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Numerous studies have explored the link between bacterial swimming and
the number of flagella, a distinguishing feature of motile multi-flagellated
bacteria. We revisit this open question using augmented slender-body
theory simulations, in which we resolve the full hydrodynamic interactions
within a bundle of helical filaments rotating and translating in synchrony.
Unlike previous studies, our model considers the full torque–speed
relationship of the bacterial flagellar motor, revealing its significant impact
on multi-flagellated swimming. Because the viscous load per motor
decreases with the flagellar number, the bacterial flagellar motor transitions
from the high-load to the low-load regime at a critical number of filaments,
leading to bacterial slowdown as further flagella are added to the bundle.
We explain the physical mechanism behind the observed slowdown as an
interplay between the load-dependent generation of torque by the motor,
and the load-reducing cooperativity between flagella, which consists of
both hydrodynamic and non-hydrodynamic components. The theoretically
predicted critical number of flagella is remarkably close to the values
reported for the model organism Escherichia coli. Our model further predicts
that the critical number of flagella increases with viscosity, suggesting that
bacteria can enhance their swimming capacity by growing more flagella in
more viscous environments, consistent with empirical observations.

1. Introduction
Bacterial flagella are filamentous appendages that enable bacteria to swim
[1,2]. Each flagellum consists of a rigid helical filament and a rotary motor,
connected by a flexible joint known as the hook [3]. The physics of flagellar
motility relies on the combined effect of the rotary actuation provided by the
flagellar motor, the chiral structure of the flagellar filament and the aniso-
tropic viscous drag exerted on filaments by the surrounding fluid [4]. These
basic hydrodynamic principles of locomotion apply to all
flagellated bacteria from monotrichous (single flagellum) to peritrichous
bacteria (multiple flagella) [5].

The function of bacterial multi-flagellarity remains elusive despite
extensive theoretical and experimental work on this subject [6–9]. Unlike
some unicellular algae that have a fixed number of cilia synchronized in
well-defined swimming gaits [10], multi-flagellated bacteria are equipped
with a variable number of flagella either scattered around the cell body
(peritrichous flagellation) or clustered at one pole (polar flagellation) [11].
The model organism for peritrichous bacteria, Escherichia coli, typically has
between two and five flagella [12,13]. While the bacterial flagellum has
multiple functions [14], the focus of this study will be on its primary role
as a locomotory organelle.

In the context of locomotion, multi-flagellarity is an ingenious navigation
strategy as it allows bacteria to explore complex environments by modulating
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the frequency of ‘runs’ and ‘tumbles’ in response to chemical cues [15,16]. During a ‘run’, bacteria swim in a straight line
with their flagella bundled at the back of the cell body. The bundles are periodically disrupted by motor reversals from
counterclockwise to clockwise rotation leading to flagellar unbundling and a brief period of reorientation known as a ‘tumble’.
Since the reversal of any single motor can induce a tumbling event, the duration of straight runs is expected to decrease with
the number of flagella, in line with recent observations [8]. Furthermore, having multiple flagella may stabilize the swimming
direction and make runs more effective [7]. In contrast to this stabilizing effect during run periods, a theoretical model of
tumbling has predicted that the flagellar number correlates positively with the mean tumbling angle (i.e. the angle between
consecutive runs) due to a combination of hydrodynamic and geometrical factors [17]. This is qualitatively consistent with
experimental observations [8].

Here, we address a long-standing question about bacterial multi-flagellarity: how does the swimming speed of bacteria
depend on the number of flagella, and what sets the flagellar numbers consistently observed within some multi-flagellated
species? Previous computational studies have predicted that the swimming speed of multi-flagellated bacteria grows
sublinearly with the number of flagella, but have not identified any motility advantage that would favour the selection of a
specific number of flagella [6,7]. Experimentally, it is more difficult to isolate the number of flagella as a control parameter since
it correlates positively with cell body size. In a genetically identical population of E. coli bacteria, it has been found that natural
variations in flagellar number and cell body size result in a constant swimming speed across a wide range of bacterial lengths,
due to the balance between the higher propulsive force generated by an increasing number of flagella and the larger hydrody-
namic drag on bacteria with a longer cell body [9]. Genetic manipulations have been performed on Bacillus subtilis—to create
strains with different flagellar numbers—and have indicated that the number of flagella affects several motility markers
including the speed, tumbling frequency and tumbling angle of bacteria, making hypo-flagellated mutants better adapted for
long-range transport and hyper-flagellated mutants better suited to biofilm formation [8]. In this study, we focus on the swim-
ming speed of bacteria during straight ‘runs’ when the flagella rotate together at the back of the cell body in a parallel bundle.
Computationally, we are able to vary the number of flagella while keeping all other parameters constant, thereby isolating the
parameter of interest for this investigation.

