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Abstract

The existence of temperature gradients within eukaryotic cells has been postulated as a

source of natural convection in the cytoplasm, i.e. bulk fluid motion as a result of tempera-

ture-difference-induced density gradients. Recent computations have predicted that a tem-

perature differential of ΔT� 1 K between the cell nucleus and the cell membrane could be

strong enough to drive significant intracellular material transport. We use numerical compu-

tations and theoretical calculations to revisit this problem in order to further understand the

impact of temperature gradients on flow generation and advective transport within cells. Sur-

prisingly, our computations yield flows that are an order of magnitude weaker than those

obtained previously for the same relative size and position of the nucleus with respect to the

cell membrane. To understand this discrepancy, we develop a semi-analytical solution of

the convective flow inside a model cell using a bi-spherical coordinate framework, for the

case of an axisymmetric cell geometry (i.e. when the displacement of the nucleus from the

cell centre is aligned with gravity). We also calculate exact solutions for the flow when the

nucleus is located concentrically inside the cell. The results from both theoretical analyses

agree with our numerical results, thus providing a robust estimate of the strength of cyto-

plasmic natural convection and demonstrating that these are much weaker than previously

predicted. Finally, we investigate the ability of the aforementioned flows to redistribute solute

within a cell. Our calculations reveal that, in all but unrealistic cases, cytoplasmic convection

has a negligible contribution toward enhancing the diffusion-dominated mass transfer of cel-

lular material.

1 Introduction

The nature and behaviour of all complex lifeforms is governed by the biochemical and physical

processes occurring inside their cells. Hence, cell-scale investigations of energy and mass

transfer are crucial to gain a better understanding of larger scale structure and function in liv-

ing organisms. Chemical reactions inside a cell are often accompanied by intra- and/or inter-

cellular heat exchange [1]. The thermal environment within and around a cell governs
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important tasks, such as cell-cycle regulation [2], cellular metabolism [3], cell membrane func-

tion [4], and protein interactions [5]. This has motivated researchers to develop techniques to

accurately ascertain temperatures at the scale of a single cell, leading to the recent emergence

of the field of intracellular thermometry [5–8].

Intracellular thermometry has already contributed significantly to our understanding of the

thermal landscape inside single cells. Multiple studies have reported non-trivial temperature

heterogeneities. For example, fluorescent polymeric thermometry measurements of the COS-7

cell showed that its nucleus and centrosome can be * 1 K warmer than the surrounding cyto-

plasm [9]. Similarly, the nucleus of living HeLa cells was also found to be * 1 K warmer than

the cytoplasm, on average [10]. Furthermore, the mitochondria of mammalian cells have been

proposed as salient ‘hot-spots’ that display elevated temperatures as compared to the rest of the

cell. The higher mitochondrial temperatures result from thermogenesis, i.e. the release of heat

accompanying ATP synthesis. Various studies have reported mitochondrial temperatures 1–6

K higher than the cytoplasm, due to artificially induced thermogenesis, in both COS-7 and

HeLa cells [9–12] (see also Table 1 in Ref. [13]).

While these temperature contrasts have been measured independently using a diverse array

of methods [7], there is still major controversy around the validity of these measurements [8,

14–17]. Mathematical models relying on macroscopic energy balance arguments have argued

that the average heat generation inside a cell is so minuscule that it cannot possibly sustain the

large temperature differentials reported in intracellular thermometric experiments [14].

Indeed, under steady operation, the temperature distribution inside the cell, T(x), is related to

the power produced per unit volume of the cell, P, by the heat-diffusion equation, kr2T ¼ P,

where k is the thermal conductivity of the medium. A scaling analysis then suggests that the

total power generated by the cell would cause a temperature increase on the order of

DT � P‘2

c=k, with ℓc being the characteristic length scale of the cell. The typical power deliv-

ered by a cell,� P‘3

c , is known to be on the order of * 100 pW [18]. Assuming the cell envi-

ronment is predominantly aqueous (hence, k* 1 W m−1 K−1) and the cell-size is ℓc* 10 μm,

the temperature increase resulting from this power generation would be * 10−5 K, orders of

magnitude lower than the temperature differences reported by intracellular thermometry. Res-

olution of this apparent paradox warrants further studies, and thus, both the theory and prac-

tice behind cellular temperature measurements are fertile and fast-growing fields of research

in the biological sciences.

The aforementioned discrepancy notwithstanding, the existence of finite temperature gra-

dients within a cell could have important biophysical implications for the bulk flow of the

aqueous cytoplasm. So-called “cytoplasmic flows” redistribute nutrients within a cell, which in

turn affects cellular functions, such as metabolism and cell division [19, 20]. This flow is usu-

ally actively caused by the entrainment of cytoplasm by vesicles that are driven through the cell

by molecular motors along polymeric filaments. Another possible mechanism of fluid flow is

based on temperature gradients within the cell causing a passive “cytoplasmic convection”

[21–23]. The intuitive physical idea is that a steady temperature difference between a cell’s

nucleus and its membrane can cause minute changes in the density of the cytoplasm, with the

warmer regions characterised by lower densities. In general, the cell geometry is such that the

resulting density gradients cannot be balanced by a purely hydrostatic pressure distribution.

This means that, due to their relative buoyancy, regions of higher density must settle, while

those of lower density must rise, leading necessarily to natural convection within the cell [24,

25]. At the cell-scale, these circulatory flows could act as an intriguing passive complement to

the active molecular-motor-driven mass transfer inside cells. Thus, to identify the most rele-

vant mechanisms affecting intracellular material transport, it is essential to quantify the flows
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driven by cell-scale temperature inhomogeneities. It is important to note here that the flow

just described is unavoidable for any finite temperature gradient [25], and thus distinguishes

itself from the classical Rayleigh–Bénard convection, which occurs only in systems where tem-

perature gradients exceed a critical threshold [26].

While scaling arguments suggest that temperature-gradient-induced flows could be domi-

nant in certain plant cells [21], further analysis is needed to better characterise the nature of

these flows. Recent computational work considered the case of a model cell with its nuclear

surface warmer than the cell membrane, thus generating a temperature gradient that causes

fluid flow [23]. The primary motive of that work was to investigate: (i) the influence of the tem-

perature difference between the nucleus and the cell membrane on the flow strength inside the

cell, and (ii) the ability of these flows to transport material from the nucleus to the cell mem-

brane. Assuming both the cell and its nucleus to be spherical, it was shown, perhaps surpris-

ingly, that temperature-gradient-driven convection can strongly influence transport of cellular

materials characterised by low diffusivities, if the nucleus is warm enough as compared to the

cell membrane. However, important questions remain unexplored. For example, how would

the size and position of the nucleus affect the flow? This is relevant since the size and position

of the nucleus often change due to environmental and/or functional reasons [27–29]. More

fundamentally, a simpler physical model of temperature-gradient-induced cytoplasmic flow

would enable us to predict the flow distribution inside the cell without the need for complex

computations, and thus to rationalise these predicted strong flows. In this paper, we use a com-

bination of numerical simulations and theoretical calculations to further analyse temperature-

gradient-driven flows inside model cells and provide analytical expressions for these in the

limit of the nucleus being concentric with the cell membrane. Our results allow us in turn to

revisit the predictions in Ref. [23] and we argue that cytoplasm flows resulting from tempera-

ture gradients are actually much weaker than previously reported.

In Sec. 2 we introduce our system with the mathematical model, and the important parame-

ters describing the cell geometry and the material properties of the cytoplasm. We also discuss

and mathematically describe the underlying physics of natural convection at the cell-scale. In

Sec. 3, we present results from a numerical simulation showing natural convection of the cyto-

plasm. Surprisingly, our computations yield flows that are an order of magnitude weaker than

those obtained earlier for the same cell geometry [23]. We examine this discrepancy via theo-

retical calculations, in Sec. 4 and 5. In Sec. 4, we focus on an axisymmetric arrangement of the

nucleus inside the model cell, and develop a semi-analytical solution for the fluid flow in such

a configuration. Next, in Sec. 5, we consider a concentric placement of the nucleus inside the

model cell, and obtain a closed-form analytical expression for the temperature-gradient-driven

flow. The solutions obtained in both these limiting cases agree perfectly with our own compu-

tations, thus giving us confidence in our numerical predictions that cytoplasm flows resulting

from temperature gradients are significantly weaker than previously reported. Finally, in Sec.

6, we perform a thorough investigation of the ability of these flows to transport solute (via

advection) within a cell. Here also we reveal that, unless under unrealistic assumptions, the

flows are in fact not strong enough to significantly change the distribution of cellular material,

the motion of which stays largely diffusive. We finally summarise our results and provide per-

spectives for future investigations in Sec. 7.

2 Modelling intracellular convection

2.1 Problem setup

We consider the configuration shown in Fig 1, similar to the one addressed in Ref. [23]. Both

the cell and the nucleus are modelled as stationary rigid spheres, of radius Rc and Rnuc,
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respectively. A Cartesian coordinate system is affixed at the centre of the cell, with gravity act-

ing along the negative z-direction. Without loss of generality, the centre of the nucleus is situ-

ated in the y = 0 plane at a distance of eRc from the cell centre, at an angle θe from the x-axis.

