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Biophysical fluid dynamics in a Petri dish
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The humble Petri dish is perhaps the simplest setting in which to examine the locomotion
of swimming organisms, particularly those whose body size is tens of microns to millime-
ters. The fluid layer in such a container has a bottom no-slip surface and a stress-free
upper boundary. It is of fundamental interest to understand the flow fields produced by the
elementary and composite singularities of Stokes flow in this geometry. Building on the
few particular cases that have previously been considered in the literature, we study here
the image systems for the primary singularities of Stokes flow subject to such boundary
conditions—the Stokeslet, rotlet, source, rotlet dipole, source dipole, and stresslet—paying
particular attention to the far-field behavior. In several key situations, the depth-averaged
fluid flow is accurately captured by the solution of an associated Brinkman equation whose
screening length is proportional to the depth of the fluid layer. The case of hydrodynamic
bound states formed by spinning microswimmers near a no-slip surface, discovered first
using the alga Volvox, is reconsidered in the geometry of a Petri dish, where the power-law
attractive interaction between microswimmers acquires unusual exponentially screened
oscillations.

DOI: 10.1103/PhysRevFluids.9.083101

I. INTRODUCTION

Since its development in 1887 by the German physician Julius Petri [1] for the facilitation of
cell culturing, extending the bacterial culture methods pioneered by his mentor Robert Koch [2],
the Petri dish has become an integral part of any biology laboratory. While still primarily used
for culturing cells, providing storage space while reducing the risk of contamination, its simplicity
and functionality allow it to be used in a wide range of other contexts: in chemistry to dry out
precipitates and evaporate solvents (e.g., when studying Liesegang rings [3,4]) or in entomology
where they are convenient enclosures to study the behavior of insects and small animals [5,6]. A
Petri dish environment is also a simple and common setting in which to examine the locomotion of
swimming organisms, particularly those whose body size is tens of microns to millimeters [7–11].
The boundary condition at the bottom surface of such a container can be approximated as no slip,
while the top of the fluid is stress-free. Hence, a general question is thus: How does confinement in a
Petri dish alter the nature of the flow induced by motile organisms? We emphasize that this question
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transcends the laboratory context of Petri dishes, naturally extending to the multitude of settings in
nature where shallow bodies of water host motile organisms.

The framework to answer this question lies of course with Green’s functions. In low Reynolds
number fluid mechanics governed by the Stokes equations [12], the most important such function
corresponds to the flow induced by a point force in an unbounded fluid and decays as 1/r. First
written down by Lorentz [13] and later denoted a Stokeslet [14], it has been used to solve a
wide range of fluid dynamical problems (see Happel and Brenner [15] and Kim and Karrila [16]
for general overviews). One powerful extension to the Stokeslet involves a multipole expansion
similar to that in electrostatics. The fluid flow caused by the motion of an arbitrary rigid body
through a viscous fluid can be represented as that from a collection of point forces at the surface
of the body [16]. Expanding the Stokeslet produced at an arbitrary point on the body’s surface
as a Taylor series about the center of the body and then summing these contributions in the far
field, one obtains a perturbation expansion for the fluid flow induced by the body [17]. Regardless
of the particular shape of the particle, the fluid velocity field will exhibit common features. The
leading-order 1/r term is still a Stokeslet, but at higher orders, one finds distinct singularities. In
particular the 1/r2 term, denoted a force dipole, can be separated into a symmetric part, denoted a
stresslet [18], that corresponds to a symmetric hydrodynamic stress applied locally to the fluid, and
an antisymmetric part, denoted a rotlet [19] (called a couplet by Batchelor [18]), corresponding to a
local hydrodynamic torque that produces rotational motion.

A well-chosen distribution of such Stokes singularities that exploits the inherent symmetries
of the system in question can be used to solve Stokes equations in a wide range of geometries
and biological contexts [16]. Figure 1 illustrates the breadth of this approach, giving examples of
biological flows associated with each of the low-order Stokes singularities. Although classically in
biological fluid dynamics the stresslet is the most common Stokes singularity considered [28], one
sees that all low-order Stokes singularities arise in familiar contexts.

The key question addressed here is thus: What is the fluid flow resulting from any Stokes
singularity placed in a fluid layer between a rigid lower no-slip boundary and an upper stress-free
surface? Although a few cases have been investigated in the literature, there has not been a
systematic breakdown of the possible cases that arise. This was first considered by Liron and
Mochon [29], who derived an exact solution in integral form for a Stokeslet. Subsequent work
on this problem includes a theoretical study of bacterial swarms on agar [30], which contained a
calculation of the leading-order far-field contribution to the flow from both a Stokeslet and a rotlet
when placed in a Petri dish configuration. This was further developed by Mathijssen et al. [31], who
derived a numerically tractable approximation for the flow field produced by a Stokeslet and hence
the flow field produced by a force- and torque-free microswimmer in a Petri dish.

In this paper, paying particular attention to the far-field behavior, we systematically extend and
generalize these works beyond Stokeslets by computing exact expressions for the flow components
u j generated in a Petri dish of height H by the biologically relevant low-order primary and composite
singularities of Stokes flow:
(1) The Stokeslet:

uk
j = λF (δ jk/r + x jxk/r3), (1)

(2) Rotlet:

uk
j = λRε jkpxp/r3, (2)

(3) Source:

u j = λSx j/r3, (3)

(4) General stresslet:

uk, l
j = λCx jxkxl/r5, (4)
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FIG. 1. Stokes singularities in biological fluid mechanics. [(a)–(g)] Elementary singularities. Stokeslet flow
is found in (a) far-field flow around Volvox carteri [20]. Source flows arise from injection of fluid from a
micropipette into a Petri dish in studies of (b) dinoflagellates [21] and (c) plant-animal worms [22]. Rotlet
flows arise from (d) the bacterium Escherichia coli under confinement, generating flow field in (e), reproduced
from Ref. [23] with permission, (f) a magnetic nano stir bar [24], and (g) a macroscopic stirrer, reproduced
from Ref. [25] with permission. [(h)–(l)] Composite singularities. Stresslets arise from (h) the pusher E. coli
[9], (i) the puller alga Chlamydomonas reinhardtii [20], and (j) a phoretic Janus particle that changes from
pusher to puller as a function of its aspect ratio, reproduced from Ref. [26] with permission. A rotlet dipole
flow is induced by (k) a circular mill of Symsagittifera roscoffensis [27]. A source is found in (l) the near-field
flow induced by V. carteri after the Stokeslet contribution is subtracted [20].

(5) Rotlet dipole:

uk
j = λRDε j pkxkxp/r5, (5)

(6) Source dipole:

uk
j = λSD(δ jk/r3 − 3x jxk/r5). (6)

Note that here, j, k, and l are free indices while the λi are dimensional constants denoting the
strength of the singularities, with dimensions m2 s−1 for the Stokeslet; m3 s−1 for the rotlet, source,
and stresslet; and m4 s−1 for the rotlet dipole and source dipole. For clarity, we only present in
the main text analysis for a source and a Stokeslet, namely, the simplest and the most common
singularity, respectively. The results for the other singularities are given in Appendixes B–E. Table I
lists the locations of all these results in the paper. We adopt the geometry of Fig. 2, with in-plane
coordinates (x1, x2), the no-slip surface at x3 = 0, and the stress-free surface at x3 = H .
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TABLE I. Location of results for various singularities. Note that for completeness, all directions and
derivatives are considered herein for composite singularities.

Singularity Location Exact solution Far-field approximation

Source + Main text Eq. (23) Eqs. (29) and (30)
Stokeslet ↓ Main text Eq. (24) Eqs. (32)–(34)
Rotlet � Appendix B Eq. (B6) Eqs. (B8)–(B12)

Stresslet ↓→
←

↑ Appendix C Eq. (C4) Eqs. (C7)–(C9)

Rotlet dipole �
�

Appendix D Eq. (D9) Eqs. (D13)–(D17)

Source dipole ± Appendix E Eq. (E4) Eqs. (E6)–(E8)

In Sec. III, we calculate for both a source and a Stokeslet a particular solution to the Stokes
equations generated by summing the infinite image system of Stokes singularities that is formed by
repeatedly reflecting the initial singularity in both of the vertical boundaries. Then in Sec. IV, an
auxiliary solution is calculated using a Fourier transform method so that the sum of the two solutions
is an exact solution for the full boundary conditions. In Sec. V, a contour integral approach is used
to calculate the leading-order term of the fluid velocity in the far field of a source.

This methodology, applied to both the source and the Stokeslet in Secs. IV and V, is applied
to the rest of the most commonly used Stokes singularities (namely, a rotlet, a general stresslet, a
rotlet dipole, and a source dipole) in Appendixes B–E. Finally, as an application of these results,
Sec. VIII reconsiders in the geometry of the Petri dish the problem of hydrodynamic bound states,
first discovered using the green alga Volvox near a no-slip surface [32] and later rediscovered in
multiple contexts. The concluding Sec. VI summarizes the main results of the paper.

In particular, we note that higher-order in-plane Stokes singularities can be found by differen-
tiating the solutions with respect to a horizontal coordinate xα . Since all other Stokes singularities
can be expressed in terms of derivatives of these singularities, we conclude that the leading-order
contribution to the fluid velocity in the far field for an arbitrary Stokes singularity is separable
in x3, either decaying exponentially radially or having x3 dependence of the form x3(1 − x3/2H ).
Hence, for many situations where the forcing can be modeled as a sum of Stokes singularities, the

FIG. 2. Stokes singularity in a Petri dish. The positive singularity is located at z = s and labeled 1. Its
reflection across the no-stress surface at z = H is labeled 2 and across the no-slip surface at z = 0 is 2′, and so
on. An alternative approach uses the full solution for a single no-slip surface and extends the domain to include
a no-slip surface at z = 2H .
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depth-averaged fluid flow can be captured by an associated Brinkman equation with a screening
length proportional to H .