What our study demonstrates is the key role played by the bacterial flagellar motor (BFM) [18,19]. While previous compu-
tational studies assumed that the motor operates at constant torque [6,7], we aim to characterize the dynamics of the BFM
accurately across a wide range of hydrodynamic loads. When a large hydrodynamic load is attached to the motor, such
as a long flagellum or a large polystyrene bead [20,21], the motor operates at nearly constant torque (‘high-load’ regime).
However, when a small hydrodynamic load such as a flagellar stub is in place, the rotation speed is nearly constant (‘low-load’
regime). Hence, the resulting torque–speed curve features a kink or ‘knee’ between the high-load and low-load regimes.
The torque-generating capacity of the BFM is represented schematically in figure 1 as a piecewise linear curve, alongside
experimental measurements. (Data points were manually extracted from fig. 16 in [22], fig. 5a in [23] and fig. 1 in [24] using a
web-based data extraction tool [25].) The torques are scaled by the ‘stall torque’ of the motor, which serves as a model parameter
and is set by default to the value listed in table 1.

In this article, we present a new computational investigation into the dependence of bacterial swimming speed on the
number of flagella. Our kinematic model of a swimming bacterium consists of a spheroidal cell body and a bundle of regularly
spaced helical filaments rotating in parallel and in phase with each other (figure 2a). The filaments are fully coupled through
hydrodynamic interactions (HIs) resolved via an augmented slender-body theory (SBT+) [9,28,29], while the flagellar bundle
and the cell body are coupled through a global force and torque balance (equations (2.1) and (2.2), dry coupling). Crucially,
our model takes into account the full torque–speed relationship of the BFM as an additional constraint (equations (2.3) and
(2.4), figure 2b), in contrast to previous studies which assumed that the BFM operates at a constant torque. Thus, we find
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Figure 1. Data-driven model for torque generation in the bacterial flagellar motor (BFM). The torque–speed relationship of the BFM is modelled as a piecewise linear
curve (black) in agreement with experimental measurements of the E. coli motor at room temperature [22–24]. Filled circles indicate individual measurements, while
hollow circles and triangles represent binned averages. The torque is normalized by the ‘stall torque’ of the motor at zero frequency, for which we select the value in
table 1.
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that the motors transition from high-load to low-load regime as the number of filaments increases due to a reduction in
the viscous load per filament (figure 2b,c). This leads to a previously unreported slowdown in bacterial swimming above a
critical number of flagella, meaning that the bacterium would incur a penalty in motility if it assembled too many flagella
(figure 2d,e). Remarkably, the theoretically predicted critical number is very close to the flagellar numbers reported for E. coli
in the literature [12,13]. We further demonstrate that the physical mechanism for bacterial slowdown consists in a load-depend-
ent torque generating capacity (BFM torque–speed relation) coupled with a load-reducing cooperativity between propellers
(hydrodynamic or otherwise) (figure 3). A non-hydrodynamic source of cooperativity between the flagella is the mechanism of
‘cargo’ load sharing, which we illustrate using an electrical analogy (figure 4). Finally, our theory predicts that bacteria could
maximize their swimming speed by growing more flagella in media of higher viscosity, a verifiable prediction consistent with
empirical observations (figure 5). We conclude the study by examining the sensitivity of the speed–flagellar number relationship
to changes in the motor parameters, in order to test the applicability of our results to experimental data from studies of other
bacterial species with distinct torque–speed curves (figure 6).

