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Hydrodynamic Mechanism for Stable Spindle Positioning in Meiosis II Oocytes
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Cytoplasmic streaming, the persistent flow of fluid inside a cell, induces intracellular transport, which plays
a key role in fundamental biological processes. In meiosis II mouse oocytes (developing egg cells) awaiting
fertilization, the spindle, which is the protein structure responsible for dividing genetic material in a cell,
must maintain its position near the cell cortex (the thin actin network bound to the cell membrane) for many
hours. However, the cytoplasmic streaming that accompanies this stable positioning would intuitively appear to
destabilize the spindle position. Here, through a combination of numerical and analytical modeling, we reveal
a hydrodynamic mechanism for stable spindle positioning beneath the cortical cap. We show that this stability
depends critically on the spindle size and the active driving from the cortex and demonstrate that stable spindle
positioning can result purely from a hydrodynamic suction force exerted on the spindle by the cytoplasmic
flow. Our findings show that local fluid dynamic forces can be sufficient to stabilize the spindle, explaining
robustness against perturbations not only perpendicular but also parallel to the cortex. Our results shed light on
the importance of cytoplasmic streaming in mammalian meiosis.

DOI: 10.1103/PRXLife.2.043003

I. INTRODUCTION

A. Transport by fluid flow in biology

From ocean currents carrying plankton to blood circulation
in the cardiovascular system, transport by fluid flow plays
a key role in many diverse biological processes, spanning a
wide range of length scales [1]. From a biological standpoint,
this rich spectrum covers systems from the biosphere and
communities to organisms and their fundamental building
blocks: individual cells. One of the defining characteristics
of living organisms is the capacity for reproduction. Many
striking examples of transport by fluid flow can be drawn
from reproductive and developmental biology at the micro-
scopic scale, where flow is dominated by viscous forces. For
instance, in developing embryos, unidirectional flow driven
by hair-like appendages on the surface of cells (cilia) estab-
lish left-right asymmetry of the organism [2]. Even earlier in
development, and at the level of just one cell, the inertialess
flow of the fluid inside an egg cell during cell division influ-
ences its subsequent development by inducing transport and
hence positioning of important structures within the cell [3].
In our work, we reveal a physical mechanism by which this
positioning can be achieved robustly against perturbations.

B. Meiosis

To provide the relevant biological background, we be-
gin in this section with a brief introduction to meiosis, the
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specialized cell division that generates reproductive cells; in
the next section, we will zoom in on the biophysical problem
at the heart of our study. The egg cell is the female repro-
ductive cell, which develops from a precursor cell called an
oocyte. For the mature egg cell to contain the correct amount
of genetic material, the oocyte must undergo two specialized
divisions, known as meiosis I and meiosis II [4]. Notably,
the two meiotic divisions are highly asymmetric [5], each
removing excess chromosomes from the large oocyte into a
much smaller cell, a by-product of the cell division that then
typically degenerates [6,7]. The egg cell is filled with a com-
plex fluid called cytoplasm [8,9], which contains important
resources (e.g., proteins and cellular organelles) required for
embryo development. For the mature egg cell to contain as
much cellular material as possible, it is therefore crucial for
the oocyte to minimize the amount of cytoplasm removed
during the two meiotic divisions, while still eliminating the
surplus chromosomes [5,10,11].

A key piece of apparatus involved in meiosis is the mei-
otic spindle, which we illustrate schematically in Fig. 1(a)
(purple). The spindle is the protein structure responsible for
dividing the genetic material in the cell, and it assembles
in each of the two meiotic divisions. The spindle includes
the chromosomes, attached to long polymers called micro-
tubules. Importantly, its asymmetric positioning in the oocyte
is responsible for the asymmetric division of the cell [12,13];
indeed, loss of asymmetric spindle positioning is seen in
ageing oocytes [14–17], which are associated with reduced
development potential [18]. To achieve the required asymmet-
ric cell division, the spindle must be positioned not at the
center of the oocyte but instead close to the cell cortex, a
thin, dense network of proteins bound to the cell membrane
(i.e., at the boundary of the cell) [19]. Through experiments
and biophysical modeling, various studies have explored how
asymmetric spindle positioning is established in meiosis I
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FIG. 1. Mouse oocyte in meiosis II. (a) Schematic of model for spindle positioning in meiosis II oocyte; a localized flow boundary condition
(green) drives cytoplasmic streaming (blue) in the bulk of the cell, keeping the spindle (purple) near the cortex. (b) Spindle in oocyte, in which
DNA (chromatin) is shown in blue, while microtubules are shown in red (scale bar, 10 µm). (c) Actin-rich cortical cap (red) of the oocyte
(scale bar, 10 µm). (d) Actin flow field inside the cell (scale bar, 10 µm). (e) Cytoplasmic flow field, with DNA (chromatin) shown in pink
(scale bar, 10 µm). (f) Schematic of local flow (blue) close to the fixed point (purple), the position at which the spindle remains, near the
cell cortex, where the active slip velocity boundary condition (green) is applied. Panels (b)–(e) adapted from Ref. [3] and reproduced with
permission.

for mammalian oocytes [20–28]. After meiosis I, the second
meiotic spindle rapidly forms around the chromosomes posi-
tioned near the cortex [3,29].

C. Stable spindle positioning by cytoplasmic streaming
in meiosis II oocytes

Before the oocyte divides at the end of meiosis II, the spin-
dle remains stably positioned near the cortex for many hours,
as the oocyte awaits fertilization. The aim of our work is to
rationalize the stable positioning of the spindle in this stage of
meiosis II through biophysical modeling. Experiments have
revealed intracellular flow during this stage of meiosis II
[3,30]. This is an example of cytoplasmic streaming: actively
driven, persistent, bulk flow of the cytoplasm inside a cell
[8,31,32]. Cytoplasmic streaming occurs inside cells of many
different organisms, such as slime molds [33,34], fungi, algae,
and higher plants [35,36]. Several examples of cytoplasmic
streaming have also been characterized in the largest animal
cells [37–39], including oocytes of various species during dif-
ferent developmental stages. Multiple mechanisms, involving
various types of polymeric filaments and molecular motors,
are able to generate cytoplasmic motion [31].

In mouse oocytes near completion of meiosis II, cytoplas-
mic streaming is driven by the flow of actin (a polymeric
filament) away from the cortical actin cap [3] (Fig. 1). Based

on a combination of experiments and fluid dynamical simula-
tions, the authors of Ref. [3] postulated that the cytoplasmic
streaming would push the spindle towards the cortex, thus
stably maintaining the asymmetric spindle position near the
cortex. However, the diverging cytoplasmic flow along the
cortex appears intuitively to destabilize the spindle position,
and the physical mechanism for the stability observed in spite
of this remains to be elucidated. In this article, we demon-
strate through hydrodynamic modeling that the cytoplasmic
flow can exert a suction (pulling force) on the spindle to-
wards the cortex. This in turn allows stable positioning of
the spindle near the cortical cap, with robustness against
perturbations not only perpendicular but also parallel to the
cortex.

We illustrate in Fig. 1 the biological context of our paper,
using mouse oocytes in meiosis II; in Figs. 1(b)–1(e), we have
adapted figures from Ref. [3]. The mouse oocyte is a model
system for understanding mechanisms for asymmetric spindle
positioning in mammals [5,40]. Our modeling approach is
shown schematically in Fig. 1(a), where an active slip velocity
(green) at the cell cortex drives the bulk intracellular fluid flow
(blue). The meiotic spindle is positioned inside the oocyte
near the cortical cap, at the top of the experimental image in
Fig. 1(b); DNA is shown in blue and microtubules in red. The
cortical cap of the oocyte, in Fig. 1(c), is rich in actin (red).
Actin filaments are nucleated by a protein complex localized
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to the cortical cap, and flow continuously away from it [3].
The actin flow in the oocyte, quantified in Fig. 1(d), has the
highest velocity as it leaves the cortical cap (at the top of the
image). We observe a toroidal actin flow field, downwards
along the cell periphery, and recirculating upwards towards
the actin cap through the center of the oocyte [3,41]. The actin
flow depends on actin polymerization and turnover [3,42,43].
This is consistent with a process known as treadmilling, where
the actin filaments elongate at one end and depolymerize
from the other end [17,44]. Past biophysical modeling has
revealed a mechanism by which polymerizing actin filaments
can generate force inside cells [45].

The actin flow drives cytoplasmic streaming in the oocytes
[3], shown in Fig. 1(e). The cytoplasmic streaming follows
a similar pattern to the actin flow: The small cytoplasmic
particles are transported away from the cortical cap, down-
wards along the cell periphery and back upwards through the
center of the oocyte [3,30]. Importantly, the cytoplasmic flow
has highest velocity near the cortical cap, reflected by the
slip velocity at the cortex that drives the flow in our model
[Fig. 1(a)].