II. SINGULARITY IN A PETRI DISH

Consider, as in Fig. 2, a Stokes singularity f , located at the point (x1, x2, x3) = (0, 0, s) between
a rigid lower surface at x3 = 0 and an upper free surface at x3 = H , which generates a fluid flow
u = (u1, u2, u3). At x3 = 0, we impose the no-slip boundary conditions

u1 = u2 = u3 = 0. (7)

The capillary length λcap for a water-air interface is λcap = √
γw/ρwg ≈ 2.73 mm, where

ρw = 997 kg m−3 is the density of water, γw as 72.8 mN m−1 is the air-water surface tension, and
g = 9.81 m s−2 is the gravitational acceleration. Since in a Petri dish λcap and H are similar in size,
at the free surface, surface tension and gravitational effects are of similar magnitudes. Together, they
restrict the vertical deformation of the interface. Hence, we assume the limit of no deformation in
the vertical direction, fixing H as a constant. The self-consistency of this assumption is explored
later in Sec. VI. The dynamic boundary condition u3 = DH/Dt thus simplifies to

u3 = 0 at x3 = H. (8)

A force balance at x3 = H , σx1x3 = σx2x3 = 0, implies

∂u1

∂x3
= ∂u2

∂x3
= 0 at x3 = H. (9)

We nondimensionalize this system, scaling lengths with H and velocities with US , where for
a singularity of strength λS that decays in the far field like 1/rn, US = λSH−n. For notational
simplicity, we define

(x, y, z) = (x1, x2, x3)/H, (10a)

(ux, uy, uz ) = (u1, u2, u3)/US, (10b)

h = s/H. (10c)

The boundary conditions become

ux = uy = uz = 0 at z = 0, (11a)

∂ux

∂z
= ∂uy

∂z
= uz = 0 at z = 1. (11b)

III. REPEATED REFLECTION SOLUTION

We first examine the extent to which we can satisfy these boundary conditions through a
distribution of image singularities. Following the canonical approach of Liron and Mochon [29],
for a singularity placed at x3 = s (the green+labeled 1 in Fig. 2), placing an image singularity of
the same sign at x3 = 2H − s (label 2) satisfies the free surface boundary condition at x3 = H .
Similarly, placing an image singularity of the opposite sign at x3 = −s (2′) partially satisfies the
no-slip boundary condition, but singularity 2 fails the no-slip boundary condition and thus must
be reflected about x3 = 0, changing its sign at location 3. Similarly, singularity 2′ fails the free
surface boundary condition and thus must be reflected in x3 = H to give singularity 3′. Repeating
this ad infinitum, namely, inverting the sign when reflecting in the no-slip x3 = 0 boundary and
keeping the same sign when reflecting in the free surface x3 = H boundary, gives an infinite series
of singularities that constitutes the repeated reflection solution for that singularity.

In rescaled units, if we define the singularity locations r1n = (x, y, z − h + 4n), r2n = (x, y, z −
h + (4n + 2)), R1n = (x, y, z + h + 4n), and R2n = (x, y, z + h + (4n + 2)), then the repeated
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reflection solution is but one case of the general function L( f ) for an arbitrary function f ,

L =
∞∑

n=−∞
{ f (r1n) − f (r2n) − f (R1n) + f (R2n)}. (12)

While intuitive, this series expansion is unwieldy. For the particular case f = 1/r, a Bessel function
identity can be used to obtain the integral form

L
(

1

r

)
=

∫ ∞

0
dλ

2J0(λρ)

cosh(λ)
×

{
sinh hλ cosh(1 − z)λ,

sinh zλ cosh(1 − h)λ,
(13)

where ρ =
√

x2 + y2 and here and below the upper expression holds for z > h and the lower for
z < h. Higher-order solutions are obtained from this result through algebraic manipulation, as shown
in Appendix A for the third- and fifth-order cases. From those results, we find the repeated reflection
solution v j for a source x j/r3,

v j = δ jαxαL
(

1

r3

)
+ δ j3L

(
z

r3

)

= 2xα

ρ
δ jα

∫ ∞

0
λdλ

J1(λρ)

cosh λ
×

{
sinh hλ cosh(1 − z)λ,

sinh zλ cosh(1 − h)λ,

+ 2δ j3

∫ ∞

0
λdλ

J0(λρ)

cosh λ
×

{
sinh hλ sinh(1 − z)λ,

− cosh zλ cosh(1 − h)λ.
(14)

Similarly, for a Stokeslet δ jk/r + x jxk/r3, we find

vk
j = δ jkL

(
1

r

)
+ δ jαδkβxαxβL

(
1

r3

)
+ (δ jαδk3 + δkαδ j3)xαL

(
z

r3

)
+ δ j3δk3L

(
z2

r3

)

= 2(δ jk + δ j3δk3)
∫ ∞

0
dλ

J0(λρ)

cosh λ
×

{
sinh hλ cosh(1 − z)λ,

sinh zλ cosh(1 − h)λ,

+ 2

(
xαxβ

ρ
δ jαδkβ − ρδ j3δk3

) ∫ ∞

0
λdλ

J1(λρ)

cosh λ
×

{
sinh hλ cosh(1 − z)λ,

sinh zλ cosh(1 − h)λ,

+ 2xα (δ j3δkα + δk3δ jα )
∫ ∞

0
λdλ

J0(λρ)

cosh λ
×

{
sinh hλ sinh(1 − z)λ,

− cosh zλ cosh(1 − h)λ,
(15)

Similar expressions can be constructed for the other commonly used Stokes singularities
(see Appendix B for the rotlet, Appendix C for the stresslet, Appendix D for the rotlet dipole,
and Appendix E for the source dipole).

These results obtained via the repeated reflection solution can also be found directly from Liron’s
solution [29] for a point force between two no-slip walls by setting the separation in that calculation
to be 2H , placing a second force at 2H − s and observing that the reflection symmetry of the
problem about the midline at x3 = H guarantees a stress-free condition at the midline.

Due to the nature of the algebraic manipulations performed above, these integral expressions do
not converge when in the horizontal plane of the singularity x3 = s. Instead, it transpires that the
correct integral expression to use instead is (vk

j |x3→s+ + vk
j |x3→s− )/2, the average of the integrals as

x3 tends to s from both directions.

IV. AUXILIARY SOLUTION

In a scalar problem, such as a set of electric charges, the repeated reflection solution would solve
the full system. However, our singularities are vectors and thus the repeated reflection solution does
not satisfy all the boundary conditions. If we write the full fluid velocity field uk

j as uk
j = vk

j + wk
j ,
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then the auxiliary solution wk
j satisfies

μ∇2w j = ∂q

∂x j
,

∂w j

∂x j
= 0 −→ ∇2q = 0, (16)

for suitable effective pressure q, with boundary conditions

w j |z=0 = −v j |z=0, w3|z=1 = −v3|z=1,
∂wα

∂z

∣∣∣∣
z=1

= −∂vα

∂z

∣∣∣∣
z=1

, (17)

where α ∈ [1, 2] and j ∈ [1, 3]. For a source these are

wα|z=0 = w3|z=1 = ∂wα

∂z

∣∣∣∣
z=1

= 0, w3|z=0 = 2
∫ ∞

0
λdλ

J0(λρ)

cosh λ
cosh (1 − h)λ. (18)

Similarly for a Stokeslet, applying standard Bessel function identities, the auxiliary boundary
conditions become

wk
j

∣∣
z=0 = 2xα (δ j3δkα + δk3δ jα )

∫ ∞

0
λdλ J0(λρ)

cosh (1 − h)λ

cosh λ
, (19)

∂wk
α

∂z

∣∣∣∣
z=1

= 2xαδk3

∫ ∞

0
λdλ J0(λρ)

λ sinh hλ

cosh λ
, (20)

wk
3

∣∣
z=1 = 2δk3

∫ ∞

0
λdλ J0(λρ)

(
∂

∂λ

(
sinh hλ

cosh λ

)
− sinh hλ

λ cosh λ

)
. (21)

We solve for w j by taking the two-dimensional Fourier transform of this system with respect to
(x, y) (namely, w j (x, y, z) �⇒ ŵ j (k1, k2, z)), to arrive at

μ

(
∂2ŵ j

∂z2
− k2ŵ j

)
= δ j3

∂ q̂

∂z
+ iδα jkα q̂, (22a)

∂ŵ3

∂z
+ ikαŵα = 0, (22b)

∂2q̂

∂z2
− k2q̂ = 0, (22c)

where α ∈ [1, 2] and k2 = k2
1 + k2

2 . From inspection, this has the general solution

q̂ = B(k) sinh k(1 − z) + C(k) cosh k(1 − z), (23a)

2μŵ j = Bj (k) sinh k(1 − z) + Cj (k) cosh k(1 − z) + (z − 1) cosh k(1 − z)

(
δ j3C − δα j

ikα

k
B

)

+ z sinh k(1 − z)

(
δ j3B − δα j

ikα

k
C

)
, (23b)

where {B, C, Bj, Cj}, with j ∈ [1, 2, 3], are independent of z. From the continuity equation (22b)
they satisfy

C = kB3 + kB − ik1C1 − ik2C2,

B = kC3 − kC − ik1B1 − ik2B2. (24)

These constants are found on a case-by-case basis by transforming the boundary conditions given
in Eqs. (17) and solving through matrix methods the resulting set of eight coupled simultaneous
equations in terms of {k, h}. For a source, Eqs. (18) transform to give

ŵα|z=0 = ŵ3|z=1 = ∂ŵα

∂z

∣∣∣∣
z=1

= 0, ŵ3|z=0 = 4π
cosh (1 − h)k

cosh k
, (25)
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with corresponding full solution for ŵ j,

ŵ3 = 4π cosh (1 − h)k

cosh k(sinh 2k − 2k)
(k(z − 2) cosh kz + sinh k(2 − z) − sinh kz + kz cosh k(2 − z)), (26a)

ŵα = 4π ikα cosh (1 − h)k

cosh k(sinh 2k − 2k)
((z − 2) sinh kz − z sinh k(2 − z)). (26b)