2. Modelling the swimming of a multi-flagellated bacterium
As shown in figure 2a, we model the swimming multi-flagellated bacterium as a rigid prolate spheroid (the cell body) andN identical rigid helical filaments (the flagella filaments) moving together with velocity Uez (here, U < 0). Looking down on
the flagellar bundle and towards the cell body, a stationary observer would see the filaments rotate counterclockwise and the
cell swim downwards and away from them (see figure 2a). In the laboratory frame, the flagellar filaments rotate with angular
velocity ωfez (here, ωf > 0), while the cell body rotates in the opposite direction with angular velocity ωbez (here, ωb < 0) to
balance the torque, such that the flagellar motors embedded in the cell wall rotate with speed ωm = ωf − ωb. In our model, the
filaments rotate in phase with each other around their individual axes of rotation, which are regularly spaced around a cylinder
of radius Rb, the radius of the flagellar bundle. The entire bundle also rotates clockwise around the major axis of the cell with
angular velocity ωbez together with the cell body. Our chosen parameter values for the cell body and filaments, listed in table 1,
correspond to a typical E. coli bacterium with flagella in the ‘normal’ polymorphic form [12,13,26].
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Figure 2. Kinematic model of bacterial swimming and main results. (a) The flagellar filaments are phase-locked and rotate (ωf) around prescribed axes of rotation.
The flagellar bundle and cell body rotate (ωb) and translate (U) together along the major axis of the body. (b) The motor operates at the intersection of its
torque-generating capacity (black curve) and the characteristic load lines of the flagellar filament (colour lines). The ‘load’ on each motor (slope of load line) decreases
with increasing number of filaments (N) in the bundle. (c) The viscous load per motor depends on both the number of filaments and the radius of the flagellar
bundle, with a strong positive correlation between the load and the nearest neighbour distance between filaments. (d,e) When the motors operate at constant
torque (triangles), the swimming speed increases monotonically with the flagellar number (d), and each additional filament generates a positive speed increment
(e). However, when the motors obey the characteristic BFM torque–speed relationship (circles), the bacterium is predicted to slow down above a critical number of
flagella (d), due to negative speed increments (e). Both the speed, U(N) and speed increment, U(N) − U(N − 1) are normalized by the swimming speed for a
single flagellum, U(1).
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2.1. Force and torque balance
The cell body and flagellar bundle are coupled through the Stokes flow constraint of zero net force and torque on the entire cell
[4], imposing that

(2.1)AbU + N Af∥ (N)U + Bf(N)ωf = 0,

(2.2)Db + NRb2Af⊥ (N) ωb + N Bf(N)U + Df(N)ωf = 0,

where Af∥ (N) is the effective drag on a filament translating parallel to its axis of rotation. Similarly, Bf(N) and Df(N) are the
effective thrust and torque per unit angular velocity of a rotating filament. Due to the symmetry of the hydrodynamic resistance
matrix, the coefficient Bf(N) represents both the force per unit angular velocity of a rotating filament, and the torque per unit
linear velocity of a translating filament. The drag coefficient Af⊥ (N) represents the effective resistance of each filament to
motion perpendicular to its axis of rotation. Because the bundle co-rotates with the cell body at angular velocity ωb, and the
filaments are placed at a distance Rb away from the axis of rotation of the cell body, this gives rise to a torque proportional to
the square of the bundle radius. The explicit dependence of the effective drag coefficients on flagellar number indicates that
each filament belongs to a bundle of N hydrodynamically interacting filaments with identical geometry and kinematics. There is
an implicit dependence on other parameters in the system including the placement, helical geometry and contour length of the
flagellar filaments.

2.2. Bacterial flagellar motor torque–speed relationship
To close the system of equations, we impose that the net hydrodynamic torque on each flagellar filament matches the torque
generated by the BFM,

(2.3)Bf(N)U + Df(N)ωf = TBFM(ωf − ωb),
and we model the BFM torque–speed relationship as a piecewise linear function of the motor angular velocity,

(2.4)TBFM(ωm) = Tknee − ωm − ωknee α(ωm − ωknee),

where the linear slope α, given by the functional form α(ξ) = α + Δα  sgn(ξ), takes distinct values in the high-load (ωm < ωknee)
and low-load (ωm > ωknee) regimes. For the knee and zero-torque frequencies of the motor, as well as the relative knee torque, we
use the values reported in [24], which are in good agreement with previous observations of the E. coli flagellar motor at room