The nature of the cytoplasmic flow close to the cortical
cap raises an intriguing question on the stability of spindle
positioning against perturbations along the cortex. Locally, the
cytoplasmic flow near the spindle is similar to an extensional
flow, as depicted schematically in Fig. 1(f) (blue). The spindle
remains stably for many hours at the fixed point of the flow
(purple), as the oocyte waits for fertilization. However, this
fixed point appears intuitively to be unstable, when consid-
ering perturbations parallel to the cortex: If a small tracer is
placed just to the right of the fixed point, then it is advected
rightwards by the fluid flow, away from the fixed point (in a
linear stagnation point flow, this would in fact happen expo-
nentially fast [46]).

The goal of our work is to explain physically the stable
positioning of the spindle at the fixed point. We demonstrate
through physical modeling that the cytoplasmic flow can cre-
ate a hydrodynamic (suction) force on the spindle towards the
fixed point. We thus show that fluid dynamic forces can be
sufficient for stable spindle positioning, depending critically
on the size of the spindle and the flow forcing due to the
cortical cap.

D. Structure of paper

This article is organized as follows. First, in Sec. II A, we
introduce our model for the cytoplasmic flow inside an oocyte,
actively driven by a slip velocity at the cortex and based
on experimental measurements of cytoplasmic streaming. We
next present in Sec. II B and Sec. II C our model for the spindle
inside the oocyte. We numerically compute the force on the
spindle due to the flow and find that the stability of the fixed
point depends on two key parameters: the spindle radius and
the size of the active slip domain at the cortex. In Sec. II D
and Sec. II E, we explain these stability results by introducing
an intuitive physical model for the spindle in flow driven by
a slip velocity. Solving analytically for the flow, we obtain
the force on the spindle and hence the stability of the fixed
point as a function of the spindle radius and slip domain size
within this model. Importantly, our simple analytical model

reproduces the stability trends from our numerical simula-
tions. This allows us to elucidate the physical mechanism for
the stable spindle positioning, in terms of the competing ef-
fects of the shear and suction due to the fluid flow, in Sec. II F.
In Sec. III, we summarize our results and discuss them in the
context of experimental evidence on spindle positioning. We
close by outlining possible future experiments and modeling
ideas.

II. RESULTS

A. Simulated cortex-driven cytoplasmic streaming matches
experimental flow field

Here we introduce our model for the cytoplasmic flow in-
side the oocyte, based on experimental measurements [3,30].
This enables us to identify the parameters that characterize
the forcing from the actin cap. We will then build on this
in Sec. II B, where we add the spindle to the geometry and
examine the effect of cortex-driven flow on it.

We model the cytoplasmic streaming as incompressible
Stokes flow inside a sphere, driven by a prescribed active
slip velocity boundary condition (Fig. 2 and see Sec. IV A
for details). This is motivated by experimental measurements
of the cytoplasmic flow field in meiosis II mouse oocytes
from Refs. [3] [Fig. 1(e)] and [30], which is captured well by
Stokes flow driven at the cortex [30] (see Sec. III for further
discussion of model assumptions).

In Fig. 2(a), we plot the tangential flow velocity uθ at the
cortex from experiments [30], averaged over the oocytes, as
a function of the spherical polar angle θ (red curve), and we
indicate the standard deviation (light red shading). The blue
curve illustrates our model for the tangential flow at the cortex
[setup in inset of Fig. 2(a)] fitted to the experimental data. The
active slip velocity uθ = U (θ ) [Eq. (4)] models the forcing
due to the actin flow from the cortical cap. It is parametrized
only by the maximum velocity Umax and the slip angle θslip

[the size of the active slip domain where the slip velocity is
positive, green in Fig. 2(a) inset]. Its highly localized nature is
based on the experimental flow field in Fig. 1(e), reproduced
from Ref. [3], the experiments from which our study aims to
explain. In order to estimate biological parameter values, we
will employ the data from Ref. [30], obtained from several
oocytes. The idealized form [Eq. (4)] approximates the exper-
imental data, while allowing us to make analytical progress
using our fundamental physical model in Sec. II E.

In our later analysis of the stability of spindle positioning
through numerical simulations (Sec. II C), we vary the value
of the slip angle θslip, to explore the parameter space. How-
ever, for comparison with experiments [3], we use nonlinear
least squares to fit the prescribed velocity in Eq. (4) to the
experimental data [30]. We thus obtain biological values for
the relevant velocity scale and active slip angle in our model
as Umax = 1.87 nm s−1, θslip = 1.67 rad (= 96◦), respectively,
which we use for the model slip velocity uθ = U (θ ) in blue
in Fig. 2(a). We note that the active slip velocity therefore
extends beyond the actin cap [Fig. 1(c)] [3,30]. To illustrate
our model for the cytoplasmic streaming, we plot in Fig. 2(b)
the flow streamlines from numerical simulation, correspond-
ing to these biological values. The resulting flow matches the
toroidal flow field observed in experiments [3] [Fig. 1(e)].
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FIG. 2. (a) Tangential flow uθ at the cortex of mouse oocytes as a function of spherical polar angle θ , from experimental data [30] (red)
and for model fitted to data (blue), together with model setup (inset); red curve: experimental mean; light red shading: standard deviation; blue
curve: model, uθ = U (θ ) from Eq. (4), with Umax = 1.87 nm s−1, θslip = 1.67 rad (= 96◦) from least-squares fit. Inset: A prescribed active slip
velocity uθ = U (θ ) (green), which is nonzero inside a spherical polar angle θ � θslip in our model, drives a cytoplasmic flow (blue arrows)
inside the cell. (b) Flow inside a spherical model oocyte as obtained by numerical simulation, induced by a prescribed active slip velocity
boundary condition at cortex, with model parameters taken from least-squares fit.

B. Hydrodynamic forces on spindle can lead to stable spindle
positioning at fixed point

In Sec. II A, we highlighted the active slip angle θslip as
a key parameter in our model that characterizes the cortex-
driven cytoplasmic flow in the oocyte. To determine the
conditions for stable spindle positioning by hydrodynamic
forces, we now introduce the model spindle into the oocyte
and demonstrate that our model contains sufficient physical
ingredients to reproduce the stability seen experimentally.
We will then analyze the robustness of this phenomenon in
Sec. II C, where we conduct a parameter sweep in our control
parameters.

We illustrate our model for the spindle dynamics in Fig. 3
(details in Sec. IV B). We model the spindle as a rigid sphere
of radius a, and assume, based on experiments [3], that it is
located close to the cortex, with constant clearance d = 0.1ro

held fixed in our simulations. This is a simplification of the
geometry [Fig. 1(b)] and the physics; however, the goal of
our paper is to identify the fundamental physical ingredients
required to understand the stable spindle positioning seen
in experiments. In each numerical simulation, the spherical
spindle is held stationary at position θ = θsp, with a no-slip
boundary condition prescribed on its surface. We solve for
the Stokes flow driven by the same active slip velocity as in
Sec. II A [Eq. (4)], but now in the annular region (fluid shaded
in light blue in Fig. 3) between the spindle and cell cortex.
This cytoplasmic flow, modified in comparison with Fig. 2(b)
due to the addition of the spindle to the geometry, exerts

hydrodynamic force on the fixed spindle, with radial compo-
nent Fr and θ component Fθ . We will show that the spindle
can be hydrodynamically stable within a neighborhood of the
fixed point at θ = 0; this stability region for the fixed point
has size θstable.

We can characterize the geometry and forces in the prob-
lem in terms of dimensionless ratios, i.e., normalized physical
quantities. First, we measure lengths in units of the oocyte
radius ro. We thus introduce the dimensionless spindle radius
â ≡ a/ro as the ratio of the spindle radius to the oocyte radius;
similarly, the dimensionless oocyte radius is simply equal to 1.

Next, we define dimensionless force components F̂r ≡
Fr/6πμaUmax and F̂θ ≡ Fθ /6πμaUmax, given by the ratio of
the dimensional force to a characteristic force scale (the clas-
sical Stokes drag on a sphere [47]), where μ is the dynamic
viscosity of the fluid. For example, with dimensional cyto-
plasmic viscosity μ ≈ 102 Pa s (as measured for late meiosis I
mouse oocytes) [28], spindle radius a ≈ 6 µm [3] and Umax ≈
2 nm s−1 (Sec. II A), a value of F̂r = 1 for the dimension-
less force on the spindle corresponds to a dimensional force
Fr ≈ 20 pN. This force scale is much larger than the typical
root-mean-square force from thermal noise (around 0.004 pN,
by a scaling argument).