Similarly for a Stokeslet, Eqs. (18) transform to give

ŵk
j

∣∣
z=0 = 4π i(δ j3δkα + δk3δ jα )

kα

k

∂

∂k

(
cosh k(1 − h)

cosh k

)
,

∂ŵk
α

∂z

∣∣∣∣
z=1

= 4π i δk3
kα

k

∂

∂k

(
k sinh hk

cosh k

)
, (27)

ŵk
3

∣∣
z=1 = 4π δk3

(
∂

∂k

(
sinh hk

cosh k

)
− sinh hk

k cosh k

)
,

with corresponding full solution for ŵk
j ,

ŵ3
3 = 8π

k cosh2 k(sinh 2k − 2k)
(k2 sinh hk sinh kz + hk2z cosh2 k sinh hk sinh kz

+ hk2 cosh k sinh kz sinh k(1 − h) + k2z cosh k sinh hk sinh k(1 − z)

− hk2z cosh3 k cosh k(1 − h − z) + hk cosh2 k cosh hk sinh kz

+ kz cosh2 k sinh hk cosh kz − 2k cosh k sinh k sinh hk sinh kz

− cosh2 k sinh hk sinh kz), (28a)

ŵ3
α = 8π ikα

k cosh2 k(sinh 2k − 2k)
(z cosh2 k sinh hk sinh kz + k sinh hk cosh kz

+ hkz cosh2 k sinh hk cosh kz + hkz cosh3 k sinh k(1 − h − z)

− cosh k sinh hk sinh k(1 + z) − h cosh2 k sinh k sinh k(1 − h − z)

+ hk cosh k cosh kz sinh k(1 − h) − kz cosh k sinh hk cosh k(1 − z)), (28b)

ŵα
3 = 4π ikα

k(sinh 2k − 2k)

(
∂

∂k

(
cosh k(1 − h)

cosh k

))
(k(z − 2) cosh kz + kz cosh k(2 − z)

+ sinh k(2 − z) − sinh kz), (28c)

ŵα
β = 4πkαkβ

k(sinh 2k − 2k)

(
∂

∂k

(
cosh k(1 − h)

cosh k

))
(z sinh k(2 − z) − (z − 2) sinh kz). (28d)

Rewriting the inverse Fourier transform in terms of Hankel transforms, we obtain for the source

w3 = 1

2π
H0(ŵ3), wα = ixα

2πρ
H1

(
kŵα

kα

)
, (29)

and for the Stokeslet

w3
3 = 1

2π
H0

(
ŵ3

3

)
, w3

α = ixα

2πρ
H1

(
k

kα

ŵ3
α

)
, wα

3 = ixα

2πρ
H1

(
k

kα

ŵα
3

)
, (30a)

wα
β = 1

2π

(
δαβ

ρ
− 2

xαxβ

ρ3

)
H1

(
k

kαkβ

ŵα
β

)
+ xαxβ

2πρ2
H0

(
k2

kαkβ

ŵα
β

)
, (30b)

where α ∈ [1, 2] and Hi is the Hankel transform of order i. Similar integral expressions in terms
of Hankel transforms can be constructed for other Stokes singularities (see Appendix B for the

083101-8



BIOPHYSICAL FLUID DYNAMICS IN A PETRI DISH

FIG. 3. The near-field velocity ui produced by a number of singularities at h = 0.4 as a function of z for
a range of x ∈ {0.19, 0.25, 0.3, 0.4}, y = 0, with darker colors denoting larger x. (a) Rotlet, i = θ (green
curves); (b) source, i = r (green) or i = z (blue); (c) rotlet dipole, i = θ (green); and (d) source dipole, i = r
(green) or i = z (blue). Note that here (r, θ ) are the polar coordinates for the horizontal plane; i.e., x = r cos θ

and y = r sin θ .

rotlet, Appendix C for the stresslet, Appendix D for the rotlet dipole, and Appendix E for the source
dipole).

To illustrate the nature of these exact solutions, Fig. 3 plots various components of the fluid
velocity field induced by four of the main singularities, the rotlet, source, rotlet dipole, and source
dipole, as a function of vertical height z for a range of horizontal radial distances away from the
singularities, in each case located at h = 0.4.

For the swirling component of the flow due to a rotlet, Fig. 3(a) illustrates clearly how the
boundary conditions of no slip and no stress are satisfied, and the incipient divergence as the x
location approaches that of the singularity. For the source in Fig. 3(b) the horizontal velocity ux

displays an increasing maximum as the observation point x approaches the singularity location,
while the vertical velocity component uz has a positive divergence for z → h+ and a negative
divergence as z → h− as expected for a source, while vanishing at the top and bottom boundaries,
as required by Eqs. (11). Both the rotlet dipole in Fig. 3(c) and the source dipole in Fig. 3(d) appear
as derivatives of their corresponding monopoles.

V. FAR-FIELD SOLUTIONS

It is difficult to find the far-field (ρ � 1) behavior of these solutions when they are expressed as
exact solutions in integral form as Hankel transforms. Following the approach of Liron and Mochon
[29], we may utilize a contour integration to express the exact solutions in series form. Given an
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FIG. 4. The notched semicircular contour γ .

even function f (z) decaying exponentially to zero on the real axis as z = x → ±∞, consider the
contour integral

∮
γ

F where F = zi+1 f (z)H1
i (ρz), H1

i = Ji + iYi with i ∈ [0, 1] is a Hankel function
of the first kind and γ = γ0 + γ1 + γR + γε is a notched semicircular contour centered at the origin
(Fig. 4). From Watson [33],

∫
γR

F → 0 as R → ∞. Hence, applying the residue theorem in the limit
as R → ∞ and ε → 0 yields∫ ∞

0
λi+1dλ Ji(λρ) f = −1

2

∫
γε

F + π i
∑

residues of singularities of F in γ . (31)

Using this method, the repeated reflection solutions v j for all four primary Stokes singularities can
be directly expressed in series form. For a source, v j becomes

v3 = −2π

∞∑
n=1,3,5,...

n sin

(
nπh

2

)
cos

(
nπz

2

)
K0

(
nπρ

2

)
, (32a)

vα = 2πxα

ρ

∞∑
n=1,3,5,...

n sin

(
nπh

2

)
sin

(
nπz

2

)
K1

(
nπρ

2

)
. (32b)

Note that for all four singularities, the dominant term in the far-field expansion (ρ � 1) of the
repeated reflection solution v j comes from the n = 0 terms and decays like exp(−πρ/2). Similarly,
the integral expressions for the auxiliary solution w j can be expressed in series form to obtain series
expansions for the full flow field uj . For a source, the corresponding complex function F has in
γ poles of order 1 at z = π i(n + 1/2), where n ∈ Z�, and poles of order 1 at z = z0/2, where
z0 satisfies sinh z0 = z0. Since

∫
γε

vanishes as ε → 0, when j = k = l = 3, Eq. (31) simplifies to
become

w3 = 2π (1 − z)
∞∑

n=1,3,5,...

n sin

(
nπh

2

)
cos

(
nπz

2

)
K0

(
nπρ

2

)
+ O

(
e−ρy1/2

√
ρ

)
, (33)

u3 = v3 + w3 = −2πz
∞∑

n=1,3,5,...

n sin

(
nπh

2

)
cos

(
nπz

2

)
K0

(
nπρ

2

)
. (34)

The first term dominates in the far field, so

u3 � −2πz√
ρ

cos

(
πz

2

)
sin

(
πh

2

)
e−ρπ/2 + O

(
e−ρπ/2

ρ3/2

)
, (35)

namely, an exponential radial decay with z dependence z cos (πz/2), vanishing at both surfaces.
Furthermore, when j = α ∈ [1, 2], the leading-order contribution in the far field arises from γε ,
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namely,

uα = z(2 − z)

[
3xα

ρ2

]
, (36)

noting that the contribution from the poles at z = π i(n + 1/2) in wα cancels out with vα . Similarly
for a Stokeslet, F has poles of order 2 at z = π i(n + 1/2), where n ∈ Z�, and poles of order 1 at
z = z0/2, where z0 satisfies sinh z0 = z0. When j = k = 3, since

∫
γε

vanishes as ε → 0, Eq. (31)
simplifies to

w3
3 = −

∞∑
n=1,3,5,...

sin

(
nπh

2

)
sin

(
nπz

2

)(
8K0

(
nπρ

2

)
− 2nπρK1

(
nπρ

2

))

+
∑

z0∈H:z0=sinh z0

iz0

8(cosh z0 − 1)

(
ŵ3

3 (sinh 2k − 2k)
)∣∣

k=z0/2H1
0

(
ρz0

2

)
,

u3
3 = v3

3 + w3
3 =

∑
z0∈H:z0=sinh z0

iz0

8(cosh z0 − 1)
× (

ŵ3
3 (sinh 2k − 2k)

)∣∣
k=z0/2H1

0

(
ρz0

2

)
, (37)

noting that the contribution from the poles of order 2 in w3
3 cancels out with v3

3. The leading far-field
behavior is

u3
3 = O

(
e−ρy1/2

ρ1/2

)
, (38)

where y1 = 7.498 . . . is the imaginary part of the first nonzero root to sinh z0 = z0 in the first
quadrant. Similarly for j = α, k = 3 and k = α, j = 3, where α ∈ [1, 2], the leading-order far-
field contribution is

u3
α, uα

3 = O
(

xα e−ρy1/2

ρ3/2

)
. (39)

When j = β and k = α, where α, β ∈ [1, 2], the leading-order contribution in the far field arises
from γε ,

uα
β = z(2 − z)

[
−3h(2 − h)

ρ2

(
δαβ − 2xαxβ

ρ2

)]
. (40)

Similar far-field approximations can be found for the other Stokes singularities (Appendix B,
rotlet; Appendix C, stresslet; Appendix D, rotlet dipole; and Appendix E, source dipole).