From geometry, it is clear that one must have eRc + Rnuc� Rc. The quantity eRc cos θe = exRc

denotes the eccentricity, along the x-axis, of the nucleus centre relative to the cell centre. Simi-

larly, eRc sin θe = ezRc denotes the nucleus eccentricity along the z-axis.

We assume that the cellular membrane is maintained at a constant temperature Tmem,

whereas the surface of the nucleus is maintained at a constant temperature Tnuc. Following

experimental evidence [5, 9], we take the nucleus to be warmer than the cell membrane (i.e.

Tnuc > Tmem). Note that while we are modelling flows due to temperature gradients between

the nucleus and the cell membrane, a change in the size (Rnuc) and position (e, θe) of the inner

sphere can also provide an approximation of convection caused by other warm organelles

inside the cell.

With cells that are typically tens of microns in size [30, 31], intracellular fluid flow is

expected to be dominated by viscous forces and thus governed by classical microhydrody-

namics [32]. Following Ref. [23], we model the aqueous cytoplasm as a Newtonian viscous liq-

uid with physical properties similar to water at a reference membrane temperature, Tmem [30,

31].

We further approximate the viscosity of the cytoplasm as uniform; although viscosity is

known to vary with temperature, including this effect is known to only give rise to a small cor-

rection to the flow [33]. The driving of the flow is thus solely due to the density of the cyto-

plasm, which varies spatially in response to thermal gradients and thus necessitates solving for

the temperature distribution within the cell. The temperature is governed by an advection-dif-

fusion equation, denoting a balance between heat transfer by fluid flow and by diffusion (con-

duction). In the next section, we formalise these statements and present the equations

governing the flow and temperature fields inside the cell.

Fig 1. Schematic of the nucleus (orange inner sphere) within a model cell (light blue outer sphere). The cell

membrane (thick, dark blue outline) is maintained at a constant temperature Tmem, whereas the nucleus surface is

maintained at a higher temperature, Tnuc > Tmem. Gravity acts in the negative z direction. The Newtonian cytoplasm

fills the annular region (light blue). We solve for the temperature field and fluid velocity field in the cytoplasm.

https://doi.org/10.1371/journal.pone.0307765.g001
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2.2 Governing equations and boundary conditions

In the absence of inertia, the flow field, u0(x0) at a position x0 inside the cell, is governed by the

incompressibility constraint (or the continuity equation),

r0 � u0 ¼ 0; ð1Þ

and the Stokes equations,

� r0p0 þ Zr02u0 þ rðT0Þg ¼ 0; ð2Þ

where the primes signify dimensional variables.

In the above equation, p0 is the pressure in the fluid, η is the constant dynamic viscosity, g =

−giz is the acceleration due to gravity (iz is the unit vector in the z-direction), and T0 is the tem-

perature in the cell. We denote the temperature-dependent density of the fluid by ρ(T0). For

sufficiently small temperature differences T0 − Tmem, we model this temperature-dependence

with a standard linear relationship,

rðT 0Þ ¼ r0½1þ bðTmem � T 0Þ�; ð3Þ

where β is the thermal expansion coefficient, with units of K−1. It is important to note here that

we are employing the incompressibility constraint, Eq (1), yet allowing the density to vary with

temperature. This is a classical (and validated) method in hydrodynamics called the Boussi-

nesq approximation [33]. For modest changes in temperature, we can neglect the temperature

dependence of material properties everywhere except in the gravitational force term in Eq (2),

when this buoyancy term is the driving mechanism for the flow (as in the present problem).

This provides a first approximation to the fluid flow, which should be quantitatively accurate

for temperature differences less than*10 K–20 K [33]. Mathematically, this may be formal-

ised via a perturbation expansion of the full governing equations in the limit of small tempera-

ture changes [33].

The governing equations, Eqs (1) and (2), must be complemented by appropriate boundary

conditions for the velocity. Since we are modelling the nucleus and the cell as stationary, rigid

spheres, the fluid velocity must vanish at both these surfaces, i.e.

u0jnuc ¼ 0;

u0jmem ¼ 0;
ð4Þ

where the sub-scripts ‘nuc’ and ‘mem’ denote the cell nucleus and membrane, respectively. It

is clear from Eq (2) that solving for the fluid flow requires knowledge of the temperature. The

steady-state temperature field, T0(x0), is governed by an advection-diffusion equation,

u0 � r
0T 0 ¼ ar02T 0 ; ð5Þ

subject to the boundary conditions,

T 0jnuc ¼ Tnuc;

T 0jmem ¼ Tmem:
ð6Þ

In Eq (5), α is the constant thermal diffusivity of the cytoplasm (assumed to be water in the

present study).

It is important to note that for the geometry described in Fig 1, Eqs (1) to (6) cannot admit

a quiescent solution (u0 = 0) as long as there exists a temperature contrast between the two sur-

faces. For any Tnuc 6¼ Tmem, the temperature distribution T0 (x0) will be non-uniform and the

resulting temperature gradients (and hence the density gradients) will not be aligned with
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gravity inside the cell. Thus, no hydrostatic pressure distribution can be found that balances

the gravitational forcing everywhere, and the system cannot stay in equilibrium without fluid

flow. This is fundamentally different from the classical Rayleigh–Bénard convection, where

gravity is parallel to an imposed temperature gradient and fluid flow emerges as a result of an

instability above a critical imposed temperature gradient [26].

We next render the equations dimensionless; using the characteristic temperature differ-

ence ΔT = Tnuc − Tmem, we may define the reference scales for length, velocity and pressure,

respectively, as

‘ref ¼ Rc; uref ¼
r0bDTg‘

2

ref

Z
; pref ¼

Zuref
‘ref

: ð7Þ

We also define a re-scaled temperature,

Y ¼
T 0 � Tmem

Tnuc � Tmem
: ð8Þ

Using Eqs (7) and (8) in the equation for the flow, Eq (2), yields now in dimensionless form

(without primes)

� rP þr2uþYiz ¼ 0; r � u ¼ 0; ð9Þ

subject to the dimensionless boundary conditions

ujnuc ¼ 0;

ujmem ¼ 0:
ð10Þ

The pressure P in Eq (9) is now a modified dynamic pressure, given in dimensionless form by

P = p + (βΔT)−1 iz � x. Similarly, we can re-write the thermal problem, Eq (5), in terms of the

normalised temperature Θ(x) as

u � rY ¼
1

Pet
r2Y; ð11Þ

with the normalised boundary conditions,

Yjnuc ¼ 1;

Yjmem ¼ 0:
ð12Þ

Importantly, in Eq (11), Pet� urefRc/α is the (dimensionless) thermal Péclet number, a ratio of

the rate of heat transfer by fluid flow to the rate of heat transfer by diffusion.

The typical values of the parameters used for calculating the reference scales in our problem

are given in Table 1, where, just like Ref. [23], we have assumed that the cytoplasm shares the

material properties of water at temperature Tmem = 310 K (� 37˚C). This is a reasonable

assumption for both the physical [30, 34] and thermal [35, 36] properties of the cytoplasm. We

note, however, that in some instances the effective viscosity of the cytoplasm can be higher

than that of water, due to a high concentration of macromolecules [30]; we will discuss the

implications of this disparity in Sec. 4.2 and argue that it does not alter our central result. The

size (radius) of the cell in our study corresponds roughly to the typical COS-7 [9] or HeLa [10]

cells used in intracellular thermometry studies, while we consider a wide range of sizes and

positions of the nucleus, to reflect the diversity in the nucleus’s placement inside biological

cells, depending on the cell type and the stage of the cell cycle [27, 28]. Here too, we note that
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the main conclusions of this study remain independent of the details of nuclear size and posi-

tion inside the cell (see Appendix B).

A quantitative description of natural convection in the model cell requires us to solve Eqs

(9)–(12) for Θ and u. For a prescribed thermal Péclet number (set by the material properties of

the cytoplasm), the solution depends only on the size and position of the nucleus. These quan-

tities are captured in three dimensionless numbers: κ = Rnuc/Rc, the ratio of the nucleus’s

radius to that of the cell, and (ex, ez), the eccentricity of the nucleus centre along the x- and z-
axes.

Depending on the specific values of (ex, ez) and Pet, one can solve Eqs (9)–(12) using full

numerical simulations, semi-analytical methods, or even analytically to obtain an explicit

expression for the temperature and flow, (Θ, u). In following sections, we describe solutions

obtained using each of these methods to provide rigorous estimates of the flow inside the cell.

3 Temperature and flow inside the cell

3.1 Intracellular convective flows: Comparison with previous work

We first present dimensional results of the temperature and flow fields inside the cell, to gain

intuition about the strength of the temperature-gradient-driven flow. We show in the top row

of Fig 2 one specific solution, for a radius ratio κ = 0.43, eccentricity values ex = ez = 0.25, and a

nucleus-to-membrane temperature difference of ΔT = 1 K, evaluated numerically using the

finite-elements-based software COMSOL; this is the benchmark geometry used in Ref. [23].