In what follows, in order to simplify notation, we use
the original variable names (a, Fr , and Fθ ) to mean their di-
mensionless counterparts (â, F̂r , and F̂θ , respectively) defined
above. The control parameters of our model are therefore the
dimensionless spindle radius a (i.e., the ratio of the spindle
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fixed
point

FIG. 3. Model for spindle dynamics inside oocyte. The spindle
(purple) is modeled as a sphere of radius a inside the oocyte of radius
ro. The spindle has angular position θ = θsp. The clearance between
the spindle and cortex is denoted by d , a constant. The fixed point
at θ = 0 is marked with a cross. The active slip velocity (green)
is given by uθ = U (θ ) from Eq. (4) and is nonzero in the angular
domain θ � θslip, actively driving a fluid flow inside the cell. The
resulting hydrodynamic force exerted on the spindle has r component
Fr (dashed black arrow) and θ component Fθ (solid black arrow).
Our simulations reveal a neighborhood around the fixed point within
which the spindle is hydrodynamically stable; the stability region for
the fixed point is given by 0 � θsp � θstable, indicated in blue.

radius to the oocyte radius) and the size of the active slip
domain θslip.

To analyze the effect of the cortex-driven flow on the spin-
dle, we compute the hydrodynamic force exerted on the fixed
spindle as a function of position θsp. Intuitively, we expect
θsp = 0 to be a fixed point of the position of the spindle:
the geometry is axisymmetric in this case, while the flow
in Fig. 2(b) is upwards on the axis of symmetry. With our
aim of understanding the stability of this fixed point, we can
think of simply perturbing the position θsp of the spindle, and
investigating: Will the spindle return to the fixed point? If yes,
then how large is the stability region as a function of the key
parameters of our model?

We plot in Fig. 4 the components Fr (dashed line) and Fθ

(solid line) of the normalized hydrodynamic force exerted on
the spindle, against angular position θsp. We indicate the slip
angle θslip with green and the boundary of the stability region
θstable in blue (also illustrated in Fig. 3).

We see that our physical model is sufficient to produce
stable spindle positioning, as observed in experiments [3].
In Fig. 4(a), the fixed point θsp = 0 is stable; we choose the
dimensionless spindle radius as a = 0.2 (i.e., ratio of spin-
dle radius to oocyte radius) and active slip angle as θslip =
1.31 rad (= 75◦), close to biological values. Near the fixed
point, the hydrodynamic force pulls the spindle radially to-
wards the cell cortex (Fr � 0), so the spindle remains near the
cortex. Thus, only the θ dynamics matter, and the θ compo-
nent of force pulls the spindle back to the fixed point (Fθ � 0).
Mathematically, we define the stability region for the fixed
point θsp = 0 as the region 0 � θsp � θstable, where its size
θstable is the largest θsp such that Fr � 0 and Fθ � 0 for all
θsp � θstable. This corresponds to the inset labeled “stable” in
Fig. 4(a). In contrast with this, outside the stability region (i.e.,

(a) (b)

FIG. 4. Hydrodynamic forces on spindle [Fr (dashed black) and
Fθ (solid black)] vs angular position of spindle θsp (force normaliza-
tion explained in main text). (a) Stable spindle positioning at fixed
point θsp = 0 obtained for dimensionless spindle radius a = 0.2 and
slip angle θslip = 1.31 rad (= 75◦). “Stable” inset: In the stability
region 0 � θsp � θstable, the force satisfies Fr � 0 and Fθ � 0; the
fixed point is stable. “Unstable” inset: Fr < 0 outside the stability
region (i.e., θsp > θstable). (b) Unstable spindle positioning at fixed
point θsp = 0 for a = 0.2 and θslip = 2.36 rad (= 135◦). “Unstable”
inset: Fθ > 0. In both panels, the size of the stability region θstable is
shown in blue, while the active slip angle θslip is in green.

θsp > θstable), the spindle is pushed away from the cell cortex
[Fr < 0 as shown in “unstable” inset in Fig. 4(a)].

The fixed point is instead unstable for the parameter values
used in Fig. 4(b); the stability region has size θstable = 0 (blue).
Here, the dimensionless spindle radius is still a = 0.2, but the
active slip angle θslip = 2.36 rad (= 135◦) (green) is larger
than for the stable case in Fig. 4(a). Near the fixed point
(i.e., θsp small), even though the radial force pulls the spindle
towards the cell cortex (Fr � 0), the θ component of force
always drives the spindle away from the fixed point (Fθ � 0
as in “unstable” inset).

C. Stability of spindle positioning depends critically on both
spindle size and active slip angle at cell cortex

Our model can produce stable positioning of the spindle
at the fixed point, for spindle radius and slip angle close to
the biological values; however, for different parameter values,
unstable spindle positioning is seen. The model is therefore
able to capture the stability observed in experiments, but how
robust is this stability? We now explore the full parameter
space numerically, to understand how the size of the stability
region θstable depends on the spindle radius a and the slip angle
θslip. We identify two key stability trends in terms of these
parameters, which we will then explain physically with an
analytical model.

Running many numerical simulations allows us to obtain
the stability phase diagram in Fig. 5; it shows the stability of
the fixed point θsp = 0 as a function of a and θslip. Circular
markers correspond to a stable fixed point, with color indi-
cating the size of the stability region θstable, whereas square
markers represent an unstable fixed point. The red diamond
marker shows the estimated experimental parameters, with the
uncertainty from our estimation of their values shaded in light
red (see Sec. IV B for details).
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FIG. 5. Phase diagram in (a, θslip ) plane showing stability of the
fixed point θsp = 0 for the model spherical spindle of dimensionless
radius a inside an oocyte, with a prescribed active slip velocity on
domain of angular size θslip. Circular markers indicate a stable fixed
point, with color showing the size of the stability region θstable. Square
markers represent an unstable fixed point. Experimental parameters
(red diamond marker) and uncertainty (light red shading) are esti-
mated from Ref. [3] and Ref. [30], as detailed in Sec. IV B.

Remarkably, the range of experimental parameters lies at
the boundary between stable and unstable spindle positioning
in the phase diagram. While our model is idealized, designed
to capture the essential physics of the problem, it does predict
that hydrodynamic effects alone are sufficient to keep the
spindle at the fixed point; the cortex-driven flow may thus
be fine-tuned to enable stable spindle positioning. Note that
even if other biophysical mechanisms were shown to also con-
tribute to the stable positioning of the spindle, hydrodynamics
can provide a fail-safe for the oocyte (see further discussion
in Sec. III B).

The phase diagram demonstrates two key features of the
stability of hydrodynamic spindle positioning. First, for a
given spindle radius, for sufficiently small slip angle, the
spindle is stable at the fixed point. Perhaps counterintuitively,
increasing the slip angle (i.e., having a larger domain where
fluid flow is locally directed away from the fixed point) in-
creases the size of the stability region, until a further increase
in the slip angle makes the fixed point unstable. We can
understand this in terms of the forces shown in Figs. 4(a)
and 4(b). One consequence of a larger slip domain is a larger
neighborhood around the fixed point where the radial force Fr

is positive, which can increase the size of the stability region
provided that Fθ is still negative. However, if the slip domain
is sufficiently large, then the sign of Fθ near the fixed point
can change from negative to positive, so stability is lost.

Thus, parameters close to the stability boundary in Fig. 5
that correspond to a stable fixed point also give rise to the

largest possible stability region for a given spindle radius,
indicating robustness of spindle positioning against pertur-
bation; this applies to part of the experimental range of
parameters (shaded in red).

Second, at given slip angle, the fixed point is unstable for
a small spindle and stable for a sufficiently large spindle. The
intuitive physical picture of a local extensional flow system-
atically taking passively suspended particles away from the
fixed point in Fig. 1(f) is therefore only valid for sufficiently
small particles; it is only because the spindle is large enough
that it is hydrodynamically stable.

To explain the physical origin of these features, we next in-
vestigate the influence of confinement of the spindle inside the
finite-sized cell on the stability of the fixed point, and discover
that local hydrodynamic effects are sufficient to explain the
stability. We conduct further simulations for a similar setup to
that in Fig. 3, but with a hole cut in the bottom of the cell,
within the no-slip region of the slip velocity. We find essen-
tially the same stability results for this open cell as for the
closed cell. Therefore, keeping all other factors in the model
unchanged, confinement is not necessary for stable spindle
positioning. This motivates a second fundamental model, this
time fully analytical and able to reveal the hydrodynamic
mechanism, as we detail in the next section.

D. Hydrodynamic forces on spindle are captured
by analytical model

In Sec. II B, we showed that hydrodynamics can result in
stable spindle positioning in a spherical model oocyte. To
understand the physical origin of this, we now introduce a
minimal model that captures the essential physics of spindle
positioning, reproducing analytically the stability results from
our more detailed simulations. We demonstrate that stable
spindle positioning can be understood in terms of a hydro-
dynamic suction (pulling) force, which originates from purely
local hydrodynamic effects and systematically draws the spin-
dle towards the fixed point.