Figure 5 plots pathlines of these far-field flows in the horizontal plane z = 1. In Fig. 5(a), a
Stokeslet orientated in the x direction generates a flow with a recirculating flow pattern of two
loops decaying radially like 1/ρ2, namely, a two-dimensional (2D) source dipole (recalling that the
source flow us = xi/ρ

2 leads to the source dipole flow usd = δi j/ρ
2 − 2xix j/ρ

4). Confinement has
fundamentally affected the unidirectionality of the flow by inducing recirculation in the y direction.
This is a feature of the family of Stokes singularities that are derivatives of the Stokeslet, with
higher-order singularities having more recirculation loops. For example, a Stokes dipole has four
loops while a Stokes quadrupole has six. In contrast, the spherical symmetry of a three-dimensional
(3D) source ensures that the new flow is still a source [Fig. 5(b)]. Derivatives of the source, such
as the source dipole, are also unchanged by confinement, and since the vertically orientated rotlet
is independent of z, its pathlines are also unchanged, as seen in Fig. 5(c). Confinement breaks
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FIG. 5. Pathlines in the z = 1 plane for the flows generated by Stokes singularities in the far-field thin-film
limit (ρ � H ): (a) Stokeslet orientated in the positive x direction, (b) source, (c) and (d) Rotlet orientated in
the z and x directions, respectively, (e) and (f) Stresslet uk,l with k = 1, l = 3 and k = l = 1, respectively. As
pathlines in (f) depend on h, we have set h = 1/2.

the symmetries of the horizontal rotlet and stresslet, leading to flows with the character of a
two-dimensional source dipole for both a horizontally orientated rotlet [Fig. 5(d)] and a vertical
stresslet [ j = 1, k = 3; Fig. 5(e)] and a two-dimensional source for a horizontal stresslet [ j = k = 3;
Fig. 5(f)], respectively.

VI. LEADING-ORDER FAR-FIELD FLOW

Examining the cases given above in Sec. V and in Appendixes B–E, we note that, for the four
primary Stokes singularities, the leading-order far-field flow is separable in z (formally considering
the limit where h, H, z are fixed while ρ is large). If the flow does not decay exponentially
radially, it has z dependence of the form z(1 − z/2). Otherwise, the flow decays exponentially
either as exp (−ρπ/2), arising from a K1(ρπ/2) term with corresponding z dependence, either
sin πz/2 for horizontal flow or z cos πz/2 for vertical flow, or exp (−ρy1/2), where y1 ≈ 7.498 is
the imaginary part of the first nonzero root to sinh z0 = z0 in the upper half plane. All higher-order
Stokes singularities can be expressed as derivatives of these four primary Stokes singularities. These
singularities must also either have leading-order z dependence z(1 − z/2) or decay exponentially
like exp (−ρπ/2) or exp (−ρy1/2). This means that the leading-order far-field contribution to
the flow from these singularities can be obtained directly by differentiating the far-field flows
for the primary Stokes singularities; namely, the full exact solutions which quickly become very
complicated do not need to be derived. For example, differentiating Eq. (40) once with respect to α,
Eq. (40) twice with respect to α, and Eq. (36) once with respect to β recovers the far-field flows for
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a Stokes dipole, a Stokes quadrupole, and a source dipole, respectively, given in Ref. [31], noting a
sign error there in the expression given for a Stokes quadrupole [their Eq. (B8)], namely,

[
uβ

D

]
α

= 6

ρ4

(
xα + 2xβδαβ − 4xαx2

β

ρ2

)
hz(2 − h)(2 − z), (41)

[
uβ

Q

]
α

= 18

ρ4

(
δαβ − 4xαxβ

ρ2
− 4x2

βδαβ

ρ2
+ 8xαx3

β

ρ4

)
× hz(2 − h)(2 − z), (42)

[
uβ

S

]
α

= 6z

ρ2

(
δαβ − 2xαxβ

ρ2

)(
1 − z

2

)
. (43)

As a consistency check, Eq. (43) does indeed reproduce what was derived from first principles
in Appendix E. Hence, for an arbitrary body whose free-space locomotion can be captured by an
expansion in terms of Stokes singularities, the far-field flow field is separable in z with either z
dependence of the form z(1 − z/2) or the flow decays radially exponentially. The fluid velocity
field u can thus be factorized as u = f (z)U (xh), where xh = (x1, x2) and f (z) is normalized so that
(
∫ H

0 f dz) = 1 [typically f is either 3z(1 − z/2) or π sin (πz/2)/2]. The 3D Stokes equation for u
reduces to a Brinkman-like equation for the vertically averaged fluid velocity U ,

μ(∇2 − κ2)U = ∇p, (44)

with corresponding incompressibility condition ∇ · U = 0, where κ = (∂ f /∂z|z=0)1/2 plays the
role of the inverse Debye screening length in screened electrostatics. We have thus reduced a 3D
system to a 2D one that can be solved by transforming to an appropriate coordinate system that
simplifies the boundary conditions. This method is equally applicable in the setup of Liron and
Mochon [29], namely, a microfluidic environment between two horizontal rigid boundaries, where
the corresponding far-field z dependence for a nonradially exponentially decaying flow is z(1 − z).

VII. SELF-CONSISTENCY CHECK

A key assumption made above was that the combination of surface tension and gravitational
effects restricts vertical deformation of the interface and hence H can be assumed constant. As a
self-consistency check, using Eq. (35), the leading-order contribution to the stress σx3x3 in the far
field at the upper free surface boundary x3 = H that a source of strength λS (namely, generating a
flow ui = λSxi/r3) at (x1, x2, x3) = (0, 0, s) produces is

σx3x3 = 2μ
∂u3

∂x3
= μπ2

H3
sin

(
πs

2H

)
K0

(
ρπ

2H

)

� μπ2

H3
K0

(
ρπ

2H

)
≈ μπ2

ρ1/2H5/2
e−ρπ/2H , (45)

when ρ � 2H/π . Here, we have utilized the asymptotic large argument expansion for Kα [34]
together with the fact that |sin(πs/2H )| � 1 ∀ s ∈ [0, H]. Hence, a measure Ms of the relative
strength of the stresses at the free surface arising from the flow generated by the singularity that
seek to deform this surface to the gravitational forces restricting vertical deformation is

Ms = μπ2λS

ρwρ1/2gH5/2�H
e−ρπ/2H . (46)

Writing the strength of the source λS as λS = USH2, Us scales with the typical velocities of flows in
a Petri dish, namely, US ∼ 2 mm s−1. Hence, setting

μ = 1 mPa s−1, H = 5 mm, �H = 0.1 mm, ρ = 1 cm,
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FIG. 6. Geometry of hydrodynamic bound states. Two spherical, negatively buoyant microswimmers of
radius R just below an upper surface, a horizontal distance r apart.

we find Ms � 1.2×10−4 � 1, so Ms is indeed small and thus the flat surface approximation is
consistent for a source.

VIII. CASE STUDY: HYDRODYNAMIC BOUND STATES

An instructive application of the results of this paper is exploring the notion of “hydrodynamic
bound states.” First discovered by Drescher et al. in 2009 using the green alga Volvox [32], these
are dynamical states exhibited by pairs of spherical chiral microswimmers near a surface. Volvox
colonies have radius R ∼ 250 µm, with ∼103 biflagellated somatic cells beating on their surface.
This beating is primarily in the posterior-anterior (AP) direction, but has a modest orthogonal
component that leads to spinning motion about the AP axis. While the organisms are slightly denser
than the fluid surrounding them, the flagellar beating allows them to swim upwards against gravity.
When a suspension of Volvox was placed in a glass-topped chamber, the colonies naturally swam
upwards due to their bottom-heaviness, which aligned their AP axis with gravity. Pairs of colonies
at the chamber top were found to move together while they continued to spin, eventually touching
and orbiting about each other.

As shown schematically in Fig. 6, once the colonies have ascended as high as possible, their
centers are a distance R = εH (with ε � 1) below the upper no-slip surface. Due to their positive
density offset relative to the surrounding ambient water, they are acted on by a downward gravi-
tational force. Viewed from afar, each colony can be considered as a point force acting on a fluid:
the resultant flow field is that of a downward-pointing Stokeslet of magnitude F = (4π/3)R3�ρg
associated with the gravitational force. This geometry—two nearby Stokeslets directed away from
a no-slip wall—is exactly that envisioned by Squires [35] in his analysis of surface-mediated inter-
actions, who showed that the mutual advection of those Stokeslets toward each other is described
by the dynamics of their separation r in the form

ṙ = − 3F

πμR

rR4

(r2 + 4R2)5/2
, (47)

expressed in a way that identifies the characteristic speed F/μR. Tracking of Volvox pairs showed
precise quantitative agreement with this result [32]. While it was not clear a priori that the
Stokeslet approximation was valid over the large range of intercolony separations explored, direct
measurements of the flow fields around freely swimming colonies [20] showed that the Stokeslet
does indeed dominate all higher-order singularities beyond a few radii from the colony center.

This general phenomenon has been rediscovered several times: in suspensions of the fast-moving
bacterium Thiovulum majus [36], of the magnetotactic bacterium Magnetotacticum magneticum
[37], and of starfish embryos [38]. In the last case, the pairwise bound states occur at the air-water
interface, which can be taken to be a stress-free boundary. In that case, and for an infinitely deep
fluid, the image system for each Stokeslet is simply an opposite Stokeslet above the air-water
interface—singularity 2 in Fig. 2. Thus, the lateral flow at (x1, 0, x3) due to a downward Stokeslet at
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the origin is

u = F

8πμ

{
x1(x3 − (1 − ε)H )[

x2
1 + (x3 − (1 − ε)H )2

]3/2 − x1(x3 − (1 + ε)H )[
x2

1 + (x3 − (1 + ε)H )2
]3/2

}
. (48)

If we evaluate this flow at the Stokeslet location x3 = (1 − ε)H , and multiply by a factor of 2 we
obtain the dynamics of the particle separation r in a form similar to the no-slip result (47), but with
a different power-law exponent in the denominator,

ṙ = − F

2πμR

rR2

(r2 + 4R2)3/2
, (49)

where R = εH . In each of Eqs. (47) and (49) we can identify an effective potential energy V (r) such
that ṙ = −dV/dr. A natural question is how the result (49) for a stress-free surface is modified in
the geometry of a Petri dish. The three lengths R = εH , H , and r must be compared to determine
the appropriate asymptotic regime.