The values of the other physical parameters are stated in Table 1 and are the same as in

Ref. [23], allowing us to compare our results directly. The results of Ref. [23] are reproduced in

the bottom row of Fig 2. For the flow field, we plot the horizontal (i.e. perpendicular to gravity)

velocity u0x and the vertical (i.e. upward) velocity u0z at the y = 0 mid-plane of the cell. Since this

is a plane of symmetry, the velocity component normal to it, i.e. u0y, is identically zero.

While the temperature distribution in Ref. [23] is only slightly different from our own sim-

ulations, the intracellular flows in that work are much stronger (typically by around one order

of magnitude). It is clear, intuitively, that the small difference in the temperature profiles is not

sufficient to explain the ten-fold mismatch in velocity magnitudes.

Table 1. Typical values of the physical parameters (above line), the reference velocity scale uref, and the dimensionless groups (last two rows) governing the intracel-

lular fluid flow, along with the heat and mass transfer.

Parameter Description Typical value Units

g gravitational force per unit mass 9.8 m s−2

β thermal expansion coefficient 3.61 × 10−4 K−1

ΔT = Tnuc − Tmem temperature difference between the nuclear surface and the cell membrane 0.01–10 K

Rc radius of the cell 10 μm

Rnuc radius of the nucleus 2–7 μm

ρ0 density of the cytoplasm at 310 K 993.38 kg m−3

η viscosity of the cytoplasm 6.917 × 10−4 kg m−1 s−1

α thermal diffusivity of the cytoplasm 1.51 × 105 μm2 s−1

D solute diffusivity 0.01–100 μm2 s−1

uref ¼
r0bDTgR2

c
Z

reference velocity scale 0.5 μm s−1

Pet ¼
urefR

Z
c

a
thermal Péclet number 3 × 10−5 dimensionless

Pes ¼
urefRc
D

‘solutal’ Péclet number 0.05–500 dimensionless

https://doi.org/10.1371/journal.pone.0307765.t001
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To resolve this apparent conflict and verify the accuracy of our own simulations, we will

solve, in Secs. 4 and 5, for the temperature and flow distributions in geometrically simpler

domains, for which we can also pursue alternate solution methodologies. Towards this, we

first need to examine the temperature field inside the cell. We will show that fluid flow is inef-

fective in facilitating temperature redistribution, which will allow us to simplify the governing

equations further. This enables the use of semi-analytical and analytical techniques to solve the

problem, validate our numerical simulations, and confirm the discrepancy between our results

and those of Ref. [23].

3.2 Relative influence of diffusion and advection in intracellular heat

transfer

We show two different simulation results in Fig 3. The top row corresponds to simulations

where we solve the full advection-diffusion equation (Eq (11)) in conjunction with the hydro-

dynamic problem; these are the same results as in the top row of Fig 2 but plotted with a differ-

ent colour scale in order to highlight the flow variations inside the cell. Given the relation

between density and temperature in Eq (3), clearly the fluid near the nucleus is lighter, while

the fluid near the cell membrane is heavier. Thus, as expected from physical intuition, the

Fig 2. Top row, left to right: the temperature, the horizontal velocity (u0x) and the vertical velocity (u0z) at the y = 0 mid-plane of the cell, computed by

simulating the advection-diffusion equation (Eq (11)) for the temperature, and the Stokes equations (Eq (9)) for flow field. Bottom row: the corresponding

fields as computed numerically in Ref. [23] for the same set of physical parameters. In our results, the spatial variation in flow velocity is barely discernible

when plotted using the colour scale of Ref. [23], as the velocity magnitudes we obtain are significantly lower.

https://doi.org/10.1371/journal.pone.0307765.g002

PLOS ONE Natural convection in the cytoplasm

PLOS ONE | https://doi.org/10.1371/journal.pone.0307765 July 25, 2024 8 / 35

https://doi.org/10.1371/journal.pone.0307765.g002
https://doi.org/10.1371/journal.pone.0307765


warmer fluid rises under the influence of gravity, while the colder fluid settles, leading to cell-

scale circulation in the bulk. Note that we focus predominantly on the flow in the vertical

plane y0 = 0, which is also a plane of symmetry for the cell, since the flows are strongest and

most intuitively visualised here; we comment briefly in Appendix A on the nature of horizon-

tal flow along the y0 direction.

In the bottom row of Fig 3, on the other hand, we show results where advective heat transfer

is neglected and the thermal problem is governed solely by Laplace’s equation,

r2Y ¼ 0; ð13Þ

along with the boundary conditions (Eq (12)). The latter choice of simulations is motivated by

the particularly low value of the thermal Péclet number in the present problem, Pet * 10−5

(see Table 1), hinting that heat transport is likely dominated by diffusion.

Comparing the two rows of Fig 3, we see that the temperature and velocity fields are practi-

cally identical in the simulations with and without temperature advection by the flow. The

transfer of heat due to the convective flow is thus essentially negligible in comparison to its

rapid diffusion throughout the cytoplasm. Interestingly, as a result, the temperature field is

symmetric around the line joining the nucleus and the cell centres, indicative of isotropic dif-

fusion from a warmer to a colder surface, with no breaking of symmetry due to the convective

flow.

Fig 3. Top row, left to right: the temperature, the horizontal velocity (u0x) and the vertical velocity (u0z) at the y = 0 mid-plane of the cell, computed by

simulating the advection-diffusion equation (Eq (11)) for the temperature, and the Stokes equations (Eq (9)) for flow field. Bottom row: temperature and flow

fields, obtained by simulating the diffusion equation (Eq (13)) for the temperature, and the Stokes equations (Eq (9)) for the flow field. The arrows in the

velocity contour plots denote velocity vectors, with arrow lengths proportional to the magnitude of the local velocity.

https://doi.org/10.1371/journal.pone.0307765.g003
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3.3 Weak advective effects result in one-way coupling between temperature

and flow fields

The fact that advection appears to play a negligible role in influencing the intracellular temper-

ature distribution offers a great simplification in terms of solving the thermal and hydrody-

namic problems. We do not need solve the full advection-diffusion equation, Eq (11), for the

dimensionless temperature Θ, but can instead consider just the diffusion equation given by Eq

(13). It then follows that Eqs (9) and (13) are only one-way coupled, with the flow being

affected by the temperature, but not vice-versa. One can thus first obtain Θ and then solve the

Stokes flow problem driven by the non-homogeneous temperature field Θ(x).

Equipped with the above understanding, we are now in a position to explore further the

order-of-magnitude disparity apparent in Fig 2. In the subsequent sections, we compare our

numerical simulation results with solutions obtained through other solution strategies that can

be employed in slightly different geometries. We focus first on the geometric limit ex = 0, i.e.

an axisymmetric placement of the nucleus within the cell. Next, we move to an even simpler

configuration, wherein the nucleus is concentric with the cell, i.e. (ex = 0, ez = 0). We will show

that solutions in these two limits, obtained via classical techniques, match very well with our

simulation results. This will thus confirm the accuracy of our numerical simulations and estab-

lish that temperature-gradient-driven intracellular flows are indeed significantly weaker than

predictions made in earlier studies.

4 Temperature and flow in eccentric but axisymmetric

configurations

In this section, we consider an axisymmetric arrangement of the nucleus within the cell, i.e.

when the line joining the nucleus and cell centres is directed along (or opposite to) the gravity

vector.

4.1 Outline of solution in axisymmetric geometry

An important implication of analysis in axisymmetric geometry is the symmetry of the flow

field around the axis between the nucleus and the centre of the cell. We may exploit this sym-

metry to solve Eqs (9) and (13) semi-analytically in a bi-spherical coordinate system, (ξ, χ, ϕ),

shown in Fig 4(a), where the nuclear membrane and the cell membrane can be represented by

distinct coordinate surfaces [32]. Axisymmetry allows the flow field to be represented in terms

of a single Stokes streamfunction, Cb(ξ, χ), which can be expressed as a linear superposition of

harmonic functions [32]. The technical aspects of the solution are detailed in Appendix D. A

sample solution in the axisymmetric case is shown in Fig 4(b), where the z-axis is the axis of

symmetry and the geometric parameters are κ = 0.43, ex = 0, ez = 0.3 (left: temperature; right:

vertical velocity). We can also solve the axisymmetric problem using finite-element COMSOL

simulations. In Fig 5, we compare the results obtained from the two different methods, by plot-

ting the dimensionless maximum (max. {uz}) and minimum (min. {uz}) vertical velocities

inside the cell, as a function of the eccentricity ez. We provide further validation of the temper-

ature and velocity fields in Fig 16 in Appendix D. The excellent matching between the two sets

of results validates the non-axisymmetric simulations from Sec. 3.

4.2 Estimating the flow strength

The typical magnitude of the intracellular flow velocities can be estimated by multiplying the

dimensionless results in Fig 5 by the reference velocity uref� 0.5 μm s−1 used to non-dimensio-

nalise the equations (see Table 1); this yields a maximum velocity of * 10−3 μm s−1, similar to
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what was displayed in Fig 3. Thus, the axisymmetric solutions provide an independent mea-

sure of the order of magnitude of cellular flows predicted by our numerical simulations in Sec.