We illustrate the setup for our analytical model in Fig. 6(a)
(see Sec. IV C 1 for details). Working in two dimensions,
we model the spindle as a rigid disk of radius a, near a
planar, active wall along the x axis that represents the cell
cortex; the clearance d is again assumed to be constant. We
denote the horizontal perturbation in spindle position from
the fixed point by xsp. As in Sec. II B, the spindle is held
stationary.

On the planar wall, we prescribe a slip velocity boundary
condition [Eq. (6)], which represents the forcing due to the
actin-rich cortical cap of the oocyte. This is characterized by
the maximum slip speed Umax and the size of the active slip do-
main � (analogous to the slip angle θslip in the spherical model
in Sec. II B). We plot the slip velocity [Eq. (6)] in Fig. 6(b),
illustrating here with � = 0.75. This boundary condition has
symmetry about the line x = 0; the origin therefore represents
the center of the cortical cap. The slip velocity is nonzero
only inside the slip domain, i.e., for −� � x � �, and drives
a flow in the fluid below the cortex, modeling the motion of
the cytoplasm [light blue in Fig. 6(a)]. In particular, xsp = 0
is a fixed point, since the spindle and the slip velocity share
a line of symmetry in that case. We note that in all plots
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(a) (b)

(d)(c)

FIG. 6. [(a) and (b)] Setup for simple analytical model, in two
dimensions, to explain stability of spindle positioning at the fixed
point. (a) The spindle (purple) is modeled as a disk of radius a, near
an active, planar wall at y = 0, with clearance d . A slip velocity
boundary condition ux = U (x) with slip domain size � (green in
all panels) is prescribed on the x axis, driving a flow in the fluid
(light blue), which induces a hydrodynamic force on the spindle with
components Fx and Fy. The fixed point (cross) is at x = 0; the spindle
position is xsp. The stability region for the fixed point has size xstable

[blue in panels (a), (c), and (d)]. (b) Slip velocity U (x) [Eq. (6)] vs
x, for � = 0.75. [(c) and (d)] Force on spindle [Fy (dashed black) and
Fx (solid black)] against position xsp. (c) Stable spindle positioning
at fixed point xsp = 0 for a = 1 and � = 0.75. “Stable” inset: In the
stability region, with xsp positive (0 � xsp � xstable ), the force satisfies
Fy � 0 and Fx � 0; the fixed point is stable. “Unstable” inset: Fy < 0
outside the stability region (i.e., xsp > xstable). (d) Unstable spindle
positioning at fixed point for a = 1 and � = 1.5. “Unstable” inset:
Fx > 0.

in Sec. II D and Sec. II E, variables are nondimensionalized
(details in Sec. IV C 1).

To analyze the stability of spindle positioning in this simple
model, we analytically solve for the fluid flow and pressure
in the thin fluid film between the spindle and cell cortex,
and hence the force on the spindle, using lubrication theory
(long-wavelength hydrodynamics). This means that our ana-
lytical model specifically captures all the local hydrodynamic
effects that are involved in spindle positioning in our spher-
ical model. Details of our assumptions, solution method and
mathematical calculations are all provided in Sec. IV C 2 to
Sec. IV C 5.

To demonstrate stable and unstable spindle positioning in
our simple analytical model, we now illustrate how the hy-
drodynamic force on the spindle varies with position of the
spindle, for comparison with the numerical simulations of our
spherical model in Sec. II B. By symmetry of the slip velocity,
we restrict our attention to xsp � 0. In Figs. 6(c) and 6(d),
we plot the vertical component Fy [Eq. (20)] and horizontal

component Fx [Eq. (25)] of force on the spindle as a function
of the spindle position xsp.

From the hydrodynamic forces, we can deduce the stability
properties of the fixed point xsp = 0. In Fig. 6(c), we see that
the analytical model can produce stable spindle positioning
at the fixed point xsp = 0; here, the spindle radius is a = 1
and the size of the slip domain is � = 0.75 (green). Near
the fixed point, when xsp is sufficiently small, the vertical
hydrodynamic force on the spindle Fy is positive, pulling the
spindle towards the cell cortex. Therefore, only the x dynam-
ics matter. Furthermore, the horizontal force Fx is negative,
pulling the spindle back towards the fixed point (inset labeled
“stable”). The fixed point is thus stable. We define the stability
region analogously to the spherical model case (Sec. II B);
its boundary xsp = xstable is shown in blue in Fig. 6. Math-
ematically, the stability region of the fixed point xsp = 0 is
given by −xstable � xsp � xstable, where xstable is the largest xsp

such that Fy � 0 and Fx � 0 for all xsp with 0 � xsp � xstable.
Outside the stability region (i.e., for xsp > xstable), the spindle
is pushed away from the cortex, as the vertical force Fy is
negative [“unstable” inset in Fig. 6(c)].

For different parameter values, the model can instead pre-
dict unstable spindle positioning at the fixed point xsp = 0, as
shown in Fig. 6(d). Here the spindle radius is the same as in
the stable case (a = 1), but the slip domain size is � = 1.5,
larger than in Fig. 6(c). For small xsp, the spindle is pulled
vertically towards the cortex (Fy > 0). Hence, just as for the
stable fixed point in Fig. 6(c), only the horizontal dynamics
matter. However, in Fig. 6(d), we see that the horizontal force
now pushes the spindle away from the fixed point (Fx � 0 in
“unstable” inset), which, consequently, is now unstable.

E. Analytical model reproduces stability trends of spherical
model computations

The force results shown in Fig. 6 demonstrate that the
simple analytical model produces the same physical features
as the full spherical model solved numerically (Sec. II B). To
further compare the two, we explore the parameter space of
the analytical model and find how the size of the stability
region xstable depends on the spindle radius a and the active
slip domain size �.

In Fig. 7, we illustrate with a phase diagram in the (a, �)
plane the stability results for our analytical model. As in
Fig. 5, circular markers represent a stable fixed point (here
at xsp = 0), whereas square markers correspond to instability;
colour indicates the stability region size.

Further, using linear stability analysis (detailed in
Sec. IV C 6), we can analytically derive the equation of the
boundary between the stable and unstable regions of the phase
diagram as

� = Cd1/2a1/2, (1)

where the dimensionless constant C ≈ 3.50. We plot this
boundary in red, in perfect agreement with the results of the
phase diagram.

Importantly, with only local hydrodynamic effects, our
simple analytical model reproduces the two key features in
Sec. II C of the phase diagram from the computational model
(Fig. 5) (note that the slip domain size is quantified by the
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FIG. 7. Phase diagram in the (a, �) plane showing stability of the
fixed point xsp = 0 in the analytical model, with the model spindle
of radius a near an active, planar wall with size of active slip domain
�. Circular markers represent a stable fixed point, with the stability
region size xstable indicated by color, while square markers correspond
to an unstable fixed point. Red curve indicates analytical stability
boundary [Eq. (31)], from linear stability analysis.

parameter � for the analytical model but by the slip angle θslip

in the computational model). First, at given spindle radius, in-
creasing the size of the active slip domain � makes the stability
region larger, before making the fixed point unstable [for �

larger than that in Eq. (1)]. Second, at a given slip domain
size, for small spindle radius a, the fixed point is unstable, but
for sufficiently large spindle radius, the fixed point is stable.

F. Analytical model reveals hydrodynamic suction mechanism
for stable spindle positioning

What is the physical mechanism behind stable spindle po-
sitioning? Since the analytical model captures the physical
features of simulations, we can use it to explain the hydrody-
namic mechanism at the origin of the stable positioning. We
thus examine in this section the flow, the pressure field and the
contributions to the horizontal force Fx exerted by the fluid on
the spindle in the analytical model.

We first rationalize the hydrodynamic forces exerted on a
spindle placed symmetrically, at the fixed point xsp = 0. We
then consider how these are altered when the spindle is per-
turbed horizontally from the fixed point, for the two cases of
stable and unstable spindle positioning. We find that fluid flow
can support stable spindle positioning by exerting a suction
force on the spindle towards the fixed point.

1. Spindle at fixed point

We consider in Fig. 8 the case of a spindle positioned at the
fixed point xsp = 0, i.e., symmetrically with respect to the slip

(a) (b)

(d)(c)

FIG. 8. Illustration of physical mechanism for forces on spindle
at the fixed point xsp = 0. Flow, pressure and contributions to hor-
izontal traction (force per unit area) on symmetrically positioned
spindle (xsp = 0, purple), with spindle radius a = 1 and active slip
domain size � = 0.75 (green) [parameter values matching Fig. 6(c)].
(a) Horizontal flow: arrows and color indicate u. (b) Pressure field as
a function of x. (c) Shear on the spindle μ∂u

∂y |y=−h vs x. (d) Horizontal

suction on the spindle −p dh
dx vs x. In panels (c) and (d), the red shaded

area and arrow indicate the contribution in the positive x direction to
horizontal shear (c) or suction (d) force, while blue represents the
negative contribution.

velocity. We use parameter values of spindle radius a = 1 and
slip domain size � = 0.75 (green), the same as in Fig. 6(c).