The dynamics (49) holds for r � H but without restriction on the relative sizes of r and R, except
that the impenetrability of the colonies implies that this expression is only relevant for r > 2R. Of
course, the validity of the singularity approach itself will decrease for r ∼ R = εH , and thus it is fair
to assert that Eq. (49) is physically valid for εH � r � H , and in particular ṙ ∼ (F/2πμR)(R/r)2

for r � R. Indeed, as a consistency check, the full integral expressions do indeed simplify to Eq.
(49) in this limit as we now show. Working in the same horizontal plane as the singularity, after
some contour integration the repeated reflection solution becomes

v3
α = −xα

∫ ∞

0
λJ0(λρ)

cosh λ(1 − 2h)

cosh λ
dλ

= −2πxα

∞∑
n=0

(
n + 1

2

)
sin 2πε

(
n + 1

2

)
K0

(
πρ

(
n + 1

2

))
. (50)

From Eq. (30a) we find that for small ρ the auxiliary solution w3
α is O(xαε/ρ2) and hence, for points

with small ε and ρ, the repeated reflection solution dominates the auxiliary solution. Expanding in
powers of ε we find

u3
α = −2εxα

ρ3
+ 12ε3xα

ρ5
+ · · · , (51)

a result that agrees precisely with an expansion in ε and suitable nondimensionalization of Eq. (48).
The new regime of interest occurs when the separation r becomes comparable to or larger

than the Petri dish depth H . Given for completeness in Appendix F, when r � H (ρ � 1), the
nondimensional flow field u3

α decays exponentially with an unusual sinusoidal form

u3
α = Aεxα

ρ3/2
e−ρy1/2 sin (x1(ρ − ρ0)/2), (52)

where z1 = x1 + iy1 = 2.769 + 7.498i is the first root in the first quadrant to the equation sinh z1 =
z1, A = 38.340, and ρ0 = 0.298. Figure 7(a) explores this further, demonstrating how numerical
solutions to the full flow field vary as a function of ρ for a range of values of h. Darker blue
dots denote larger values of h; i.e., the Volvox are closer to the free surface. For comparison, the
asymptotic result (52) is superimposed on those numerical results. For clarity, all velocities are
normalized by (

√
ρ/ε)eρy1/2 to highlight the sinusoidal component of the flow field. As can be seen,

the asymptotic result is a good fit for ρ � 2, improving as ρ increases and as h → 1.
An interesting feature of the screened interaction is that the multiplicative power law ρ−1/2 differs

from that underlying the unscreened form (49), which falls off as ρ−2. This is unlike the case in
electrostatics, for example, where a screened Coulomb interaction in three dimensions decays as
∼(1/r)e−r/λ, where λ is the screening length, and the unscreened interation is ∼1/r. In the present
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FIG. 7. The lateral flow leading to hydrodynamic bound states. (a) Numerically obtained horizontal fluid
velocity field u3

1,norm = (
√

ρ/ε)eρy1/2u3
1, normalized to highlight the asymptotical sinusoidal component, gen-

erated by a vertically orientated Stokeslet placed at (0, 0, H − R) and evaluated as a function of ρ at the point
(ρ, 0, h). Here, R/H ∈ [0.15, 0.1, 0.05, 0.01] with darker shades of blue denoting smaller values of R/H . The
similarly scaled asymptotic result (52) is shown as the solid line. (b) The velocity u3

1 as a function of r/R. Here,
R/H ∈ [0.3, 0.2, 0.15, 0.1, 0.01] with darker shades of blue denoting smaller values of R/H . For comparison
the asymptotic result (48) for an infinitely deep Petri dish is shown as the solid black line.

case, the reason why we see a transition as r increases is that for small r the first reflection from the
repeated reflection solution dominates, but, as r increases, the auxiliary solution generates terms that
cancel out the repeated reflection solution, thus leaving lower-order terms in the auxiliary solution
to dominate, giving rise to an exponential decay.

Figure 7(b) shows in a semilogarithmic plot the lateral fluid velocity u3
1 as a function of the

dimensionless radial distance r/R for various values of R/H . The exponential cutoff of the power-
law result (49) is evident. Even for the relatively large Petri dish depth H/R = 10 the velocity is
attenuated by many orders of magnitude relative to the unscreened case for r/R ∼ 8, long before
the sign oscillations are visible. Thus, while the corresponding evolution equation for the infalling of
two colonies inherits the sign oscillations of the flow field (52), they appear only in the limit of very
strong vertical confinement. The screening would, however, lead to very marked slowing down of
the infalling trajectories relative to the infinite-depth case, and additionally reduce the significance
of further-neighbor flows on a given swimmer in dense surface aggregates. Furthermore, our results
show that in experimentally accessible regimes, confinement still plays a major role. As an example
of this, for a Volvox of radius R ≈ 150 µm at the free surface, with experimentally realistic film
heights H ∈ [0.5, 3] mm, the height ratios are in the range R/H ∈ [0.05, 0.3]. Looking at the
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lightest blue curve in Fig. 7(a) corresponding to R/H = 0.15, it is considerably different from the
unconfined case for all horizontal distances r/H .

IX. CONCLUSION

In this paper we have comprehensively explored the flows induced when Stokes singularities are
placed in a Petri dish configuration, namely, in a fluid layer with a bottom no-slip boundary and a
top free surface boundary. In particular, we have derived both exact integral expression and far-field
approximations for the flow generated by the six primary Stokes singularities: the Stokeslet, the
rotlet, the source, stresslet, rotlet dipole, and source dipole. Since all Stokes singularities can be
expressed as derivatives of these six singularities, we can thus gain insight about more general flows
generated in a Petri dish by particles whose free space swimming fluid velocity can be represented as
a sum of Stokes singularities. In particular, since the leading-order contribution to the fluid velocity
for these flows is separable in z, the full three-dimensional Stokes equations can be vertically
averaged to yield a much simpler two-dimensional Brinkman equation much more amenable to
analytic progress. A good example of this technique in action is Ref. [22], where the authors
modeled a circular mill as a rotlet dipole, generating a radially exponentially decaying flow with z
dependence sin (πz/2), and then solved the resulting Brinkman equation in the limit that the circular
mill is away from the center of the Petri dish by transforming to bipolar coordinates. A second
instructive example is Ref. [39], which investigated the flows generated by strongly confining the
microalga Chlamydomonas between two parallel plates through imposing z dependence of the form
cos πz/H and then solving the resulting Brinkman equation. We expect similar simplifications to
hold in the many contexts in which experiments are carried out in the geometry of a Petri dish.
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APPENDIX A: APPENDIX INTEGRAL NOTATION AND HIGHER-ORDER REPEATED
REFLECTIONS SOLUTIONS

For clarity in Appendixes B–E below, we define the functions Fm, n and Gm, n

Fm, n =
∫ ∞

0
dλ

λmJn(λρ)

cosh λ
×

{
sinh hλ cosh(1 − z)λ, z > h,

sinh zλ cosh(1 − h)λ, z < h,
(A1a)

Gm, n =
∫ ∞

0
dλ

λmJn(λρ)

cosh λ
×

{
sinh hλ sinh(1 − z)λ, z > h,

− cosh zλ cosh(1 − h)λ, z < h.
(A1b)

Shown in more detail elsewhere [27], these functions allow Eqs. (13) in the main text to be extended
to obtain repeated reflection solutions at third and fifth order,

L
(

1

r3

)
= − 1

ρ

∂

∂ρ
L

(
1

r

)
= 2F1, 1

ρ
, L

(
z

r3

)
= 2G1, 0, L

(
z2

r3

)
= 2(F0, 0 − ρF1, 1). (A2a)

L
(

1

r5

)
= 2(2F1, 1 − ρF2, 0)

3ρ3
, L

(
z

r5

)
= 2G2, 1

3ρ
,

L
(

z2

r5

)
= 2(ρF2, 0 + F1, 1)

3ρ
, L

(
z3

r5

)
= 2(3G1, 0 − ρG2, 1)

3
. (A2b)
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APPENDIX B: ROTLET IN A PETRI DISH

The approach for a rotlet (ε jkpxp/r3) follows the procedure for the Stokeslet, with a repeated
reflection solution

vk
j = L

(
ε jkp

xp

r3

)
= xαε jkαL

(
1

r3

)
+ ε jk3L

(
z

r3

)
= 2ε jkαxαF1, 1

ρ
+ 2ε jk3G1, 0, (B1)

with the summation convention for α ∈ [1, 2]. The boundary conditions for the auxiliary solution
wk

j and transformed auxiliary solution ŵk
j become

wk
j

∣∣
z=0 = 2ε jk3

∫ ∞

0
λdλ J0(λρ)

cosh (1 − h)λ

cosh λ
�⇒ ŵk

j

∣∣
z=0 = 4πε jk3

cosh k(1 − h)

cosh k
, (B2a)

∂wk
α

∂z

∣∣∣∣
z=1

= 2εαk3

∫ ∞

0
λdλ J0(λρ)

λ sinh hλ

cosh λ
�⇒ ∂ŵk

α

∂z

∣∣∣∣
z=1

= 4πεαk3
k sinh hk

cosh k
, (B2b)

wk
3

∣∣
z=1 = −2ε3kαxα

ρ

∫ ∞

0
λdλ J1(λρ)

sinh hλ

cosh λ
�⇒ ŵk

3

∣∣
z=1 = 4π ikαε3kα

sinh hk

k cosh k
. (B2c)

When k = 3, the boundary conditions are zero and ŵ3
j = w3

j = 0. When k = α ∈ [1, 2], we find

ŵα
3 = 4πkγ iεγα3

k cosh k(sinh 2k − 2k)
(2k cosh k(1 − h) sinh kz − kz cosh kz sinh k(1 − h)