3 and confirm the ten-fold discrepancy with the results of Ref. [23]. We note here that the

value of the reference velocity uref� 0.5 μm s−1 is based on the assumption that the cytoplasm

viscosity is the same as that of water at 37˚C, i.e. η� 7 × 10−4 kg m−1 s−1 (see Table 1). It is

well-known that the cytoplasm can often display elevated viscosities, as high as η* 10−2–10−1

kg m−1 s−1 [30, 31], which would only serve to reduce uref by one to two orders of magnitude

(due to the scaling uref/ η−1), and result in even weaker thermal convection. Physically, for a

given temperature difference (between the cell and nuclear membranes) driving the flow, a

more viscous cytoplasm offers stronger resistance to motion.

Intuitively, we would of course not expect the velocity magnitudes to change drastically as

the problem geometry varies. We confirm this in Fig 5, where both the maximum and minimum

velocities experience only a modest change with the vertical eccentricity ez for all radius ratios κ.

Fig 5. Dimensionless values of the (a) maximum upwelling velocity, max. {uz}, and (b) minimum downwelling

velocity, min. {uz}, as a function of the vertical eccentricity ez for κ = 0.2, 0.3, 0.4, obtained using the semi-analytical bi-

spherical coordinates calculations (empty symbols) and via COMSOL simulations (filled symbols).

https://doi.org/10.1371/journal.pone.0307765.g005
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Fig 4. Flow in axisymmetric cell-nucleus configuration. (a) Depiction of the bi-spherical coordinate grid. (b) An

example of dimensionless results obtained via the bi-spherical coordinate calculations. Left: normalised temperature

distribution, Θ; right: vertical flow, uz. The geometric parameters are: radius ratio κ = 0.43, eccentricities ex = 0 and ez
= 0.3.

https://doi.org/10.1371/journal.pone.0307765.g004
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4.3 Flow structure as a function of eccentricity

We see that the results are symmetric about ez = 0, which is a result of the structure of Eqs (9)

and (13). The temperature distribution in the cell is reflected about the z = 0 plane as ez goes

from negative to positive (see Fig 6(a) and 6(c)). Since the fluid flow is directly proportional to

the local temperature difference, regions in the cell corresponding to the same thermal envi-

ronment in the two geometries also display the same vertical velocity (Fig 6(b) and 6(d)). As a

result, the location of the strongest upwelling flow with respect to the nucleus changes: from

being above the centre of the nucleus for ez< 0, to shifting below the nucleus centre for ez> 0.

4.4 Influence of temperature difference on flow strength

The linearity of the dimensionless flow u with respect to Θ, evident in Eq (9), also lets us

immediately deduce that the dimensional flow strength |u0| varies linearly with the tempera-

ture difference ΔT. This linear dependence was indeed captured explicitly in the numerical

simulations of Ref. [23] (see their Fig 3). A clear benefit of our analysis is that, with the

Fig 6. Symmetry of the temperature Θ (panels (a) and (c)) and the flow magnitude |u| (panels (b) and (d)) inside the

cell with respect to a change in sign of the nucleus’s vertical eccentricity ez. The arrows are velocity vectors with lengths

proportional to the velocity magnitude shown in the contour plots.

https://doi.org/10.1371/journal.pone.0307765.g006
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knowledge that heat advection can be safely neglected (i.e. Pet� 1), the linear relationship fol-

lows exactly mathematically.

4.5 Summary

In summary, assuming an axisymmetric geometry allowed us to solve for the fluid flow via a

semi-analytical approach that is less computationally intensive than the finite-element simula-

tions. By performing two independent sets of calculations in the axisymmetric limit (finite-ele-

ment simulations and the Stokes streamfunction analysis of this section) we have confirmed

the velocity magnitudes that were predicted numerically in Sec. 3. In the next section, we per-

form a third analysis, in which we consider the limit where the nucleus is located at the centre

of the model cell (i.e. ex = ez = 0). This particular geometry enables us to obtain an exact, ana-

lytical solution for the temperature distribution and the flow field.

5 Temperature and flow in the concentric limit

5.1 An exact solution

When the nucleus is concentric with the cell, one can solve the problem fully analytically in a

spherical coordinate system, (r, θ, ϕ) [25]. Since we still have an axisymmetric setup, we can

once again represent the flow field in terms of a streamfunction, Cs(r, θ), where r is the radial

separation of any point, measured from the centre of the cell (and the nucleus), and θ is the

polar angle measured from the positive z-axis [32]. We discuss in the main text the final

results, i.e. the analytical expressions for the temperature and the fluid velocity; all details of

the solution methodology are provided in Appendix E. The temperature is found to be radially

isotropic (i.e. it only depends on r) and is given by

Y rð Þ ¼
k

1 � k

1

r
� 1

� �

: ð14Þ

As for the flow field, we derive in Appendix E a very simple representation for the stream-

function Cs(r, θ) as

C
s
ðr; yÞ ¼ f1ðrÞsin

2 y; ð15Þ

where

f1ðrÞ ¼
r3

8

k

1 � k
þ c1r þ

c2

r
þ c3r

2 þ c4r
4; ð16Þ

with the constants, ci, being functions solely of the radius ratio κ given by

c1 ¼
k2ð3k2 þ 4kþ 3Þ

8ð1 � kÞð4k2 þ 7kþ 4Þ
;

c2 ¼ �
k4

8ð1 � kÞð4k2 þ 7kþ 4Þ
;

c3 ¼ �
kðkþ 1Þðk2 þ 3kþ 1Þ

4ð1 � kÞð4k2 þ 7kþ 4Þ
;

c4 ¼ �
kðkþ 1Þ

4ð1 � kÞð4k2 þ 7kþ 4Þ
:

ð17Þ
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Once the streamfunction is known, the fluid velocity u may be obtained explicitly as

u ¼ ur; uyð Þ ¼ �
1

r2 sin y
@C

s

@y
;

1

r sin y
@C

s

@r

� �

; ð18Þ

where ur is the radial component and uθ the tangential component of the fluid velocity. Substi-

tuting Eqs (15) in (18) yields,

urðr; yÞ ¼ �
2f1ðrÞ
r2

cos y;

uyðr; yÞ ¼
1

r
df1
dr

sin y:
ð19Þ

We thus have a closed-form, exact solution to the temperature-gradient-driven natural con-

vection problem in the concentric case, for arbitrary radius ratios κ = Rnuc/Rc. A simple trans-

formation from spherical to Cartesian coordinates then yields the vertical velocity uz and the

horizontal velocity ux (see Eq (58) in Appendix E). In Fig 7, we plot these velocity components

(left column) and compare them with the corresponding COMSOL simulation results (right

column). We can see an excellent agreement between the exact solution and our computations;

quantitatively, the average relative error between the two solutions is less than 2%, which pro-

vides another validation of the simulations of Sec. 3 and confirms that the velocity predictions

therein are accurate.

5.2 Structure of flow in concentric geometry

Because of symmetry about the z-axis, the fluid from the right-half of the cell cannot flow into

the left-half. This, combined with mass conservation, means that the net flow-rate through the

annulus, Qann �
R 1

k
uzðr; y ¼ p=2Þr dr, has to be exactly zero. Hence, any upwelling flow per-

pendicular to the equatorial plane (z = 0, alternatively θ = π/2) must be cancelled out, in an

averaged sense, by a downwelling flow. This can clearly be seen in Fig 7(a). The (vertical)

velocity at the equatorial plane is given by

uz r; y ¼ p=2ð Þ ¼ � uy r; y ¼ p=2ð Þ ¼ �
1

r
df1
dr
; ð20Þ

which we plot in Fig 8(a) as a function of a normalised separation from the nucleus surface, r*
� (r − κ)/(1 − κ); thus, r* = 0 corresponds to the nucleus surface, while r* = 1 corresponds to

the cell membrane.

For each value of κ, the maximum and minimum velocities in Fig 8(a) correspond to the

strongest upwelling and downwelling flows, respectively, in the entire cell. We further plot in

Fig 8(b) the magnitude of these strongest vertical flows as a function of the radius ratio κ,

while their position, as measured radially from the cell membrane, is displayed in Fig 8(c). We

observe a clear asymmetry in the flow as seen in Fig 8(a) and 8(b); in terms of magnitude, the

strongest upwelling flow is greater than the strongest downwelling flow. This asymmetry is a

consequence of spherical geometry: the differential area through which the fluid flows, dA(r) =

2πrdr, increases with the radius r, which necessitates that the fluid near the nucleus must rise

faster than the fluid near the cell membrane settles, in order to maintain zero net-flux in the

annulus. This asymmetry thus vanishes when κ! 1.

5.3 Influence of a more general cell geometry

The results in Eqs (15) to (19) give us an exact representation of the flow inside the cell, in this

simple geometrical case. How relevant are these predictions for arbitrary locations of the
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nucleus? Further computations shown in Fig 13 (Appendix B) demonstrate that the strength

of the flow depends only weakly on the position of the nucleus. Therefore, the exact analysis of

this section captures all essential aspects of this hydrodynamics problem.