In Fig. 8(a), we show the horizontal flow with arrows,
with the background color indicating values of the horizontal
flow velocity u. The horizontal flow has a parabolic profile
[Eq. (12)]. Near the cortex (i.e., near the x axis in the model),
the direction of horizontal flow is inherited from the imposed
slip velocity boundary condition; the flow is shear-dominated.
However, closer to the spindle (purple), there is backflow
(i.e., flow in the opposite direction to the active slip velocity),
conserving mass (here the mass flux q is zero at x = 0 by
symmetry and hence zero everywhere).

We next focus on the pressure field, in Fig. 8(b). At the
line of symmetry x = 0, the pressure reaches its minimum
and is negative. This shows that the flow, driven by the slip
velocity, induces suction near x = 0; the pressure is lower
than in the absence of flow (i.e., lower than the far-field
value of zero). There are two immediate consequences of
this. First, we see that the vertical hydrodynamic force ex-
erted on the spindle [related to the pressure via Eq. (20)] is
positive, pulling the spindle stably towards the cell cortex.
Hence, the sign of the horizontal force solely determines the
linear stability of the spindle at the fixed point. Second, there
is a pressure gradient from infinity towards x = 0, which
drives the backflow near the spindle in Fig. 8(a) required to
conserve mass.
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Equipped with this understanding of the flow and pres-
sure fields, we can now explain the horizontal hydrodynamic
forces exerted on the spindle. In Figs. 8(c) and 8(d), we
plot the two contributions to the horizontal traction (force
per unit area) on the spindle [Eq. (23)]: the shear on the
spindle μ∂u

∂y |y=−h and the horizontal suction on the spindle

−pdh
dx , respectively, against x, where y = −h(x) describes the

surface of the spindle near the cortex [Eq. (10)]. Together, the
integrals of these two contributions over x (shaded area) give
us the corresponding contributions to the horizontal force Fx.

The shear [Fig. 8(c)] is seen to be rightwards on the left
half of the spindle and leftwards on the right, as expected
intuitively from inspecting the backflow near the spindle in
Fig. 8(a). In contrast, the horizontal suction [Fig. 8(d)] is
leftwards on the left half of the spindle and rightwards on
the right. To understand this, we recall that the component of
the local force due to the pressure acts perpendicularly to the
spindle surface. Since the pressure is negative, the force is a
suction, thus pointing outwards from the spindle, towards and
along the cortex. Taking the horizontal component then gives
us the directions of horizontal suction we see on each half of
the spindle; geometrically, the deviation of the local slope of
spindle surface from that of the cortex enables the spindle to
experience a component of suction parallel to the cortex. By
symmetry in x = 0 (for xsp = 0), in Fig. 8(c), the rightward
shear force (red shaded area and arrow) exactly balances the
leftward (blue); similarly, the horizontal suction forces cancel
out in Fig. 8(d). The total horizontal force on the spindle at
the fixed point is thus zero, as expected.

2. Physical mechanism for stable and unstable spindle positioning

Having rationalized the forces on a spindle positioned ex-
actly at the fixed point (xsp = 0), we next turn our attention to
the effect of a small perturbation in the spindle position, for
example with xsp > 0. This analysis of the horizontal spindle
dynamics near the fixed point will highlight the key physical
result in our work.

In Fig. 9, we illustrate how the forces experienced by the
spindle are modified by the small perturbation to the right,
for parameter values corresponding to a stable fixed point in
the top row [spindle radius a = 1, slip domain size � = 0.75,
as in Fig. 6(c)] and to an unstable fixed point in the bottom
row [a = 1, � = 1.5, as in Fig. 6(d)]. The active slip domain
size � is indicated in green and the spindle position (x = xsp)
in purple. The two contributions to the horizontal traction on
the spindle, shear μ∂u

∂y |y=−h and horizontal suction −pdh
dx , are

shown in the left [Figs. 9(a) and 9(c)] and right [Figs. 9(b)
and 9(d)] columns, respectively. As in Fig. 8, the red and blue
shaded areas represent the positive and negative contributions
to horizontal force Fx, respectively; arrow length is propor-
tional to the total shaded area of the same color. Further, the
net contribution to horizontal force from each physical effect
is shown with a black arrow (i.e., the sum of red and blue).

To understand the influence of the perturbation of spin-
dle position and hence the stability of the fixed point at
x = 0, we compare the horizontal forces with those for the
spindle positioned at the fixed point, examining specifically
Figs. 9(a) and 9(c) vs Fig. 8(c) (shear), and Figs. 9(b) and
9(d) vs Fig. 8(d) (horizontal suction). First, for the stable

(a) (b)

(d)(c)

FIG. 9. Physical mechanism behind stable and unstable spindle
positioning. Contributions to horizontal traction on the spindle po-
sitioned just to the right of the fixed point at x = 0, for stable [top
row; a = 1, � = 0.75, as in Fig. 6(c)] and unstable cases [bottom
row; a = 1, � = 1.5, as in Fig. 6(d)]. Green indicates boundaries of
the slip domain x = ±�. Purple shows spindle position x = xsp, with
xsp = 0.25 in the top row and xsp = 0.5 in the bottom row. [(a) and
(c)] Shear on the spindle μ∂u

∂y |y=−h as a function of x. [(b) and (d)]

Horizontal suction on the spindle −p dh
dx vs x. As in Fig. 8, red shaded

areas and arrows represent positive contributions to horizontal force
Fx , whereas blue indicates negative contributions; each arrow has
length proportional to the shaded area. The net contribution to hori-
zontal force (i.e., red plus blue) is shown with a black arrow.

fixed point, in Fig. 9(a), we find that the rightward, destabiliz-
ing shear force (red) now outweighs the leftward, stabilizing
contribution (blue), so the net shear force is rightwards and
destabilizing (black arrow). In contrast with this, we see in
Fig. 9(b) that the leftward, stabilizing horizontal suction (blue)
dominates over the rightward suction (red); hence, the net
horizontal suction force is leftwards and stabilizing (black ar-
row). Importantly, the stabilizing net horizontal suction force
is greater than the destabilizing net shear force, so the total
horizontal force on the spindle is stabilizing, i.e., Fx < 0 as
we see in Fig. 6(c) at xsp = 0.25. In essence, the low pressure
leads directly to a hydrodynamic suction pulling the spindle
back to the fixed point; the finite size of the spindle enables it
to detect the stabilizing pressure difference across its length.
This mechanism differs fundamentally from hydrodynamic
trapping of particles near stagnation points in other physical
regimes, where, for example (and unlike in the oocyte), inertia
can play an important role [48–50].

In the case of an unstable fixed point, Figs. 9(c) and 9(d)
illustrate similar behavior to Figs. 9(a) and 9(b), respectively.
However, the crucial difference in this case is that the destabi-
lizing net shear force outweighs the stabilizing net horizontal
suction force. Hence, the spindle is now destabilized by the
total horizontal force, i.e., Fx > 0 [as in Fig. 6(d) at xsp = 0.5].
Here, intuitively, a spindle that is too small compared with
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the active slip domain acts like a particle; its smaller rela-
tive size reduces its ability to experience pressure gradients
in the flow, so the horizontal suction on the two halves of the
spindle largely cancel out and the spindle is pushed away from
the fixed point by the flow.

The key to understanding the hydrodynamic trapping
mechanism for the spindle is thus the difference between the
two rows in Fig. 9.