− kz sinh k(1 − h) cosh k(2 − z) − 2 cosh k sinh hk sinh kz), (B3)

ŵα
α = 4πkβkαεβα3

k cosh k(sinh 2k − 2k)
(z sinh k(h − 1) sinh k(2 − z) + (2 − z) sinh(kz) sinh k(h − 1)),

(B4)

ŵα
β = 4πk2

β εβα3

k cosh k(sinh 2k − 2k)
(z sinh k(h − 1) sinh k(2 − z) + (2 − z) sinh(kz) sinh k(h − 1))

+ 4πεβα3

cosh k(sinh 2k − 2k)
( sinh 2k cosh k(h + z − 1) − 2k cosh k(h + z − 1)), (B5)

where β ∈ [1, 2] and β �= α. Rewriting inverse Fourier transforms in terms of Hankel transforms,
we find

wα
3 = ixα

2πρ
H1

(
k

kα

ŵα
3

)
, wα

α = −xαxβ

πρ3
H1

(
k

kαkβ

ŵα
α

)
+ xαxβ

2πρ2
H0

(
k2

kαkβ

ŵα
α

)
, (B6a)

wα
β = 1

2πρ

(
1 − 2x2

β

ρ2

)
H1(kŵ1) + x2

β

2πρ2
H0(k2ŵ1) + 1

2π
H0(ŵ0), (B6b)

where β ∈ [1, 2], β �= α, and for notational simplicity we have decomposed wα
β as ŵα

β = ŵ0 +
k2
βŵ1. Using contour integration, as with the Stokeslet we find F has poles of order 1 at both z =

π i(n + 1/2) (n ∈ Z�) and z = z0/2, where z0 satisfies sinh z0 = z0. When k = 3, ŵ3
j = w3

j = 0,
and thus the flow field u3

j satisfies

u3
j = v3

j = 2πxαε j3α

ρ

∞∑
n=1,3,5,...

n sin

(
nπh

2

)
sin

(
nπz

2

)
K1

(
nπρ

2

)
. (B7)

Hence, in the far field, the leading-order contribution decays exponentially as

u3
j = O

(
ε j3αxαe−ρπ/2

ρ3/2

)
. (B8)
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Since
∫
γε

vanishes as ε → 0, when j = 3 and k = α, where α ∈ [1, 2], Eq. (31) simplifies to

wα
3 = 2πxγ εγα3

ρ

∞∑
n=1,3,5,...

n sin

(
nπh

2

)
sin

(
nπz

2

)
K1

(
nπρ

2

)

−
∑

z0∈H:z0=sinh z0

xαz0 H1
1

(
ρz0

2

)
8πρ(cosh z0 − 1)

(
(sinh 2k − 2k)

ŵα
3

kα

)∣∣∣∣
k=z0/2

, (B9)

uα
3 = vα

3 + wα
3 = −

∑
z0∈H:z0=sinh z0

xαz0 H1
1

(
ρz0

2

)
8πρ(cosh z0 − 1)

(
(sinh 2k − 2k)

ŵα
3

kα

)∣∣∣∣
k=z0/2

. (B10)

The contribution from poles of order 1 at z = π i(n + 1/2), n ∈ Z�, cancels out with vα
3 , yielding

uα
3 = O

(
εγα3xγ e−ρy1/2

ρ3/2

)
. (B11)

Finally, when j, k ∈ [1, 2], the leading-order contribution in the far field arises from γε , i.e.,

wα
α = z(2 − z)

[
εβα3

6xαxβ (1 − h)

ρ4

]
, wα

β = z(2 − z)

[
−εβα3

3(1 − h)

ρ2

(
1 − 2x2

β

ρ2

)]
, (B12)

where β ∈ [1, 2] and β �= α.

APPENDIX C: STRESSLET IN A PETRI DISH

While the most general stresslet form is {x jxkxl/r5}, for swimming microorganisms typically
k = l . From fifth-order repeated reflection solutions, vk, l

j for a stresslet is

vk, l
j = δ jαδkβδlδxαxβxδL

(
1

r5

)
+ δ j3δk3δl3L

(
z3

r5

)

+ (δ jαδkβδl3 + δ jαδk3δlβ + δ j3δkαδlβ )xαxβL
(

z

r5

)

+ (δ jαδk3δl3 + δ j3δkαδl3 + δ j3δk3δlα )xαL
(

z2

r5

)

= 2xαF1, 1

3ρ

(
δ jαδk3δl3 + δ j3δkαδl3 + δ j3δk3δlα + 2xβxδ

ρ2
δ jαδkβδlδ

)

+ 2xαF2, 0

3

(
δ jαδk3δl3 + δ j3δkαδl3 + δ j3δk3δlα − xβxδ

ρ2
δ jαδkβδlδ

)

+ 2ρG2, 1

3

(
xαxβ

ρ2
(δ jαδkβδl3 + δ jαδk3δlβ + δ j3δkαδlβ ) − δ j3δk3δl3

)
+ 2δ j3δk3δl3G1, 0, (C1)

where {α, β, δ} ∈ [1, 2]. The boundary conditions for the transformed auxiliary solution ŵk, l
j

simplify to

ŵk, l
j

∣∣
z=0 = 4π

3
(δ jαδkβδl3 + δ jαδk3δlβ + δ j3δkαδlβ )

(
δαβ

cosh k(1 − h)

cosh k

+ kαkβ

k

∂

∂k

(
cosh k(1 − h)

cosh k

))

+ 4π

3
δ j3δk3δl3

(
cosh k(1 − h)

cosh k
− k

∂

∂k

(
cosh k(1 − h)

cosh k

))
, (C2a)
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∂ŵk, l
α

∂z

∣∣∣∣
z=1

= 4π

3
(δkβδl3 + δk3δlβ )

(
kδαβ

sinh hk

cosh k
+ kαkβ

k

∂

∂k

(
k

sinh hk

cosh k

))
, (C2b)

ŵk, l
3

∣∣
z=1 = −4π ikα

3
(δkαδl3 + δk3δlα )

∂

∂k

(
sinh hk

cosh k

)
. (C2c)

As in the main text for a source, we can thus solve for ŵk, l
j to give

ŵ3, 3
3 = 4π

3(sinh 2k − 2k)

(
cosh k(1 − h)

cosh k
− k

∂

∂k

(
cosh k(1 − h)

cosh k

))
× (k(z − 2) cosh kz + kz cosh k(2 − z) + sinh k(2 − z) − sinh kz),

ŵ3, 3
α = 4πkαi

3(sinh 2k − 2k)

(
cosh k(1 − h)

cosh k
− k

∂

∂k

(
cosh k(1 − h)

cosh k

))
× ((z − 2) sinh kz − z sinh k(2 − z)), (C3a)

ŵ
β, δ

3 = 4π

3(sinh 2k − 2k)

(
δβδ

cosh k(1 − h)

cosh k
+ kβkδ

k

∂

∂k

(
cosh k(1 − h)

cosh k

))
× (k(z − 2) cosh kz + kz cosh k(2 − z) + sinh k(2 − z) − sinh kz), (C3b)

ŵβ, δ
α = 4πkαi

3(sinh 2k − 2k)

(
δβδ

cosh k(1 − h)

cosh k
+ kβkδ

k

∂

∂k

(
cosh k(1 − h)

cosh k

))
× ((z − 2) sinh kz − z sinh k(2 − z)), (C3c)

ŵα, 3
3 = 8π ikα

3 cosh2 k(sinh 2k − 2k)
(hkz cosh3 k cosh k(1 − h − z) − hk cosh k sinh kz sinh k(1 − h)

− k sinh hk sinh kz − kz cosh k sinh hk sinh k(1 − z) − hkz cosh2 k sinh hk sinh kz

− z cosh2 k sinh k cosh k(1 − h − z) + cosh k sinh kz cosh k(1 + h)

− h cosh2 k cosh hk sinh kz), (C3d)

ŵα, 3
β = 8πkαkβ

3k cosh2 k(sinh 2k − 2k)
(k sinh hk cosh kz − kz cosh k sinh hk cosh k(1 − z)

+ hk cosh k cosh kz sinh k(1 − h) + hkz cosh2 k sinh hk cosh kz

+ hkz cosh3 k sinh k(1 − h − z) − cosh k sinh k sinh k(h + z)

− (h + z) cosh2 k sinh k sinh k(1 − h − z)) + 4πδαβ

3
cosh k cosh k(1 − h − z), (C3e)

where α, β, δ ∈ [1, 2]. Hence, as above, we find the following integral expressions for wk, l
j :

w3, 3
3 = 1

2π
H0

(
ŵ3, 3

3

)
, w3, 3

α = ixα

2πρ
H1

(
k

kα

ŵ3, 3
α

)
, wα, 3

3 = ixα

2πρ
H1

(
k

kα

ŵα, 3
3

)
, (C4a)

w
β, δ

3 = δβδ

2π
H0

(
ŵ

β, δ

3, 1

) + xβxδ

2πρ2
H0

(
k2ŵ

β, δ

3, 2

) + 1

2πρ

(
δβδ − 2xβxδ

ρ2

)
H1

(
k ŵ

β, δ

3, 2

)
, (C4b)

wβ, δ
α = iδβδxα

2πρ
H1

(
kŵ

β, δ

α, 1

) + i xαxβxδ

2πρ3
H1

(
k3ŵ

β, δ

α, 2

)

+ i

2πρ3

(
xαδβδ + xβδαδ + xδδαβ − 4xαxβxδ

ρ2

)(
2H1

(
k ŵ

β, δ

α, 2

) − ρH0
(
k2ŵ

β, δ

α, 2

))
, (C4c)

wα, 3
β = 1

2π
H0

(
ŵα, 3

β, 1

) + xαxβ

2πρ2
H0

(
k2ŵα, 3

β, 2

) + 1

2πρ

(
δαβ − 2xαxβ

ρ2

)
H1

(
k ŵα, 3

β, 2

)
, (C4d)
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where, for notational simplicity, we have decomposed ŵ
β, δ