Table 1. Default parameter values. The filament geometry corresponds to the ‘normal’ polymorphic form of bacterial flagella [12,13,26], the viscosity is that of water
at 23°C and the motor parameters characterize the torque–speed relationship of the E. coli proton-driven motor at room temperature [22–24]. The stall torque falls
within the range computed in [27]. In the present study, each parameter assumes the value listed above, unless that parameter is varied on the abscissa or in the
legend of a given figure. The last three parameters are calculated according to ωknee = 2πfknee, α − Δα = (Tstall − Tknee)/ωknee, α + Δα = Tknee/(ω0 − ωknee)

parameter symbol value

cell body, length l 2.5 μm

cell body, width w 1.0 μm

filament, contour length L 8.0 μm

filament, helical pitch p 2.5 μm

filament, helical radius r 0.21 μm

filament, cross-sectional radius rϵ 12 nm

bundle, radius Rb 0.5 μm

dynamic viscosity μ 0.93 cP

motor, stall torque Tstall 0.80 pN μm

motor, knee torque Tknee 0.9 × Tstall

motor, knee frequency fknee 190 Hz

motor, zero-torque frequency f0 285 Hz

motor, knee angular velocity ωknee 1.2 × 103 rad s−1

motor, high-load slope α − Δα 6.7 × 10−5 pN μm s rad−1

motor, low-load slope α + Δα 1.2 × 10−3 pN μm s rad−1
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temperature (figure 1). Our chosen value for the stall torque is within the range computed by [27]. These values, together with
all other dynamic and geometric parameters, are listed in table 1.

2.3. Solution for swimming speed and effective load on the motor
The governing equations, equations (2.1)–(2.4), constitute a linear system of equations in three unknowns: the swimming speed
of the cell, U, the angular velocity of the flagella, ωf and the angular velocity of the cell body, ωb. We invert this system
analytically to find that the swimming speed is

(2.5)U = − λωm2π ,

and each motor rotates with angular velocity

(2.6)ωm = δknee + α(δknee − δ)δ + α(δknee − δ) ωknee,

where we have introduced the step length, λ, and the viscous load, δ, defined as

(2.7)λ = 2πBf(N)
DbN + Rb2Af⊥ (N)AbN + Af∥ (N) DbN + Rb2Af⊥ (N) + Df(N) − Bf(N)2

,

and

(2.8)δ = AbN + Af∥ (N) Df(N) − Bf(N)2
DbN + Rb2Af⊥ (N)AbN + Af∥ (N) DbN + Rb2Af⊥ (N) + Df(N) − Bf(N)2

.

The step length, λ, represents the distance travelled by the swimming bacterium in one complete revolution of the motor, see
equation (2.5), while the parameter δ represents the effective viscous load on a single flagellar motor, thereby combining the
hydrodynamic resistance to rotation of the flagellar filaments and the cell body. The effective viscous load sets the slope of the
‘load lines’ in figure 2b. When the motor operates in the high-load (or low-load) regime, the effective viscous load is higher (or
lower) than the viscous load at the knee, δknee = Tknee/ωknee.

2.4. Hydrodynamic modelling of cell body and flagella
The derivation of equations (2.5)–(2.8) is independent of the choice of hydrodynamic model for the drag coefficients
of the cell body and the flagella. Here, we model the cell body as a prolate spheroid of length l, width w and

eccentricity e = 1 − w2/l2. The exact drag coefficients for translation Ab = 8πμle3 − 2e + (1 + e2) ln 1 + e
1 − e −1

, and rotation

Db = 4πμl3e3(1 − e2) 3 2e + (1 − e2) ln 1 + e
1 − e −1

 parallel to the major axis of the spheroid have been calculated analytically [30].

For the filaments, the effective drag coefficients Af∥ (N), Af⊥ (N), Bf(N),Df(N) are computed numerically and averaged over
the phase angle, ϕ, of an individual filament within an equally spaced bundle of phase-locked rotating filaments, as shown

in figure 2a. Specifically, we have Af∥ (N) = 1
2π 0

2πAf∥ (N , ϕ)dϕ. For each configuration, the instantaneous drag coefficients

Af∥ (N, ϕ), Af⊥ (N, ϕ), Bf(N , ϕ) and Df(N , ϕ) are computed using a custom-build MATLAB implementation of Johnson’s slender-
body theory (SBT) [31] enhanced with hydrodynamic interactions for the case of multiple filaments [32]. We will refer to
this method as augmented slender-body theory or SBT+. In our implementation of SBT+, the force densities and velocity
distributions along the centrelines of the filaments are projected onto a convenient basis of Legendre polynomials [33] and
truncated to a suitable number of modes (NLegendre = 15 in this study). Our implementation of SBT+ was previously validated
and described in full detail in our earlier studies of bacterial flagellar dynamics [9,28,29].