III. DISCUSSION

A. Summary

We showed in this article that the stability of spindle po-
sitioning just beneath the cortical cap, while an oocyte awaits
fertilization, can be explained by purely local hydrodynamic
effects. We saw in Sec. I that although the spindle in a meiosis
II oocyte remains stably positioned at a fixed point for many
hours, the fixed point intuitively appears to be unstable in the
experimentally measured cytoplasmic flow field. To explain
this observed stability, in Sec. II A, we introduced a physical
model for the flow inside the cell, driven by an active slip
velocity and based on experimental data [3,30]. We then pre-
sented our model for the spindle in Sec. II B, identifying the
key parameters of our model as the radius of the spherical
spindle and the size of the slip domain at the cortex. To
understand quantitatively the stability of the fixed point, we
computed numerically the force on the spindle as a function of
its position. We found that our model is able to reproduce the
stability of the fixed point observed experimentally and that,
exploring the parameter space in Sec. II C, the stability of the
fixed point depends critically on the spindle radius and the slip
domain size: for a given spindle size, the fixed point is stable
for small slip angle and unstable for large slip angle; for a
given slip angle, the fixed point is stable for a sufficiently large
spindle. Next, to reveal the mechanism underlying this, we
presented in Sec. II D a simple analytical model that captures
the essential ingredients of the spherical model in Sec. II B.
We focused on the fluid flow between the spindle and the cell
cortex, i.e., local hydrodynamics. We calculated analytically
the stability properties of the fixed point as a function of
spindle radius and size of the slip domain in Sec. II E, repro-
ducing the trends we found for the spherical model. Using this
analysis, in Sec. II F, we explained the stability of the fixed
point in terms of two competing effects induced by the flow:
the shear (always leading to a destabilizing force exerted on
the spindle) and the horizontal suction on the spindle (always
stabilizing). When the spindle is sufficiently large relative to
the slip domain, the stabilizing suction force can overcome
the destabilizing shear. Cytoplasmic fluid flow can thus be
sufficient to keep the spindle stably positioned at the fixed
point, just beneath the cortical cap of an oocyte.

B. Comparison with experiments

In our study, we examined the stability of spindle posi-
tioning within the framework of a hydrodynamic model. We
found that horizontal suction due to the fluid flow inside the
cell could explain the stability of the fixed point, making
the system robust against perturbations. However, although
hydrodynamics can be sufficient according to our theoretical

modeling, other physical, chemical and biological ingredients
could also play a part in stable spindle positioning. We showed
theoretically the condition under which the cytoplasmic flow
by itself could hold the spindle in place, revealing a mech-
anism for hydrodynamic stabilization. Thus, in an oocyte,
cytoplasmic flow could be either beneficial for or detrimental
to stable spindle positioning, depending on parameter values.
If it is indeed beneficial, then cytoplasmic flow could either
provide the dominant mechanism for stable spindle position-
ing, via the physics in this article, or act as a fail-safe if another
mechanism is primarily responsible. If, instead, cytoplasmic
flow is detrimental, our model can be used to provide infor-
mation on the magnitude of the mechanism that stabilizes the
spindle against this hydrodynamic effect.

First, let us consider the role of actin [17]. We have
so far discussed its flow-mediated effect on stable spindle
positioning, in the context of Ref. [3], which showed exper-
imentally that actin flow drives the cytoplasmic streaming
that we analyzed theoretically in our work. Studies prior to
this investigation of flow in Ref. [3] had also demonstrated
that actin is important for spindle positioning in meiosis II
oocytes [29,51–53]. In particular, attachment of the spindle
to the cortex, mediated by actin microfilaments, had been
suggested [53]. Subsequently, the experiments of Ref. [3]
revealed a mechanism by which actin could dynamically keep
the spindle near the cortex via cytoplasmic streaming, as we
outlined in Sec. I.

We wish to highlight evidence from two types of ex-
periment relevant to our theoretical model. First, in past
experimental work, the spindle was observed to migrate from
the interior of the oocyte towards the fixed point, in a way
that was consistent with the fluid flow field [3]. In this, the
authors of Ref. [3] applied a treatment to oocytes, so that the
cytoplasmic streaming driven by actin flow was deactivated
temporarily and the spindle moved slightly away from the
cortex, towards the interior of the oocyte. They then stopped
the treatment. Cytoplasmic streaming resumed and the spindle
moved back towards the cortex at a similar speed to nearby
cytoplasmic particles. During this period of time, the spindle
therefore moved towards the fixed point in a manner consis-
tent with the fluid flow driven from the cell cortex and the
suction force on the spindle predicted by our model.

Another notable experiment involves disassembly of the
spindle (by treatment with an agent called nocodazole) [3,52].
In terms of our fluid dynamical theory, this effectively re-
places the spindle with a smaller body inside the oocyte,
which we expect could in turn impact its stability at the fixed
point. The authors of Ref. [3] found that when the spindle
was disassembled, the now-naked chromosomes (previously
attached to the spindle) moved closer to the cortex, with the
same speed as the flow of cytoplasmic particles nearby. The
chromosomes then remained there; we note that the experi-
mental video shows their behavior for a time period of around
half an hour. This is consistent with the idea that flow typically
contributes to the positioning of the spindle inside the cell.
Quantitatively, we may estimate the dimensionless radius of
the cluster of chromosomes relative to the oocyte radius as
approximately 0.1 and apply our theory to the cluster, instead
of an intact spindle. Assuming the same active slip angle for
the mouse oocyte as in our study, this does correspond to
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an unstable fixed point, according to the phase diagram in
Fig. 5. However, we estimate the timescale over which the
chromosomes move away from the fixed point to be longer
than the video duration: even if the cluster moved as fast as
the maximum active slip velocity Umax ≈ 2 nm s−1, it would
take ≈ 50 minutes to travel 6 µm (i.e., approximately a spindle
radius). Therefore, despite the predicted unstable positioning,
we may not expect it to be apparent in the aforementioned
video.

In Ref. [52], after the dissolution of the spindle (again
with nocodazole), over the course of several hours, the chro-
mosomes dispersed; small clusters of chromosomes were
redistributed around the cortex of the oocyte. This is consis-
tent with the prediction from our hydrodynamic model that
for a given active slip domain size, the fixed point is unstable
for smaller bodies (here applying our results to individual
clusters). For example, an observed cluster [52] with dimen-
sionless radius of approximately 0.04 relative to the oocyte
radius (several times smaller than an intact spindle) lies in
the unstable region of the phase diagram, if we again assume
the same active slip angle. Hence, cytoplasmic streaming
generated by actin flow could be fine-tuned to enable stable
positioning of the spindle purely by flow.

Other past work has focused on the role of myosin (a
molecular motor [5]) in spindle positioning [3,23,54,55]. Ex-
periments have demonstrated that inhibiting myosin II does
not affect the actin flow or cytoplasmic streaming illustrated
in Fig. 1 [3], and does not cause the spindle to drift away from
the cortex [3,54]. Other groups have discussed the effect of
different inhibitors and timescales for treatment of the oocytes
[23,55].

We also note that microtubules are critical for spindle
positioning in many cells [3,56,57], including for meiosis
I mouse oocytes [26]. However, experimental work where
microtubules were disrupted suggests that they are not re-
sponsible for asymmetric spindle positioning in the meiosis
II mouse oocyte [3].

C. Limitations of theoretical modeling

The purpose of the modeling presented in this paper is to
demonstrate a physical mechanism that can keep the spin-
dle at the fixed point and to understand its physical origin.
The computational model strikes a balance between realistic
on one side (containing enough ingredients to reproduce an
experimental situation) and simplified on the other (being
sufficiently idealized that a full theoretical analysis can be
carried out).

In a real oocyte, the boundary between stability and insta-
bility of the fixed point in parameter space may quantitatively
deviate from that predicted by our mathematical model in
Sec. II C. Various properties of the spindle and its environment
could thus be revisited in future work. First, in an oocyte,
the shape of the spindle is approximately ellipsoidal instead
of spherical. However, our simulations with an ellipsoidal
model spindle produced similar behavior to that for a spher-
ical spindle shown in Sec. II C. Furthermore, although we
describe the spindle in our analytical model setup as circular
(as a natural simplification of the spherical model), the results
hold for more general spindle shapes (e.g., elliptical), too.

This is because we approximate the circle with a parabolic
height profile locally, as is done generically in fluid dynamics
problems in thin gaps; this quadratic profile is the leading-
order approximation to a general, smooth spindle shape that
is symmetrical about the normal to the model cortex, valid
in the region where the spindle is closest to the cortex and
which provides the dominant contribution to force. The ma-
terial properties of the spindle could also be modeled more
realistically, for instance, by treating the spindle as a flexible
[58] and permeable [3] structure. Further, our model does not
include any active noise; the spindle is an active system, so
would be expected to fluctuate [58]. In our work, as a first
approximation, we treat the cytoplasm as a Newtonian fluid,
with its viscosity modeling the resistance of the cytoplasm, but
a non-Newtonian rheology [59] as well as the heterogeneous
nature of the cytoplasm [32] could also contribute to spindle
positioning near the cell cortex [60].

Despite these simplifications, our fundamental modeling
was able to reproduce the experimental features of living
oocytes and explain hydrodynamically why the spindle is
expected to be stable. We hope that it will motivate further,
more detailed biophysical modeling.

