shows that particle production is not just a transient effect during gravita-

tional collapse: surprisingly, there is a steady flux of particles at late time.

The above argument can be generalized to other types of free field e.g. a massive

scalar field, an electromagnetic field or a fermion field. In all cases, the result is the

same: a blackbody spectrum at the Hawking temperature. One can also generalize

to allow for non-spherically symmetric collapse, and collapse to a rotating or charged

black hole. In the latter cases, one finds that the temperature is still given by (10.108)

and the black hole preferentially emits particles with the same sign angular momentum

or charge as itself, just like a rotating or charged blackbody.

For an astrophysical black hole, the Hawking temperature is tiny: for Schwarzschild

we have

TH = 6× 10−8M�
M

K (10.109)

this is well below the temperature of the cosmic microwave background radiation (2.7K)

so astrophysical black holes absorb much more radiation from the CMB than they emit

in Hawking radiation, Tiny black holes, with M � M�, could have a non-negligible

temperature. But there is no convincing evidence for the existence of such small black

holes.

Notice that TH decreases with M . So Schwarzschild black holes have negative heat

capacity.

10.8 Black hole thermodynamics

Hawking’s discovery implies that a stationary black hole is a thermodynamic object

with temperature TH . Hence the zeroth law of black hole mechanics can be regarded as

the zeroth law of thermodynamics applied to a black hole (the temperature is constant

throughout a body in thermal equilibrium). The first law of black hole mechanics can

now be written

dE = THdSBH + ΩHdJ (10.110)

where

SBH =
A

4
(10.111)
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This is identical in form to the first law of thermodynamics provided we interpret SBH
as the entropy of the black hole: this is referred to as the Bekenstein-Hawking entropy.

Reinstating units we have (kB is Boltzmann’s constant)

SBH =
c3kBA

4G~
(10.112)

The second law of black hole mechanics now states that SBH is non-decreasing classi-

cally. But SBH does decrease quantum mechanically by Hawking radiation: the black

hole loses energy by emitting radiation and therefore gets smaller. However, this radi-

ation itself has entropy and the total entropy Sradiation +SBH does not decrease. This is

a special case of the generalized second law (due to Bekenstein) which states that the

total entropy

S = Smatter + SBH (10.113)

is non-decreasing in any physical process. Evidence in favour of this law comes from

the failure of various thought experiments aimed at violating it.

The result that black holes have entropy has several consequences. First, plugging

in numbers reveals that the entropy of a Schwarzschild black hole with M = M� is

SBH ∼ 1077. This is many orders of magnitude greater than the entropy of the matter

in the Sun: S� ∼ 1058. Hence the entropy of the Universe would be much greater if all

of the mass were in the form of black holes. So our Universe is in a very special (i.e.

low entropy) state. This observation is due to Penrose.

Second, Hawking’s result treats the gravitational field classically. But statistical

physics tells us that entropy measures how many quantum microstates correspond to

the same macroscopic configuration. So a black hole must have N ∼ exp(A/4) quantum

microstates. What are these? To answer this requires a quantum theory of gravity.

A statistical physics derivation of SBH = A/4 is a major goal of quantum gravity

research. String theory has been successful in doing this for certain “supersymmetric”

black holes. Such black holes are necessarily extreme (κ = 0) and include the extreme

Reissner-Nordstrom solution.

10.9 Black hole evaporation

The energy of the Hawking radiation must come from the black hole itself. Hawking’s

calculation neglects the effect of the radiation on the spacetime geometry. An accurate

calculation of this backreaction would involve quantum gravity. However, one can

estimate the rate of mass loss by using Stefan’s law for the rate of energy loss by a

blackbody:
dE

dt
≈ −αAT 4 (10.114)
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where α is a constant and we approximate Γi by treating the black hole as a perfectly

absorbing sphere of area A (roughly the black hole horizon area) in Minkowski space-

time. Plugging in E = M with A ∝ M2 and T ∝ 1/M gives dM/dt ∝ −1/M2. Hence

the black hole evaporates away completely in a time

τ ∼M3 ∼ 1071

(
M

M�

)3

sec (10.115)

This is a very crude calculation but it is expected to be a reasonable approximation at

least until the size of the black hole becomes comparable to the Planck mass (1 in our

units) when quantum gravity effects are expected to become important.

This process of black hole evaporation leads to the information paradox. Consider

gravitational collapse of matter to form a black hole which then evaporates away com-

pletely, leaving thermal radiation. It should be possible to arrange that the collapsing

matter is in a definite quantum state, i.e., a pure state rather than a density matrix.

However, the final state is a mixed state, i.e., only describable in terms of a density

matrix. Evolution from a pure state to a mixed state is impossible according to the

usual unitary time evolution in quantum mechanics.

Another way of saying this is: information about the initial state appears to be

permanently lost in black hole formation and evaporation. This is in contrast with,

say, burning an encyclopaedia. In that case one could reproduce (in principle) the

information in the encyclopaedia if one collected all of the radiation and ashes and

studied them very carefully. Not so with Hawking radiation, which appears to be

exactly thermal and hence contains no information about the initial state apart from

its mass, angular momentum and charge.

Hawking interpreted this apparent paradox as indicating that quantum mechanics

would need modifying in a full quantum theory of gravity. Most other physicists take

a more conservative view that information is not really lost and that there are subtle

correlations in the Hawking radiation which take a long time to appear but could, in

principle, be used to reconstruct information about the initial state. However, this idea

has run into trouble recently: if one assumes this, as well as several other cherished

beliefs about black hole physics (e.g. nothing special happens at the event horizon, QFT

in curved spacetime is a good description of the physics until the black hole reaches the

Planck scale) then one runs into a contradiction (Almheiri, Marolf, Polchinski & Sully

2012).
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