3 , ŵβ, δ
α , and ŵα, 3

β as

ŵ
β, δ

3 = ŵ
β, δ

3, 1 + kβkδŵ
β, δ

3, 2 , ŵβ, δ
α = kαŵ

β, δ

α, 1 + kαkβkδŵ
β, δ

α, 2, ŵα, 3
β = ŵα, 3

β, 1 + kαkβŵα, 3
β, 2. (C5)

Similarly to the source above, F has in γ poles of order 2 at z = π i(n + 1/2), where n ∈ Z�, and
poles of order 1 at z = z0/2, where z0 satisfies sinh z0 = z0. Since

∫
γε

vanishes as ε → 0, when
j = k = l = 3, Eq. (31) simplifies to become

w3, 3
3 = 2π

3

∞∑
n=1,3,5,...

n cos

(
nπz

2

)
sin

(
nπh

2

)(
3K0

(nπρ

2

)
− nπρ

2
K1

(
nπρ

2

))

+
∑

z0∈H:z0=sinh z0

iz0

8(cosh z0 − 1)

(
ŵ3, 3

3 (sinh 2k − 2k)
)∣∣

k=z0/2 H1
0

(
ρz0

2

)
, (C6)

u3, 3
3 = v3, 3

3 + w3, 3
3 = O

(
e−ρy1/2

√
ρ

)
, (C7)

noting that, as for the Stokeslet, the contribution from the poles of order 2 in w3, 3
3 cancels out with

v3, 3
3 . Similarly, the leading-order contributions in the far field when j = 3 for the other cases for k

and l are

u3, α
3 = uα, 3

3 = O
(

xα e−ρy1/2

ρ3/2

)
, uβ, δ

3 = O
(

δβδ

e−ρy1/2

√
ρ

)
+ O

(
xβxδ

e−ρy1/2

ρ5/2

)
. (C8)

Finally, when j = α ∈ [1, 2], the leading-order contribution in the far field arises from γε , namely,

u3, 3
α = zxα

ρ2
(2 − z), uα, 3

β = z(2 − z)

[
−1 − h

ρ2

(
δαβ − 2xαxβ

ρ2

)]
. (C9a)

uβ, δ
α = z(2 − z)

(
xα

ρ2
δβδ − 2h

ρ4
(2 − h)

(
xαδβδ + xβδαδ + xδδαβ − 4xαxβxδ

ρ2

))
, (C9b)

APPENDIX D: ROTLET DIPOLE IN A PETRI DISH

From the fifth-order repeated reflection solutions (Appendix A), vk
j for a rotlet dipole is

vk
j = L

(
ε j pk

xpxk

r5

)
= δ j3δkαxαxβε3βαL

(
1

r5

)
+ δ jαxβ

(
δk3εαβ3 + δkβεα3β

)
L

(
z

r3

)

= ε3βα

4δ j3δkαxαxβF1, 1

3ρ3
− ε3βα

2δ j3δkαxαxβF2, 0

3ρ2
+ 2δ jαxβG2, 1

3ρ
(δk3εαβ3 + δkβεα3β ), (D1)

with boundary conditions for the corresponding auxiliary solution wk
j and transformed auxiliary

solution ŵk
j ,

wk
j

∣∣
z=0 = 2δ jαxβ

3ρ

(
δk3εαβ3 + δkβεα3β

) ∫ ∞

0
dλ J1(λρ)

λ2 cosh (1 − h)λ

cosh λ
�⇒

ŵk
j

∣∣
z=0 = −4π iδ jαkβ

3
(δk3εαβ3 + δkβεα3β )

cosh k(1 − h)

cosh k
, (D2a)

∂wk
α

∂z

∣∣∣∣
z=1

= 2xβ

3ρ
(δk3εαβ3 + δkβεα3β )

∫ ∞

0
dλ J1(λρ)

λ3 sinh hλ

cosh λ
�⇒

∂ŵk
α

∂z

∣∣∣∣
z=1

= −4πkβ

3
(δk3εαβ3 + δkβεα3β )

k sinh hk

cosh k
, (D2b)
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wk
3

∣∣
z=1 = −4δkαxαxβ

3ρ3
ε3βα

∫ ∞

0
dλ J1(λρ)

λ sinh hλ

cosh λ
+ 2δkαxαxβ

3ρ2
ε3βα

∫ ∞

0
dλ J0(λρ)

λ2 sinh hλ

cosh λ
.

(D2c)

However, Eq. (D2c) is difficult to transform. Noting that α �= β and utilizing Bessel function
identities, we find

ŵk
3

∣∣
z=1 = −2δkαε3βα

3

kαkβ

k

∂

∂k

(
1

k

(
2π

∫ ∞

0

∫ ∞

0
dρdλ

sinh hλ

cosh λ
J0kρ

(
2λJ1(λρ)

ρ2
− λ2J0(λρ)

ρ

)))

= −4πδkαε3βα

3

kαkβ

k

∂

∂k

(
1

k
(g1 − g2)

)
, (D3)

where g1 and g2 are defined as satisfying, respectively,

g1 =
∫ ∞

0

∫ ∞

0
dρdλ

λ2 sinh hλ

cosh λ
J0(λρ)J1(kρ), g2 =

∫ ∞

0

∫ ∞

0
dρdλ

2λ sinh (hλ)

cosh λ

J1(λρ)J1(kρ)

ρ
.

(D4)

However, g1 simplifies to give

g1 =
∫ ∞

0

λ2 sinh hλ

cosh λ

[∫ ∞

0
ρdρJ0(ρλ)

(
J1(ρλ)

ρ

)]
= 1

k

∫ k

0
dλ

λ2 sinh hλ

cosh λ
. (D5)

Furthermore, g2 simplifies to give

g2 =
∫ ∞

0
dλ

2λ sinh 2hλ

cosh λ

[∫ ∞

0
dρ

J1(kρ)J2(λρ)

ρ

]
=

∫ ∞

0
dλ

2λ sinh hλ

cosh λ

[
λk

k2 + λ2 + |k2 − λ2|
]

=
∫ k

0
dλ

λ2

k

sinh hλ

cosh λ
+

∫ ∞

k
dλ

k sinh hλ

cosh λ
. (D6)

Putting this all together, Eq. (D3) becomes

ŵk
3

∣∣
z=1 = 4πδkαε3βα

3

kαkβ

k

[
sinh hk

cosh k

]
. (D7)

Hence, as in the main text for a source, we can thus solve for ŵk
j to give

ŵ3
3 = 0, ŵ3

α = −4πkβ iεαβ3

3

cosh k(1 − h − z)

cosh k
, (D8a)

ŵα
3 = − 4πkαkβ iεβα3

3k cosh k(sinh 2k − 2k)
(2k cosh k(1 − h) sinh kz − kz cosh kz sinh k(1 − h)

− kz sinh k(1 − h) cosh k(2 − z) − 2 cosh k sinh hk sinh kz), (D8b)

ŵα
α = 4πk2

αkβ iεβα3

3k cosh k(sinh 2k − 2k)
(z sinh k(h − 1) sinh k(2 − z) + (2 − z) sinh(kz) sinh k(h − 1)),

(D8c)

ŵα
β = 4πkαk2

β i εβα3

3k cosh k(sinh 2k − 2k)
(z sinh k(h − 1) sinh k(2 − z) + (2 − z) sinh(kz) sinh k(h − 1))

+ 4πkαiεβα3

3 cosh k(sinh 2k − 2k)
( sinh 2k cosh k(h + z − 1) − 2k cosh k(h + z − 1)), (D8d)
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where β ∈ [1, 2] and β �= α. Rewriting the inverse Fourier transform in terms of Hankel transforms,
we get the following integral expressions for wα

j :

w3
3 = 0, w3

α = ixβ

2πρ
H1

(
k

kβ

ŵ3
α

)
, wα

3 = −xαxβ

πρ3
H1

(
k

kαkβ

ŵα
3

)
+ xαxβ

2πρ2
H0

(
k2

kαkβ

ŵα
3

)
,

(D9a)

wα
α = ix2

αxβ

2πρ3
H1

(
k3

k2
αkβ

ŵα
α

)
+ i

2πρ3

(
xβ − 4x2

αxβ

ρ2

)(
2H1

(
k

k2
αkβ

ŵα
α

)
− ρH0

(
k2

k2
αkβ

ŵα
α

))
,

(D9b)

wα
β = ixα

2πρ
H1(kŵ0) + ixαx2

β

2πρ3
H1(k3ŵ1) + i

2πρ3

(
xα − 4xαx2

β

ρ2

)
(2H1(kŵ1) − ρH0(k2ŵ1)),

(D9c)

where β ∈ [1, 2], β �= α, and for notational simplicity we have decomposed ŵα
β as ŵα

β = kα (ŵ0 +
k2
βŵ1). When k = j = 3, u3

3 = v3
3 = w3

3 = 0. Furthermore, when k = 3 and j = α, we have

v3
α = −xβεαβ3

3ρ

∞∑
n=1,3,5,...

π2n2K1

(
nπρ

2

)[
sin

(
nπh

2

)
cos

(
nπz

2

)]
, (D10)

w3
α = xβεαβ3

3ρ

∞∑
n=1,3,5,...

π2n2K1

(
nπρ

2

)[
sin

(
nπh

2

)
cos

(
nπz

2

)
+ cos

(
nπh

2

)
sin

(
nπz

2

)]
,

(D11)

u3
α = v3

α + w3
α = xβεαβ3

3ρ

∞∑
n=1,3,5,...