5.4 Summary

We have now validated our numerical simulations using two independent analyses, which

gives us confidence in our numerical results from Sec. 3. We thus conclude that the flow

strengths that we report are a more accurate estimate of intracellular buoyancy-driven flows

than the results of Ref. [23].
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Fig 7. Dimensionless vertical component of the flow field at the y = 0 mid-plane (panels (a) and (b)) and horizontal component

(panels (c) and (d)), calculated analytically using Eq (58) (left column) and via COMSOL simulations (right column): geometrical

parameters are κ = 0.43, ex = 0, ez = 0. The symbols in panel (a) are locations of the maximum and minimum velocities, whose

nearest distance from the cell membrane (i.e. from the point x = 1, y = 0, z = 0) is plotted in Fig 8(c). The arrows indicate the in-plane

velocity.

https://doi.org/10.1371/journal.pone.0307765.g007
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6 Solute transport by combined convection and diffusion

Having solved for the fluid flow numerically, semi-analytically and fully analytically, we have

concluded that temperature differences between a cell’s nucleus and cell membrane lead to

much weaker flows than envisioned previously. Importantly, our analysis shows that quantita-

tive predictions on transport cannot be made solely using scaling arguments, but that they

instead require solving for the details of the flow field. Indeed, the standard reference velocity

uref ¼ r0bgDTR2
c=Z, obtained by scaling arguments, predicts typical velocities that are around

0.5 μm s−1 (for ΔT = 1 K), whereas full calculations yield values of * O(10−3) μm s−1, which

are two orders of magnitude smaller.

We now investigate the ability of these flows to transport solute inside the cell, e.g. proteins

and other macromolecules [37].

6.1 Solute transport with both diffusion and advection

We model the solute as a passive scalar that diffuses and is advected by the flow calculated in

Sec. 3. At steady state, the dimensionless concentration of the scalar, C, is governed by the

advection-diffusion equation

u � rC ¼
1

Pes
r2C; ð21Þ

where Pes = urefRc/D is the Péclet number of the solute (the ratio of its advective to its diffusive

transport), where D is the solute’s molecular diffusivity. For the sake of simplicity, we assume

that the scalar is produced at the nucleus and absorbed at the cell membrane, so we have the

boundary conditions

Cnuc ¼ 1;

Cmem ¼ 0:
ð22Þ

Typical molecular diffusivities of cellular matter can be as low as 0.01 μm2 s−1 [30, 38], which

corresponds to Pes� 500. Based on this preliminary scaling approach, one may then expect

the cell-scale natural convection described previously to significantly affect solute transport.

Fig 8. Upwelling and downwelling convective flows. (a) Dimensionless vertical fluid velocity at the equatorial plane, plotted as a function of normalised radial

distance from the nucleus, r*. (b) Variation with the radius ratio, κ, of the magnitudes of the strongest upwelling (max. {uz}) and downwelling (−min. {uz})
flows. (c) Radial separations dmax and dmin, from the cell membrane of the regions of maximum and minimum velocity, respectively.

https://doi.org/10.1371/journal.pone.0307765.g008
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6.2 Advection-enhanced transport: The local Péclet number

To investigate the extent to which this is true, we solve Eqs (21) and (22) for the configuration

and parameters of Sec. 3 (κ = 0.43, ex = ez = 0.25, ΔT = 1K) using finite-element COMSOL sim-

ulations. The resulting solute distributions on the y = 0 mid-plane are shown in Fig 9. Surpris-

ingly, the effect of natural convection is so weak that even for Pes as large as 500 (Fig 9(a)), the

solute distribution is almost the same as that when the solute transport is purely diffusive, i.e.

when Pes� 1 (Fig 9(c)). One can also visualise the time evolution of the concentration, start-

ing from a uniform initial condition C(t0 = 0)� 0 and then suddenly changing the concentra-

tion at the nucleus surface to Cnuc = 1 at t0 = 0.1 s; this is done in Appendix C. As shown in Fig

14 there, the concentration distribution becomes nearly independent of Pes when the time is

normalised by the diffusive time-scale t0d ¼ R
2
c=D, which is a classic signature of isotropic diffu-

sion. This further confirms that the transport mechanism inside the cell is mostly diffusive.

For given size and material properties of the cell, the definition of Pes (see Table 1) implies

that the main factors influencing solute transfer are the temperature difference ΔT and the sol-

ute diffusivity D. To quantify their effects, we may define a local Péclet number for the solute,

Peℓ = 2|u0|Rc/D, with maximum value Pe‘max ¼ 2u0maxRc=D. Recall here that u0 is the dimen-

sional fluid velocity, which is a function of position within the cytoplasm, while u0max �

max:fju0jg is the global maximum magnitude of the fluid velocity.

In order to understand the weak impact of convective flows on transport, we plot in in Fig

10(a) the iso-values of the maximum local Péclet number, Pe‘max, for different sets of tempera-

ture difference (ΔT) and diffusivity (D). We also contrast our computational results with the

same quantity obtained in Ref. [23] in their simulations and reproduce their results in Fig 10

(b). Once again, it is notable that our results have local Péclet numbers about one order of

magnitude smaller than those in Ref. [23].

6.3 Absorption flux across nuclear membrane

While the maximum local Péclet number Pe‘max captures a local estimate of mass transfer

enhancement by cytoplasmic convection, a fairer quantification of this enhancement at the

whole-cell level involves calculating the total absorption flux across the nuclear membrane,

and comparing it to the limit when the solute emitted by the nucleus instead undergoes pure

diffusion. If S denotes the surface of the nucleus, then the dimensionless diffusive flux through

the surface is given by the integral
R
S −n � rC dS, while the dimensionless advective flux,

R
S n

Fig 9. Influence of the temperature-gradient-driven convection flow on the distribution of a passive scalar with three different

diffusivities, (a)D = 0.01 μm2 s−1, (b) D = 1 μm2 s−1 and (c) D = 100 μm2 s−1.

https://doi.org/10.1371/journal.pone.0307765.g009
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� u C dS, vanishes due to impermeability of the nuclear surface (see Eq (4)). The influence of

bulk solute advection on the mass transfer rate across the nucleus is quantified by defining a

normalised flux,

J ¼
R

S n � rC dS
ð
R

S n � rC dSÞjPes�0

; ð23Þ

where the denominator is the solute flux through the nucleus when the solute transport is

purely diffusive (i.e. when Pes� 0 in Eq (21)). In the mass transfer literature, the quantity J is

Fig 10. Quantifying transport arising from convective flows. (a) Maximum local Péclet number, Pe‘max, as a function of temperature difference ΔT
and solute diffusivity D, obtained through non-linear simulations in COMSOL. (b) Same maximum local Péclet number as obtained numerically in

Ref. [23]. (c) Normalised solute flux J as a function ofD for different prescribed temperature differences. In all cases, the geometry corresponds to that

in Fig 9.

https://doi.org/10.1371/journal.pone.0307765.g010
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usually referred to as the Sherwood number [33] and is expected to be a function of the cell

geometry and the solutal Péclet number, Pes.

6.4 Convective flows are too small to provide significant enhancement of

absorption flux

If bulk advection of solute were to significantly impact the solute transfer from the nucleus to

the cell membrane, then we would expect J to be greater than unity. We plot in Fig 10(c) the

dependence of this normalised flux on the diffusivity of the solute (D) for various temperature

differences (ΔT). The solute diffusivity D spans four orders of magnitude, covering cellular

material ranging from large vesicles (D* 10−2 μm2 s−1 [39, 40]), to proteins synthesised in the

ribosomes (D* 1 μm2 s−1 to 10 μm2 s−1 [30, 41]), to metabolites such as ATP, ADP and cal-

cium ions (D* 100 μm2 s−1 [42, 43]).

For the lowest ΔT value considered, the convective flows do not provide any advantage in

driving the solute. Even for ΔT as large as 10 K (a large value not supported by experimental

data) and solute diffusivities as low as 0.01 μm2 s−1 (relevant for the largest vesicles in the cell),

the solute removal from the nucleus is only amplified by about 15% compared with the case of

pure diffusion.

As an example, consider the protein insulin, whose diffusivity in living cells is around 1 μm2

s−1 [30]. The result in Fig 10(c) then tells us that J � 1 for any range of experimentally

observed intracellular temperature differences. Most cellular proteins and macromolecules

have diffusivities that are too large (ranging from 1 μm2 s−1 to 10 μm2 s−1) to be overcome by

natural convection. Hence, their motion through the cell likely remains diffusive. Vesicles in

cells can have very low diffusivities, around 10−2 μm2 s−1 [39, 40] but, despite this, for the com-

monly measured temperature differences within cells, their transport enhancement due to con-

vective flows is expected to remain, at best, very modest, and most likely, completely negligible.

7 Discussion

7.1 Intracellular convective flows are smaller than previously predicted

In this work, we re-considered the problem of intracellular natural convection potentially

induced by a temperature difference ΔT between the cell’s nucleus and membrane. Specifically,

we used numerical simulations to show that intracellular flows are expected to be on the order

of * 10−3 μm s−1 in magnitude for a nucleus-to-membrane temperature difference of 1 K. In

the process, we discovered an important disparity from previous results that had predicted

ten-fold stronger flows for the same geometry and temperature differential [23].