D. Outlook

Further experiments would allow us to test our theory
and assess to what extent flow is responsible for stable spin-
dle positioning. How important is flow in comparison with
other potential mechanisms for spindle positioning? Com-
plementary to the experimental study of Ref. [3], our work
quantitatively predicts the stability of the fixed point and size
of the stability region as a function of the two key parameters
of the system, the ratio of spindle radius to oocyte radius and
the active slip angle. We envisage that experimentalists could
develop methods to explore this parameter space for living
oocytes; perhaps the active slip angle could be modified via
changes to the size of the actin cap. Experiments examining
the effect of genetic and chemical perturbations on flow and
actin dynamics [12,41,61–66] could contribute to answering
this question. Furthermore, imaging of actin and measurement
of cytoplasmic flow specifically in the region between the
spindle and cortex could also yield evidence on the mecha-
nisms at play.

In oocytes of mammalian species beyond the mouse
model, while the geometrical parameters of our model may
be measured from existing images of the meiotic spin-
dle [67], new studies investigating cytoplasmic streaming
in other species are needed to determine whether it is a
conserved phenomenon. We note that a well-defined actin
cap, localized to the cortex adjacent to the spindle, has
been shown to be present in human meiosis II oocytes [68].
Then, with data on the cytoplasmic flow field and spin-
dle size for more species of mammalian oocytes, we could
place more experimental data points on our phase diagram
in Sec. II C; their position relative to the stability boundary
would provide evidence on the role of hydrodynamics in other
mammals.

Future modeling could incorporate the discovered feed-
back loop between the location of the actin cap and the spindle
position (in mouse oocytes) [21]. In terms of stability of
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spindle positioning perpendicular to the cortex, the proximity
of the spindle to the cortex has been shown to induce an
actin cap at that location, via signals from the chromosomes
[51,52,69,70]. The resulting actin flow and hence cytoplasmic
streaming keep the spindle near the cortex [3,21]. Turning our
attention to perturbations parallel to the cortex, if the spindle
moves along the cortex, then the actin cap could conceivably
relocate to the spindle’s new position. We would thus envision
that the stagnation point in the cytoplasmic flow and hence the
fixed point of spindle position would also move there. This
could impact the stability of spindle positioning. Depending
on the timescale of actin cap formation in comparison with
spindle motion, we speculate that a physical model including
the feedback loop could exhibit rich behavior, where the spin-
dle could potentially return robustly to a stable region instead
of merely a single stable fixed point.

The role of flow in stable spindle positioning in dif-
ferent stages of cell division [71–73] or in other species
[7,68,74] could also be explored. Cytoplasmic flow in oocytes
can impact organelle distribution [31,61], and spindle po-
sitioning and orientation [71,75], and hence development
[76]. Future work could therefore investigate whether flow
can be used as an indicator of oocyte quality and female
fertility [77,78].

IV. METHODS

A. Cytoplasmic flow: Model and numerical simulations

Our model setup for the cytoplasmic streaming is shown
in Fig. 2(a) (see also Sec. II A). Here we use spherical polar
coordinates (r, θ, φ), where r is the radial distance from the
center of the spherical model oocyte, θ is the polar angle and φ

is the azimuthal angle. Mathematically, the intracellular fluid
flow in our model is governed by the incompressible Stokes
equations,

μ∇2u = ∇p, (2)

∇ · u = 0, (3)

where u is the fluid velocity field with components (ur, uθ , uφ )
in spherical polar coordinates, p is the pressure field and μ

is the dynamic viscosity of the fluid [47]. The cell cortex is
given by r = ro, where ro is the radius of the oocyte. Fluid
occupies the whole region inside the sphere [light blue in inset
of Fig. 2(a)]. Based on the experimental data in Fig. 2(a), we
thus prescribe in our model the active slip velocity uθ = U (θ ),
with ur = uφ = 0, on the cortex r = ro as

U (θ ) =
{

Umax sin2
(

πθ
θslip

)
, 0 � θ � θslip,

0, θslip < θ � π,
(4)

where Umax is the characteristic velocity scale and θslip is the
slip angle. The slip velocity is positive for θ � θslip and zero
elsewhere.

The numerical simulation of flow [Fig. 2(b)] was con-
ducted in COMSOL Multiphysics® 5.6 [79] using the
physics-controlled, fine mesh.

B. Spindle dynamics: Spherical model and numerical
simulations

We illustrate our model for the spindle dynamics in Fig. 3
(see also Sec. II B). The radial position of the center of the
spherical model spindle is given by r = rsp ≡ ro − d − a,
where we recall that ro is the oocyte radius, d is the clearance
and a is the spindle radius. In each numerical simulation
(COMSOL Multiphysics 5.6 [79] with physics-controlled,
normal mesh), the spindle is held stationary at a fixed position
given in spherical polar coordinates by (r = rsp, θ = θsp, φ =
0), in the Stokes flow of fluid occupying the eccentric spheri-
cal annular region between the spindle and cell cortex (shaded
light blue in Fig. 3), driven by the prescribed active slip
velocity in Eq. (4). We assume the dimensionless clearance,
defined as d̂ ≡ d/ro, to be a constant, d̂ = 0.1, measured from
Fig. 1(b) (reproduced from Ref. [3]); in our model, a nonhy-
drodynamic repulsive force from the cortex is thus assumed
to balance the radial hydrodynamic force attracting the spindle
towards the cortex in a neighborhood of the fixed point. On the
spindle, we prescribe the no-slip boundary condition u = 0.
It may be verified that in Stokes flow, the θ component of
velocity of a free model spindle (with constant clearance d)
has the same sign as the hydrodynamic force component Fθ ,
if the free spindle remains oriented parallel to the cortex;
hence, the sign of the force indicates the direction in which
the spindle would move if free to do so.

For the experimental parameters indicated in Fig. 5, we
obtain a biological value of the active slip angle θslip from
the nonlinear least-squares method on experimental data [30],
as detailed in Sec. II A; the uncertainty shown is the 95%
confidence interval for the fit of the model to the data. We
measure the size of the meiosis II spindle from Fig. 1(b)
(reproduced from Ref. [3]) and treat this spindle as a sphere
of dimensionless radius a = 0.2 ± 0.1 (i.e., measured relative
to the oocyte radius), where the upper and lower bounds arise
from the slightly ellipsoidal, instead of spherical, shape of the
biological spindle.

While the highly localized nature of the slip velocity in
Eq. (4) is inspired by Fig. 1(e) (reproduced from Ref. [3]),
we note that the experimental mean tangential cortical flow in
Fig. 2(a) (data from Ref. [30]) decreases to zero more gradu-
ally as θ increases to π , instead of decreasing to zero past a
threshold angle θslip as in our model. Additional simulations
using an alternative expression for the slip velocity U (θ ) that
includes this long tail yield similar results to those for Eq. (4);
this suggests that the stability properties found in this paper
are generic and not sensitive to the precise form of the cortical
boundary condition driving the cytoplasmic flow far from the
apex of the cell.

C. Analytical model for spindle dynamics

Here we use lubrication theory to solve the simple analyt-
ical model introduced in Sec. II D for the fluid flow, pressure
and hence hydrodynamic force on the spindle. We then con-
duct a linear stability analysis of the spindle in the flow.

1. Setup for analytical model

We illustrate the setup for our analytical model in Fig. 6(a)
(see also Sec. II D). In Cartesian coordinates (x, y), the center
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of the spindle has coordinates (xsp,−(d + a)), where we
denote the clearance by d and the horizontal perturbation
in spindle position by xsp. As in our numerical simulations
(Sec. II B and Sec. IV B), we assume that the clearance d
is a constant, with hydrodynamic attraction of the spindle
to the cortex balanced by nonhydrodynamic repulsion from
the cortex. On the spindle, which is held stationary as in
Sec. IV B, we prescribe a no-slip boundary condition given
by u = 0, where u ≡ (u, v) is the fluid velocity field.

On the planar wall, we prescribe a slip velocity boundary
condition, given by

(u, v) = (U (x), 0) on y = 0. (5)

In our simple analytical model, the active slip velocity U (x) is
given by

U (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < −�,

−Umax sin2
(

πx
�

)
, −� � x < 0,

Umax sin2
(

πx
�

)
, 0 � x � �,

0, x > �,

(6)

where Umax is the maximum slip speed and � is the size of
the active slip domain (analogous to the slip angle θslip in the
spherical model).

In all plots in Sec. II D and Sec. II E, we nondimension-
alize lengths by 10d , so that the dimensionless clearance is
d = 0.1, the same numerical value as for our earlier model
(Sec. IV B); we also nondimensionalize velocity by the maxi-
mum slip velocity Umax and viscosity by μ.