π2n2K1

(
nπρ

2

)[
cos

(
nπh

2

)
sin

(
nπz

2

)]
. (D12)

Hence, in the far field, the leading-order contribution decays exponentially as

u3
α = O

(
εαβ3xβe−ρπ/2

ρ3/2

)
. (D13)

Since
∫
γε

vanishes as ε → 0, when j = 3 and k = α, where α ∈ [1, 2], Eq. (31) becomes

wα
3 = −4xαxβε3βα

3ρ2

∞∑
n=1,3,5,...

sin

(
nπh

2

)
sin

(
nπz

2

)
K0

(
nπρ

2

)

− 4πxαxβε3βα

3ρ3

∞∑
n=1,3,5,...

n sin

(
nπh

2

)
sin

(
nπz

2

)
K1

(
nπρ

2

)

− xαxβ

ρ3

∑
z0∈H:z0=sinh z0

iz2
0 H1

1

(
ρz0

2

)
8(cosh z0 − 1)

(
(sinh 2k − 2k)

ŵα
3

kα

)∣∣∣∣
k=z0/2

,

+ xαxβ

ρ2

∑
z0∈H:z0=sinh z0

iz3
0 H1

0

(
ρz0

2

)
32(cosh z0 − 1)

(
(sinh 2k − 2k)

ŵα
3

kα

)∣∣∣∣
k=z0/2

, (D14)

uα
3 = vα

3 + wα
3 = −xαxβ

ρ3

∑
z0∈H:z0=sinh z0

iz2
0 H1

1

(
ρz0

2

)
8(cosh z0 − 1)

(
(sinh 2k − 2k)

ŵα
3

kα

)∣∣∣∣
k=z0/2

,

+ xαxβ

ρ2

∑
z0∈H:z0=sinh z0

iz3
0 H1

0

(
ρz0

2

)
32(cosh z0 − 1)

(
(sinh 2k − 2k)

ŵα
3

kα

)∣∣∣∣
k=z0/2

, (D15)
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noting that the contribution from the poles of order 1 at z = π i(n + 1/2), where n ∈ Z�, cancel out
with vα

3 . Hence,

uα
3 = O

(
ε3βαxαxβe−ρy1/2

ρ5/2

)
. (D16)

Finally, when j, k ∈ [1, 2], the leading-order contribution in the far field arises from γε , i.e.,

wα
α = z(2 − z)

[
−εαβ3

2xβ (1 − h)

ρ4

(
1 − 4x2

α

ρ2

)]
, wα

β = z(2 − z)

[
−εαβ3

2xα (1 − h)

ρ4

(
1 − 4x2

β

ρ2

)]
,

(D17)

where β ∈ [1, 2] and β �= α.

APPENDIX E: SOURCE DIPOLE IN A PETRI DISH

Using fifth-order repeated reflection solutions (Appendix A), vk
j for a source dipole becomes

vk
j = δ jkL

(
1

r3

)
− 3δ jαδkβxαxβL

(
1

r5

)
− 3(δ jαδk3 + δkαδ j3)xαL

(
z

r5

)
− 3δ j3δk3L

(
z2

r5

)

= 2F2, 0

(
δ jαδkβxαxβ

ρ2
− δ j3δk3

)
+ 2F1, 1

ρ

(
δ jk − 2δ jαδkβxαxβ

ρ2
− δ j3δk3

)

− 2xαG2, 1

ρ
(δ j3δkα + δk3δ jα ). (E1)

The boundary conditions for the corresponding auxiliary solution wk
j and transformed auxiliary

solution ŵk
j become

wk
j

∣∣
z=0 = −2xα

ρ

(
δ j3δkα + δk3δ jα

) ∫ ∞

0
λ2dλ J1(λρ)

cosh (1 − h)λ

cosh λ
�⇒

ŵk
j

∣∣
z=0 = 4π ikα

(
δ j3δkα + δk3δ jα

)cosh k(1 − h)

cosh k
, (E2a)

∂wk
α

∂z

∣∣∣∣
z=1

= −2xαδk3

ρ

∫ ∞

0
λ2dλ J1(λρ)

λ sinh hλ

cosh λ
�⇒ ∂ŵk

α

∂z

∣∣∣∣
z=1

= 4π ikαδk3
k sinh hk

cosh k
, (E2b)

wk
3

∣∣
z=1 = 2δk3

∫ ∞

0
λdλ J0(λρ)

λ sinh hλ

cosh λ
�⇒ ŵk

3

∣∣
z=1 = 4πδk3

k sinh hk

cosh k
. (E2c)

We thus obtain

ŵ3
3 = 4πk

cosh k(sinh 2k − 2k)
(2 cosh k sinh hk sinh kz − 2k sinh kz cosh k(1 − h)

+ 2kz sinh k(1 − h) cosh k cosh k(1 − z)), (E3a)

ŵ3
α = 4π ikα

cosh k(sinh 2k − 2k)
(sinh 2k cosh k(1 − h − z) − 2k cosh kz cosh k(1 − h)

− 2kz cosh k sinh k(1 − z) sinh k(1 − h)), (E3b)

083101-24



BIOPHYSICAL FLUID DYNAMICS IN A PETRI DISH

ŵα
3 = 4π ikα cosh k(1 − h)

cosh k(sinh 2k − 2k)
(k(z − 2) cosh kz + kz cosh k(2 − z) + sinh k(2 − z) − sinh kz),

(E3c)

ŵα
β = 4πkαkβ cosh k(1 − h)

cosh k(sinh 2k − 2k)
(z sinh k(2 − z) − (z − 2) sinh kz), (E3d)

or, utilizing Hankel transforms,

w3
3 = 1

2π
H0

(
ŵ3

3

)
, w3

α = ixα

2πρ
H1

(
k

kα

ŵ3
α

)
, wα

3 = ixα

2πρ
H1

(
k

kα

ŵα
3

)
, (E4a)

wα
β = 1

2π

(
δαβ

ρ
− 2

xαxβ

ρ3

)
H1

(
k

kαkβ

ŵα
β

)
+ xαxβ

2πρ2
H0

(
k2

kαkβ

ŵα
β

)
. (E4b)

Similarly to the source, F has poles of order 1 at z = π i(n + 1/2), where n ∈ Z�, and poles of order
1 at z = z0/2, where sinh z0 = z0. When j = k = 3, since

∫
γε

vanishes as ε → 0, Eq. (31) becomes

w3
3 = −

∞∑
n=1,3,5,...

π2n2 sin

(
nπh

2

)
sin

(
nπz

2

)
K0

(
nπρ

2

)

+
∑

z0∈H:z0=sinh z0

iz0

8(cosh z0 − 1)

(
ŵ3

3 (sinh 2k − 2k)
)∣∣

k=z0/2H1
0

(
ρz0

2

)
,

�⇒ u3
3 = v3

3 + w3
3 =

∑
z0∈H:z0=sinh z0

iz0

8(cosh z0 − 1)

(
ŵ3

3 (sinh 2k − 2k)
)∣∣

k=z0/2H1
0

(
ρz0

2

)
. (E5)

Hence, in the far field the leading-order contribution to u3
3 is

u3
3 = O

(
e−ρy1/2

ρ1/2

)
. (E6)

The leading-order contribution in the far field is

u3
α, uα

3 = O
(

xα e−ρy1/2

ρ3/2

)
. (E7)

When j = β and k = α, where α, β ∈ [1, 2], the leading far-field contribution arises from γε ,

uα
β = z(2 − z)

[
3

ρ2

(
δαβ − 2xαxβ

ρ2

)]
. (E8)

APPENDIX F: VERTICAL STOKESLET NEAR THE FREE SURFACE BOUNDARY

Here we find the leading term in Eq. (39) for the horizontal flow field at (ρ, 0, h) produced by a
vertical Stokeslet located at (0, 0, h) in the limit that ε = 1 − h � 1. From Eq. (28d) we have

w3
1 = −4

∫
γ

kX

(cosh k)2

H1
1 (kρ)

sinh 2k − 2k
dk, (F1)

where

X = h cosh2 k sinh2 hk + k sinh hk cosh hk + h2k cosh2 k(sinh hk cosh hk + cosh k sinh k(1 − 2h))

− cosh k sinh hk sinh k(1 + h) − h cosh2 k sinh k sinh k(1 − 2h) + hk cosh k sinh k(1 − 2h),

� ε
(
k2(1 + cosh2 k) − 2 cosh2 k sinh2 k

) + O(ε2). (F2)
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The leading-order term of u3
1 is that from w3

1, which is the sum of the residues at the first two roots
in the upper half plane to the equation sinh 2k = 2k, i.e., k+

0 and k−
0 , where

2k±
0 = ±x1 + iy1 = 2.769 + 7.498i. (F3)

Hence, using the residue theorem we have

u3
1 = −4π i

(
�k0∈[k+

0 , k−
0 ] lim

k→k0

(
k − k0

sinh 2k − 2k

)
kH1

1 (kρ)

cosh2 k
X

)

= −4π i

(
�k0∈[k+

0 , k−
0 ] lim

k→k0

(
1

4 sinh2 k

)
kH1

1 (kρ)

cosh2 k
εk2 sinh2 k

)

= −επ i
(
k+

0 sinh2 k+
0 H1

1 (k+
0 ρ) + k−

0 sinh2 k−
0 H1

1 (k−
0 ρ)

)
. (F4)

However, recall the standard result (e.g., see Eq. 9.2.3 of Ref. [34]) that

H1
1 (z) ∼ 2

πz
ei(z−3π/4) when |z| → ∞ and − π < arg z < 2π. (F5)

Hence, Eq. (F4) simplifies to become

u3
1 = −

√
πε√
ρ

(1 − i)e−ρy1/2
(
k+

0 sinh2 k+
0 eiρx1/2 + k−

0 sinh2 k−
0 e−iρx1/2

)
,

= −
√

πε√
ρ

e−ρy1/2(g + ig�)(1 − i) = −2
√

πε√
ρ

e−ρy1/2(Re(g) + Im(g)), (F6)

where g satisfies

g =
√

k+
0 sinh2 k+

0 eiρx1/2 = eiρx1/2(−2.782 + 7.1238i). (F7)

Rearranging this expression gives the relation in Eq. (52), namely,

u3
α = Aεxα

ρ3/2
e−ρy1/2 sin (x1(ρ − ρ0)/2), (F8)

where A = 38.340 and ρ0 = 0.298.
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