We explored further this discrepancy, and confirmed it, by performing independent calcu-

lations of the flow strength in an axisymmetric geometry (Sec. 4) and in a concentric geometry

(Sec. 5). Importantly, in the latter case, we provided an exact expression for the flow inside the

cell. All our analyses converged to a similar value for the flow strength, which was indeed *10

times weaker than that computed in Ref. [23]. These results highlight the importance of

detailed flow calculations, since simple scaling analysis alone suggests fluid velocities almost

two orders of magnitude larger (uref * 0.5 μm s−1), which would lead one to believe, incor-

rectly, that these convective flows are very strong.

7.2 Intracellular convection does not lead to significant increase in

chemical transport beyond diffusion

The transport of materials within a cell is essential to its normal function, from vesicle trans-

port for structural upkeep [44], signal transmission via proteins [41] and organelle transport
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during cell division [45, 46] to inter-organelle interactions [47] and the maintenance of nutri-

ent/metabolite gradients [48]. The movement of cellular matter is accomplished by a variety of

mechanisms, including molecular diffusion, active transport by motor proteins and advection

due to cytoplasmic flows [37]. A second aim of our work was to investigate whether tempera-

ture-gradient-driven flows could contribute usefully to advective material transport inside the

cell. This would be particularly relevant for the motion of cell constituents with low diffusivi-

ties (large organelles and vesicles), which necessarily require alternative mechanisms to tra-

verse the cell. Towards this, we numerically simulated the mass transfer of a chemical species

by cytoplasmic convection, and showed that convection does not contribute significantly to

the transport of material within a cell beyond what is achieved by pure diffusion. We quanti-

fied the advection-induced enhancement in averaged mass-flux of a chemical species released

from the nucleus and absorbed at the cell membrane, as a function of the prescribed tempera-

ture difference and the diffusivity of the species. Only in situations that are biologically unreal-

istic (temperature differences of 10 K and very small diffusivities of 0.01 μm2 s−1, associated

with cellular vesicles) could the averaged mass-flux see a modest increase above that obtained

with purely diffusive mass transfer.

Thus, while a cell’s thermal environment is important for its metabolism [3, 49] and sur-

vival [50], the flows generated by temperature gradients, in most realistic scenarios, have negli-

gible effect in improving intracellular mass transfer. It seems therefore that these flows do not

noticeably impact important cell processes like protein delivery, signal propagation, and

organelle and metabolite transport.

Once again, this conclusion becomes apparent only after a detailed calculation of solute

transport in the bulk, as done in Sec. 6. A simple scaling analysis yields characteristic solutal

Péclet numbers Pes = urefRc/D� 500 that are much larger than unity, which, in the absence of

detailed numerical calculations, would erroneously suggest a significant natural-convection-

induced advective contribution to species transport.

7.3 A broader range of modelling assumptions could be explored in future

work

One of the reasons for the aforementioned flows being so weak is that we have modelled the

nucleus surface and the cell membrane as rigid and non-slipping, i.e. the fluid’s tangential

velocity vanishes at both these surfaces. As a result, there are significant viscous stresses in the

domain that resist fluid motion. A different model could allow tangential motion along the cell

surface due to slip or mobility of the membrane.

Our model simplifies the cytoplasm and assumes that it is effectively a homogeneous con-

tinuum with Newtonian properties. It is obviously known to be more complex, consisting of a

polymeric and dynamic cytoskeleton embedded in a viscoelastic, gel-like fluid that flows past

freely suspended cell organelles [31].

Our analysis also considers a simplified description of thermal diffusion inside the cell.

Inherent in Eq (5) is the assumption that the thermal diffusivity of the cytoplasm is isotropic,

i.e. that heat diffuses at a constant rate along all directions. Since the cytoplasm is heteroge-

neous, the thermal diffusivity within it is expected to vary spatially [51].

7.4 Our model could be adapted to quantify artificially induced convection

Our calculations show that cytoplasmic flows due to naturally occurring temperature gradients

within a cell are not very effective in driving cellular material transport. However, artificially

induced thermal convection has been recently proposed as a means to accelerate cell assembly

for biomedical assays [52]. Light-absorbing particles are arrested in optical traps, are heated in
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the process and thus induce thermal flows that drive cell accumulation around the particles.

One could envision the generation of such flows within a cell as well, for example, by laser-

assisted heating of metallic nano-particles [53–55]. Our theoretical analysis could thus be

adapted to quantify such artificially induced cell-scale convection, to inform future hydrody-

namics-based strategies for intracellular object manipulation.

Appendix

A Fluid velocity along the y0 direction

In the main text, we discussed the nature of fluid flow in the vertical plane through the centres

of both the cell and the nucleus (the x0-z0 plane). Here we discuss the importance of the other

component of the fluid velocity, i.e. the velocity u0y, in comparison with u0x and u0z. In Fig 11 we

show this horizontal velocity u0y on two vertical planes x0 = const.—through the centre of the

cell and through the centre of the nucleus—along with the vertical velocity u0z. Similarly, Fig 12

shows u0y on five different horizontal planes through the cell, at different heights z0. The cell

geometry and the physical parameters in both these figures are the same as in Fig 3. Note that

since only the full three-dimensional flow is incompressible, the in-plane velocity in Figs 11

Fig 11. The y0 component of the fluid velocity (panels (a) and (b)) and the z0 component (panels (c) and (d)) at

vertical sections through the cell centre (panels (a) and (c)) and the nucleus centre (panels (b) and (d)). The arrows

denote in-plane velocity vectors. Note that the y0-axis is inverted in panels (a) and (b), for ease of visual comparison

with the contours seen in the insets. The cell geometry is the same as in Fig 3 (κ = 0.43, ex = ez = 0.25).

https://doi.org/10.1371/journal.pone.0307765.g011
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Fig 12. The y0 component of the fluid velocity at different horizontal sections through the cell, as shown in the inset in each figure. The arrows

denote in-plane velocity vectors. The cell geometry is the same as in Fig 3 (κ = 0.43, ex = ez = 0.25).

https://doi.org/10.1371/journal.pone.0307765.g012
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and 12 is not incompressible; this is most apparent in Fig 12, where we can see local two-

dimensional sources and sinks of flow. Clearly, the typical magnitude of u0z is larger than u0y in

both Figs 11 and 12 (see also Fig 3). This means that the strongest flows in the cell are vertical

(along or opposite to gravity) and justifies our focus on u0z in the main text.

B Influence of nucleus position on fluid flow: COMSOL simulations

In this section, we use numerical simulations to briefly summarise the dependence of the flow on

the position of the nucleus inside the cell. The angle θe = tan−1(ez/ex) shown in Fig 1 quantifies

how axisymmetric the system is, with θe = π/2 rad (= 90˚) representing the axisymmetric case.

Results plotted in Fig 13 show that, for all values of the eccentricity e, the flow strength increases

monotonically as the extent of axisymmetry decreases. Intuitively, for θe = 0, the majority of the

fluid is least confined in the direction normal to gravity. Hence, for any non-zero eccentricity/

offset, the fluid experiences the least viscous resistance when θe = 0. As a result, it attains the larg-

est velocities for a prescribed driving temperature difference. This can be seen in Fig 13(c), where

the fluid to the left of the nucleus is heated and attains large upwelling speeds.

Fig 13. Impact of the extent of axisymmetry (quantified by θe, shown here in degrees) on the dimensional maximum

upwelling (filled symbols) and minimum downwelling (open symbols) flows inside the cell, for (a) κ = 0.2, (b) κ = 0.43.

The marker types and colours denote different eccentricity values, whose legend is the same across both panels. The

temperature difference between the nucleus and the cell membrane in each case is ΔT = 1 K. Panel (c) further shows

the vertical velocity in the mid-plane for θe = 0, e = 0.5 (i.e. ex = 0.5, ez = 0) and κ = 0.43. The arrows indicate the in-

plane velocity.

https://doi.org/10.1371/journal.pone.0307765.g013
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However, the increase in the dimensional flow speed |u0| as θe decreases is only modest, and

the maximum velocities inside the cell still remain *10−3μm s−1. Since the order of magnitude

of the flow inside the cell does not change over the entire range of parameters, the predictions

from Secs. 4 and 5 provide a quantitative estimate of the convective flows occurring in more

complex configurations.

C Time-evolution of concentration inside the cell

While there is very little difference in the steady-state concentration profiles in Fig 9, the time-

evolution of concentration shows more discernible changes between different values of Pes. In

Fig 14, we show results from COMSOL simulations, where the initial concentration is uniform

everywhere inside the cell, set as C(x0, t0 = 0) = 0, and then, at dimensional time t0 = 0.1 s, the

concentration at the nucleus surface is changed to Cnuc = 1. These simulations were performed

for three values of solute diffusivity: D = 10 μm2 s−1 (Pes� 0.5), D = 1 μm2 s−1 (Pes� 5) and

D = 0.1 μm2 s−1 (Pes� 50). In each case, the solute concentration evolves to a steady state over

Fig 14. Influence of the temperature-gradient-driven convection flow on the unsteady intracellular distribution of

a passive scalar with three different diffusivities, D = 10 μm2 s−1 (left column), D = 1 μm2 s−1 (middle column) and

D = 0.1 μm2 s−1 (right column). The top row corresponds to dimensional time t0 = 2 s, the middle row, t0 = 20 s and

the bottom row, t0 = 200 s. Note the equivalence between panels (a), (d) and (f), and also between (b) and (e), which

correspond to the same dimensionless time t.

https://doi.org/10.1371/journal.pone.0307765.g014
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the diffusive time-scale t0d � R
2
c=D, and the differences between solute concentrations for dif-

ferent Pes at a given dimensional time t0 are apparent. However, these differences almost van-

ish if the times are normalised by t0d. This is expected for an isotropic diffusive process, thus

shown to be the dominant mechanism of mass transfer inside the cell.