2. Governing equations

From biological measurements [e.g., Fig. 1(b)], we observe
that the clearance d between the spindle and cell cortex is
much smaller than the size of the spindle. Motivated by this,
we may employ the lubrication (or long-wavelength) approx-
imation [47], where the characteristic vertical length scale,
given by the clearance, is much smaller than the characteristic
horizontal length scales, which are set by the geometry and
active slip domain size. Mathematically, we require d � a, �.
This is a classical approximation in microhydrodynamics,
which allows us to make analytical progress. We also assume
that the horizontal perturbation in spindle position xsp is small,
in order to examine the stability of the fixed point at xsp = 0,
while neglecting the curvature of the cell cortex. Under these
assumptions, the dominant contribution to the force on the
spindle comes from the thin film of fluid between the spindle
and cell cortex, where the fluid flow is mostly horizontal. This
model captures the local hydrodynamic effects at play in our
earlier, more detailed spherical model solved numerically.

In the lubrication limit, the momentum equations in two
dimensions become

∂ p

∂x
= μ

∂2u

∂y2
, (7)

∂ p

∂y
= 0, (8)

where we recall that u is the x component of the fluid velocity
field, p is the dynamic pressure and μ is the dynamic vis-
cosity of the fluid. The fluid flow is incompressible, which is

written as

∇ · u = 0, (9)

where u is the fluid velocity field.
We write the equation for the upper boundary of the spindle

(close to the cell cortex) as

y = −h(x)

� −d

[
1 + (x − xsp)2

2ad

]
, (10)

where in the second line we have made a local approximation
to the circle as a parabola, the standard way of treating this
geometry in lubrication theory. On the spindle, which is sta-
tionary and rigid, we prescribe a no-slip boundary condition,
given by

u = 0 on y = −h(x). (11)

The active slip velocity on the planar, active wall y = 0, which
drives the fluid flow, is given by Eqs. (5) and (6).

3. Solution for flow

Integrating the lubrication equations gives the horizontal
fluid velocity as

u = 1

2μ

∂ p

∂x
(y2 + hy) + U

(
1 + y

h

)
. (12)

We integrate this again to find the depth-integrated flux q as

q ≡
∫ 0

−h
u dy

= − h3

12μ

∂ p

∂x
+ 1

2
Uh. (13)

This is a constant (i.e., independent of x), by mass conserva-
tion. We rearrange this for the pressure gradient as

∂ p

∂x
= 6μ

h3
(Uh − 2q), (14)

which we integrate to give the pressure field as

p(x) = 6μ

∫ x

−∞

[
U (x′)
h(x′)2

− 2q

h(x′)3

]
dx′. (15)

The lower limit of integration ensures that the pressure tends
to zero as x → −∞. Imposing also that p → 0 as x → ∞, we
find the flux q as

q =
∫ ∞
−∞

U (x′ )
h(x′ )2 dx′

2
∫ ∞
−∞

1
h(x′ )3 dx′ . (16)

We now write down the pressure gradient in terms of
known quantities only as

∂ p

∂x
= 6μ

⎡
⎣U (x)

h(x)2
−

∫ ∞
−∞

U (x′ )
h(x′ )2 dx′

h(x)3
∫ ∞
−∞

1
h(x′ )3 dx′

⎤
⎦. (17)
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The horizontal velocity is thus given by

u(x, y) = 3

⎡
⎣U (x)

h(x)2
−

∫ ∞
−∞

U (x′ )
h(x′ )2 dx′

h(x)3
∫ ∞
−∞

1
h(x′ )3 dx′

⎤
⎦[y2 + h(x)y]

+ U (x)

[
1 + y

h(x)

]
, (18)

and the pressure field is given by

p(x) = 6μ

⎡
⎣∫ x

−∞

U (x′)
h(x′)2

dx′ −
∫ ∞
−∞

U (x′ )
h(x′ )2 dx′∫ ∞

−∞
1

h(x′ )3 dx′

∫ x

−∞

1

h(x′)3
dx′

⎤
⎦.

(19)

4. Vertical force on spindle

The force on the spindle is dominated by the pressure
contribution from the thin-film region, by classical scaling
arguments. We write down the vertical force on the spindle
Fy as

Fy = −
∫ ∞

−∞
p dx. (20)

Here, we have applied the divergence theorem and force bal-
ance in Stokes flow to transfer the integral over the upper
surface of the spindle y = −h(x) to the wall y = 0.

We now consider the sign of the vertical force Fy. We note
that the vertical force may also be written, by integration by
parts, as

Fy =
∫ ∞

−∞
x
∂ p

∂x
dx. (21)

We first consider symmetric positioning of the spindle, with
xsp = 0. In this case, the term

∫ ∞
−∞

U
h2 dx is the integral of an

odd function (as U is odd and h is even) over a symmetric
range, and is hence equal to zero. The vertical force on the
spindle is therefore given by

Fy|xsp=0 = 6μ

∫ ∞

−∞

xU

h2
dx. (22)

This is positive, since the integrand is positive. Therefore, by
continuity, if the spindle is sufficiently close to xsp = 0, then

Fy is still positive. In Sec. IV C 6, we will consider the linear
stability of the fixed point xsp = 0. Since the vertical force Fy

always pulls the spindle towards the cell cortex for small xsp,
the sign of the horizontal force Fx solely determines the linear
stability of the fixed point.

5. Horizontal force on spindle

In the lubrication limit, the horizontal force on the spindle
Fx is given by

Fx =
∫ ∞

−∞

(
−p

dh

dx
+ μ

∂u

∂y

∣∣∣∣
y=−h

)
dx, (23)

and is the sum of a horizontal suction force (first term) and
a shear force (second term). We use this decomposition to
interpret our stability results in Sec. II F. By the divergence
theorem and force balance in Stokes flow, we may alterna-
tively compute Fx as

Fx = μ

∫ ∞

−∞

∂u

∂y

∣∣∣∣
y=0

dx. (24)

We finally obtain the horizontal force on the spindle Fx as

Fx = μ

(
4

∫ ∞

−∞

U

h
dx − 3

∫ ∞
−∞

1
h2 dx

∫ ∞
−∞

U
h2 dx∫ ∞

−∞
1
h3 dx

)
. (25)

6. Linear stability

To explain the stability results in Fig. 7 mathematically, we
conduct a linear stability analysis of the fixed point xsp = 0.
We consider small perturbations of the horizontal position
of the spindle xsp from the fixed point xsp = 0. Recall from
Sec. IV C 4 that for sufficiently small xsp, the vertical compo-
nent of force on the spindle Fy [Eq. (20)] is positive, keeping
the spindle near the cortex. Thus, the sign of the horizontal
force on the spindle Fx [Eq. (25)] determines the stability of
the fixed point. We note that for xsp = 0, the horizontal force
on the spindle is exactly zero, by symmetry. For small xsp, by
changing variables to work in the frame of the spindle and
Taylor-expanding Eq. (6), we obtain the horizontal force Fx to
leading order in xsp as

Fx �4πμUmaxxsp

�

⎡
⎣4

∫ �

0

sin
(

πx
�

)
cos

(
πx
�

)
h|xsp=0

dx −
3
∫ ∞
−∞

1
h2|xsp=0

dx∫ ∞
−∞

1
h3|xsp=0

dx

∫ �

0

sin
(

πx
�

)
cos

(
πx
�

)
h2|xsp=0

dx

⎤
⎦. (26)

For the parabolic height profile of the spindle [Eq. (10)], we
may evaluate some of the integrals in Eq. (26) analytically to
find a simpler expression for Fx as

Fx � 16πμUmaxxsp

�

[ ∫ �

0

sin
(

πx
�

)
cos

(
πx
�

)
h|xsp=0

dx

− d
∫ �

0

sin
(

πx
�

)
cos

(
πx
�

)
h2|xsp=0

dx

]
. (27)

By setting Fx to zero, we obtain the boundary between a
linearly stable and unstable fixed point at xsp = 0 as

∫ �

0

sin
(

πx
�

)
cos

(
πx
�

)
h|xsp=0

dx − d
∫ �

0

sin
(

πx
�

)
cos

(
πx
�

)
h2|xsp=0

dx = 0.

(28)

This is an equation in terms of the spindle radius a, the slip
domain size � and the clearance d . The clearance is a fixed
parameter, so the stability boundary in Eq. (28) is a curve in
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the (a, �) plane. To learn more about the shape of this curve,
we use the substitution s = x/� in Eq. (28) to rewrite the
equation as∫ 1

0

sin(πs) cos(πs)

1 + 1
2C2s2

ds −
∫ 1

0

sin(πs) cos(πs)(
1 + 1

2C2s2
)2 ds = 0,

(29)

where we define the dimensionless number C as

C ≡ �

a1/2d1/2
. (30)

The stability boundary is therefore simply given by

� = Cd1/2a1/2, (31)

where the dimensionless constant C ≈ 3.50 is found by solv-
ing Eq. (29) numerically. Hence, the size of the slip domain �

at the boundary between linear stability and instability of the
fixed point scales with the square root of the spindle radius
(� ∼ a1/2); the horizontal length scale in Eq. (31) originates
from the circular shape of the model spindle in the lubrication
limit.
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