D Details of bi-spherical coordinate calculations

The geometry of the bi-spherical coordinate system is shown in Fig 15. The Cartesian coordi-

nates (x, y, z) are expressed in terms of the bi-spherical coordinates (ξ, χ, ϕ) as

x ¼
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

cosh x � w
cos �;

y ¼
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

cosh x � w
sin �;

z ¼
a sinh x

cosh x � w
;

ð24Þ

where a = |sinh(ξmem)|. The bi-spherical coordinates enable us to represent the nuclear and

cell membranes as surfaces with a constant value of the ξ coordinate. These values at the

nucleus (ξnuc) and the membrane surface (ξmem) are functions of the eccentricity ez and the

radius ratio κ,

xmem ¼ �
ez
jezj

cosh� 1 1 � kþ e2
z

2jezj

� �

;

xnuc ¼ �
ez
jezj

cosh� 1 1 � k � e2
z

2kjezj

� �

:

ð25Þ

Note that |ξnuc| is always greater than |ξmem|, and that both ξnuc and ξmem are positive for ez< 0

and negative for ez> 0. With this geometrical setup, we may now describe the solution of Eqs

(9) and (13) in bi-spherical coordinates.

Fig 15. Depiction of the bi-spherical coordinate grid for negative (left) and positive (right) vertical eccentricities, with

|ez| = 0.3. The radius ratio between spheres given by ξ = ξnuc and ξ = ξmem is κ = 0.43. The velocity components (uξ, uχ)

are directed normal to the (ξ, χ) iso-surfaces and are positive toward the direction of increasing (ξ, χ).

https://doi.org/10.1371/journal.pone.0307765.g015
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D.1 Temperature. The general solution to Laplace’s equation for the normalised tempera-

ture field,r2Θ = 0, in bi-spherical coordinates is given by

Yðx; wÞ ¼ ðcosh x � wÞ1=2
X1

n¼0

YnðxÞLnðwÞ; ð26Þ

where Ln(χ) are the Legendre polynomials, which are solutions of the ordinary differential

equation

d
dw

1 � w2ð Þ
d
dw
Ln wð Þ

� �

¼ � n nþ 1ð ÞLn wð Þ; ð27Þ

the functions Θn, called temperature modes, are given by

YnðxÞ ¼ bn sinhfðnþ 1=2Þjxjg þ dn coshfðnþ 1=2Þxg: ð28Þ

In practice, one truncates the summation in Eq (26) to a finite number of terms, beyond

which additional terms cause negligible change in the distribution Θ(ξ, χ) (i.e. the solution has

converged). In the present work, we truncate the summation once the maximum relative error

caused by adding an extra term falls below 0.1%. The constants {bn, dn} in Eq (28) are found by

applying the boundary conditions Θ(ξnuc, χ) = 1 and Θ(ξmem, χ) = 0, which yields

bn ¼

ffiffiffi
2
p
e� ðnþ1=2Þjxnuc jcoshfðnþ 1=2Þxmemg

sinhfðnþ 1=2Þðjxnucj � jxmemjÞg
;

dn ¼ �

ffiffiffi
2
p
e� ðnþ1=2Þjxnucjsinhfðnþ 1=2Þjxmemjg

sinhfðnþ 1=2Þðjxnucj � jxmemjÞg
:

ð29Þ

The temperature problem is therefore completely solved and it provides the driving force for

the fluid flow via the Stokes Eq (9), which we solve in the next section.

D.2 Flow field. The flow field is axisymmetric and is expressed in terms of the Stokes flow

streamfunction, Cb(ξ, χ), as

u ¼ uxix þ uwiw;

¼
ðcosh x � wÞ2

a2

@C
b

@w
ix �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

@C
b

@x
iw

� �

;
ð30Þ

where the super-script ‘b’ denotes the coordinates (bi-spherical) in which the streamfunction

is defined. The velocity components (uξ, uχ) are directed normal to the (ξ, χ) iso-surfaces (see

Fig 15) and are positive in the direction of increasing (ξ, χ). The unit vectors (iξ, iχ) are

expressed in terms of the Cartesian coordinate unit vectors (ix, iy, iz) as

ix ¼
1 � w cosh x
cosh x � w

iz �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

sinh x
cosh x � w

ix cos �þ iy sin �
� �

;

iw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

sinh x
cosh x � w

iz þ
1 � w cosh x
cosh x � w

ix cos �þ iy sin �
� �

:

ð31Þ

The equation governing the streamfunction can be derived from the Stokes Eq (9) as [32, 33]

�
cosh x � w
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p E2 E2 C

b� �� �
� ix sin �þ iy cos �
� �

¼ r� Yizð Þ; ð32Þ
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where E2 is the differential operator

E2 C
b� �
�

cosh x � w
a2

@

@x
cosh x � wð Þ

@C
b

@x

� �

þ ð1 � w2Þ
@

@w
cosh x � wð Þ

@C
b

@w

� �� �

: ð33Þ

The general solution to Eq (32) requires us to write Cb as

C
b
ðx; wÞ ¼ ðcosh x � wÞ� 3=2

X1

n¼0

ð1 � w2Þ
dLn
dw
UnðxÞ; ð34Þ

where Un(ξ) are unknown functions (velocity modes), that will depend linearly on the temper-

ature modes Θn (Eq (28)). If the summations in Eqs (26) and (34) are truncated after N terms,

then we need to solve for N functions Un(ξ), 1� n� N. Substituting Eqs (34) and (26) into Eq

(32) yields

X1

n¼0

� G3 2ðnþ 1Þ

a4

Lnþ1ðwÞ � wLnðwÞ
1 � w2

Eb
nðxÞ ¼

X1

p¼0

1 � w cosh xð Þ
dLp
dw

YpðxÞ

�
X1

p¼0

LpðwÞ
2

YpðxÞ cosh xþ 2
dYp

dx
sinh x

� �

;

ð35Þ

where Γ� (cosh ξ − χ), and Eb
nðxÞ is the function

Eb
nðxÞ ¼

1

2

d4Un
dx4
� n2 þ nþ

5

4

� �
d2Un

dx2
þ

n4

2
þ n3 �

n2

4
�

3n
4
þ

9

32

� �

UnðxÞ: ð36Þ

We next multiply Eq (35) by (1 − χ2)(dLi/dχ) and integrate over the limits χ = −1 to χ = 1.

When this projection is carried out for 1� i� N, it yields a system of N coupled, linear ordi-

nary differential equations for the velocity functions {U1(ξ), U2(ξ), . . ., UN(ξ)}. These functions

are expressible in terms of the known modal distribution of the temperature Θp(ξ). The projec-

tion onto (1 − χ2)dLi/dχ of the right-hand-side of Eq (35) can be simplified using the proper-

ties of Legendre polynomials as

2iðiþ 1Þ

2iþ 1
YiðxÞ �

cosh x
2
fYiþ1ðxÞ þYi� 1ðxÞg � sinh x

dYi� 1=dx
2i � 1

�
dYiþ1=dx

2iþ 3

� �� �

: ð37Þ

The projection onto (1 − χ2)dLi/dχ of the left-hand-side of Eq (35) yields

�
2

a4

X1

n¼0

Z 1

� 1

ðcosh x � wÞ3ðnþ 1ÞfLnþ1ðwÞ � wLnðwÞg
dLi
dw

Eb
nðxÞ dw; ð38Þ

which can be written in short-hand as

�
2

a4

X1

n¼0

I inðxÞE
b
nðxÞ; ð39Þ

where

I inðxÞ ¼

Z 1

� 1

ðcosh x � wÞ3ðnþ 1ÞfLnþ1ðwÞ � wLnðwÞg
dLi
dw

dw

¼

Z 1

� 1

iðnþ 1Þðcosh x � wÞ3fLnþ1ðwÞ � wLnðwÞg
wLiðwÞ � Li� 1ðwÞ

w2 � 1
dw:

ð40Þ
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The second line of Eq (40) is obtained by making use of the following recurrence relation

for Legendre polynomials,

1 � w2

i
dLi
dw
¼ Li� 1ðwÞ � wLiðwÞ:

In left-hand-side of Eq (40), the index ‘i’ in I in denotes the term onto which the projection

is made: (1 − χ2)dLi/dχ, and the index ‘n’ denotes the contribution to the projection from the

nth term in the expansion on the left-hand-side of Eq (35).

The next step is to write out (39) for a discrete number of points, sayM, along ξ. Thus, each

mode Un(ξ) is evaluated onM points: {Un(ξ1), Un(ξ2), . . ., Un(ξM)}, where ξ1 = ξnuc and ξM =

ξmem. The discrete version of Eq (39) at ξ = ξl(1� l�M) reads

�
2

a4

X1

n¼0

I linE
b
nðxlÞ; ð41Þ

whereI lin is a three-dimensional matrix resulting from the evaluation of I inðxÞ at ξ = ξl, i.e.

I lin ¼ I inðx ¼ xlÞ. If N is the number of modes (or the upper limit of the summation) at

which the temperature (Eq (26)) and the streamfunction (Eq (34)) expansions are truncated,

then the size ofI lin isM × N × N. At this level of modal resolution/truncation, Eq (35) written

for ξ = ξl and projected onto 1 � w2ð Þ
dLi
dw is thus given by

�
2

a4

XN

n¼0

I linE
b
nðxlÞ ¼

2iðiþ 1Þ

2iþ 1
YiðxlÞ �

cosh xl
2
fYiþ1ðxlÞ þYi� 1ðxlÞg

� �

�
2iðiþ 1Þ

2iþ 1
sinh xl

dYi� 1=dx
2i � 1

�
dYiþ1=dx

2iþ 3

� ���
�
�
�
x¼xl

2

4

3

5:

ð42Þ

While the right-hand-side of Eq (42) is explicitly known (see Eq (28)), the derivatives of the

functions Un(ξ) (inherent in definition of Eb
nðxÞ; see Eq (36)) in the left-hand-side need to be

discretised. In the present work, we use second-order accurate finite differences for this discre-

tisation. This leads to a total of N ×M unknowns, Un(ξl), where 1� n� N and 1� l�M.

D.3 Boundary conditions for the flow. Eq (42) is a fourth-order, linear, coupled ordinary

differential equation for the functions Un(ξ). It is supplemented by four boundary conditions

involving velocity components (uξ, uχ) at the inner and outer sphere surfaces (i.e. at the

nucleus and the cell membrane),

uxðx ¼ xnucÞ ¼ uxðx ¼ xmemÞ ¼ 0;

uwðx ¼ xnucÞ ¼ uwðx ¼ xmemÞ ¼ 0:
ð43Þ

Using Eq (30), one can show that these boundary conditions yield the following equations

for Un(ξ) and dUn/dξ,

UnðxnucÞ ¼ UnðxmemÞ ¼ 0;

dUn
dx

�
�
�
�
�
x¼xnuc

¼
dUn
dx

�
�
�
�
�
x¼xmem

¼ 0:
ð44Þ

Eqs (42) and (44) provide the N ×M linear equations required to obtain the unknown func-

tions Un(ξl). Inverting this system of equations solves the hydrodynamic problem for the flow

field u(ξ, χ) (obtained via Eqs (30) and (34)). A transformation from u(ξ, χ) to u(x, y, z) (using
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Eq (31)) allows us to plot and compare the velocities obtained using the above methodology

with the finite-element COMSOL simulations. This comparison is shown in Fig 16 where we

obtain essentially an identical match between the two solutions. Note that in bi-spherical coor-

dinates, we have solved the problem in a grid where the z-coordinate of the cell centre is not

given by z = 0 (see Fig 15), but while plotting our results to compare with those from COMSOL

simulations, we have shifted the domain along the z-axis such that the cell centre always lies at

(x = 0, z = 0).

E Details of analytical solution in the concentric case

In the concentric case, the nucleus and cell have the same centre. This geometry is much sim-

pler to handle than the axisymmetric (but eccentric) arrangement of the previous section,

which required bi-spherical coordinates (Appendix D). As a result, one can solve the problem

using spherical polar coordinates and obtain fully analytical solutions for the temperature and

flow fields. While this problem has been solved in Ref. [25] in the context of natural convection

between concentric spheres at low thermal Péclet numbers, we repeat here the solution in our

notation, for the sake of completeness. We obtain the same solution as the leading-order

Fig 16. Comparison of the dimensionless horizontal components of the flow field at the y = 0 mid-plane (panels (a)

and (b)) and vertical components (panels (c) and (d)), calculated using the bi-spherical coordinates methodology (left

column) and via COMSOL simulations (right column). The geometrical parameters are given by κ = 0.43, ex = 0, ez =

0.3.

https://doi.org/10.1371/journal.pone.0307765.g016
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solution in Ref. [25], once the notations are made consistent. The problem geometry is shown

in Fig 17. The Cartesian coordinates (x, y, z) are expressed in terms of the spherical polar coor-

dinates (r, θ, ϕ) as

x ¼ r sin y cos �;

y ¼ r sin y sin �;

z ¼ r cos y:

ð45Þ

E.1 Temperature. The thermal problem is driven solely by diffusion because the thermal

diffusivity α is large enough to give vanishing thermal Péclet number, Pet = urefRc/α� 1 (see

also Fig 3). Since the boundary conditions (see Eq (12)) are independent of the polar angle θ,

the normalised temperature field, Θ, must also be independent of θ, i.e. it is spherically sym-

metric. The normalised temperature Θ must then satisfy Laplace’s equation, given by

1

r2

d
dr

r2 dY
dr

� �

¼ 0; ð46Þ

along with the boundary conditions of prescribed temperature on the nucleus and membrane,

Yðr ¼ kÞ ¼ 1;

Yðr ¼ 1Þ ¼ 0:
ð47Þ

The solution to Eqs (46) and (47) is classically given by

YðrÞ ¼
k

1 � k

1

r
� 1

� �

: ð48Þ

Fig 17. The axisymmetric spherical coordinates, with κ� r� 1 and 0� θ� π. The velocity components (ur, uθ) are

directed normal to the (r, θ) iso-surfaces and are positive toward the direction of increasing (r, θ).

https://doi.org/10.1371/journal.pone.0307765.g017
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E.2 Flow field. Here also, the flow can be represented in terms of the streamfunction for

Stokes flow, Cs(r, θ),

u ¼ urir þ uyiy;

¼
1

r sin y
�

1

r
@C

s

@y
ir þ

@C
s

@r
iy

� �

;
ð49Þ

where the super-script ‘s’ now denotes that the streamfunction has been defined in terms of

spherical coordinates. The spherical basis vectors (ir, iθ) are expressed in terms of the Cartesian

coordinate unit vectors (ix, iy, iz) as

ir ¼ sin y cos �ix þ sin y sin �iy þ cos yiz;

iy ¼ cos y cos �ix þ cos y sin �iy � sin yiz:
ð50Þ

In spherical coordinates, the streamfunction satisfies

�
1

r sin y
E2 E2 C

s
ð Þ½ � ¼

sin y
r2

k

1 � k
; ð51Þ

the differential operator E2 is given by

E2 C
s

ð Þ ¼
@

2
C

s

@r2
þ

1 � m2

r2

@
2
C

s

@m2
; ð52Þ

where we write μ� cos θ. The general solution forCs is

C
s
ðr; mÞ ¼

X1

n¼0

ð1 � m2Þ
dLn
dm
fnðrÞ; ð53Þ

where the Ln(μ) are the Legendre polynomials as defined in Eq (27). The structure of Eq (51)

allows us to pose an Ansatz for Cs(r, μ): the angular dependence in that equation can only be

balanced if we restrict the expansion (53) to just the n = 1 term, i.e.

C
s
ðr; yÞ ¼ f1ðrÞsin

2 y: ð54Þ

Substitution into Eq (51) then gives the following governing equation for f1(r),

d4f1
dr4
þ 2 �

2

r2

d2f1
dr2
þ

4

r3

df1
dr
�

4

r4
f1ðrÞ

� �

¼ �
1

r
k

1 � k
: ð55Þ

E.3 Boundary conditions for the flow. The fourth-order ordinary differential Eq (55) is

supplemented by the boundary conditions at the nucleus (r = κ) and the cell membrane

(r = 1). Noting that they have been modelled as rigid spheres, the normal and tangential veloci-

ties at these surfaces must vanish,

urðr ¼ kÞ ¼ urðr ¼ 1Þ ¼ 0;

uyðr ¼ kÞ ¼ uyðr ¼ 1Þ ¼ 0;
ð56Þ
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which convert to the following conditions on the function f1(r),

f1ðr ¼ kÞ ¼ f1ðr ¼ 1Þ ¼ 0;

df1
dr

�
�
�
�
�
r¼k

¼
df1
dr

�
�
�
�
�
r¼1

¼ 0:
ð57Þ

The full solution to Eqs (55) and (57) is provided in Eqs (16) and (17) in the main text.

Additionally, the vertical and horizontal velocities plotted in Fig 7 are obtained by transform-

ing the spherical coordinate velocity representation u(r, θ) to a Cartesian representation u(x, y,
z) as

uzðr; yÞ ¼ �
2 cos2y

r2
f1 rð Þ þ

sin2 y

r
df1
dr

� �

;

uxðr; y; �Þ ¼ �
1

r2
f1 rð Þ þ

1

2r
df1
dr

� �

sin 2yð Þ cos �:
ð58Þ
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