Solving for the HIs between filaments in the linear Stokes flow regime becomes a linear inverse problem between the
Legendre coefficients of a prescribed set of filament velocities and the Legendre coefficients of an unknown set of force
densities. The coefficients for different filaments are coupled to each other through the long-range flows induced by each
moving filament [32]. The final computational output of our SBT+ implementation is an extended hydrodynamic resistance
matrix that describes the force and torque on each given filament due to the rigid-body motion of any other, from which
we extract the instantaneous drag coefficients Af∥ (N , ϕ), Af⊥ (N , ϕ), Bf(N , ϕ), Df(N , ϕ). To reduce computational costs, we only
simulate the rotating filaments over the interval ϕ ∈ (0,2π/N) and extend our results to a full period of rotation ϕ ∈ (0,2π) using
the rotational symmetry in the bundle.
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3. Theoretical results on multi-flagellated swimming
We now use the kinematic model described in §2 to gain new insights into the swimming of multi-flagellated bacteria. First,
we focus on the effect of introducing the BFM torque–speed relationship into our model and find that the swimming speed
no longer grows monotonically with the number of flagella (figure 2). Bacteria with a fixed body size are expected to slow
down if the number of flagella increases above a critical number. Next, we investigate the physical mechanism responsible
for this observation and conclude that it requires a combination of (i) load-dependent torque generation by the motor and (ii)
load-reducing cooperativity between the flagella, which need not be of hydrodynamic origin (figure 3). We also illustrate the
concept of non-hydrodynamic load sharing between motors using an electrical analogy (figure 4). Finally, we explore the effect
of changing the environmental viscosity on the critical number of flagella and draw new insights about the mechanical role of
multi-flagellarity (figure 5).

3.1. Bacterial flagellar motor transitions between high-load and low-load regimes as the number of flagella increases
First, we observe that the viscous load per motor decreases with the number of flagella, as shown by the fan of load lines
emanating from the origin in figure 2b. Our theory predicts that the BFM transitions between the high-load and low-load
regimes at a biologically relevant number of flagella: around four flagella in figure 2b. This highlights the importance of
including the BFM torque–speed relationship into models of bacterial swimming, since the BFM deviates significantly from the
regime of nearly constant torque under realistic swimming conditions.

We also find that the viscous load per motor depends on both the number of flagella and the radius of the bundle, Rb. When
plotted against the distance between the two nearest neighbours in the flagellar bundle, dNN = 2Rb sin(π/N), the viscous load
collapses onto a power law with an exponent between 0.5 and 1 (figure 2c). Because the transition from high-load to low-load
regime is controlled by the balance between the effective load per motor (set by the geometry of the flagellar filaments and of
the cell body) and the knee load (set by the characteristics of the motor), all the model parameters listed in table 1 will have an
impact on this transition and the predictions that follow from it.

3.2. Torque reduction in bacterial flagellar motor low-load regime leads to bacterial slowdown above a critical number
of flagella

As the viscous load drops, the BFM cannot provide as much torque to the flagella, which raises an obvious question: how
does the reduction in motor torque affect the swimming speed of the bacterium? We plot the swimming speed as a function
of flagellar number in figure 2d, comparing our theoretical predictions with those previously reported in the literature by
Kanehl & Ishikawa [6] and Nguyen & Graham [7]. For the latter study, we report the numerical results on so-called ‘polar’
bacteria because this flagellar placement most closely resembles that in the current study. At constant motor torque, both our
kinematic model and previous elastohydrodynamic models predict that the swimming speed monotonically increases with the
number of flagella (triangles, figure 2d). However, when we impose the correct BFM torque–speed relationship, our theory
predicts that the swimming speed plateaus at a finite number of flagella (circles, figure 2d). This is due to a reduction in the
torque supplied to each propeller after the BFM transitions to the low-load regime. To quantify the motility benefit of adding
another flagellum to the bundle, we also plot the speed increment, U(N) − U(N − 1), against the number of flagella (figure 2e).
The bacterial slowdown predicted by our kinematic model is associated with small negative speed increments above a ‘critical
number of flagella’, which is defined as the greatest integer associated with a positive speed increment.

3.3. Physical mechanism for bacterial slowdown combines the load-dependent generation of torque by motors with
the load-reducing cooperativity between flagella

What is the underlying cause of the slowdown observed in §3.2? To establish the physical mechanism behind this phenomenon,
we systematically introduce into our model the HIs between flagellar filaments and the BFM torque–speed relationship. In
figure 3, we show the speed increments due to the addition of the Nth flagellar filament, U(N) − U(N − 1), and we compare the
results obtained using different modelling assumptions: with (figure 3b,d) or without (figure 3a,c) HIs between the filaments,
and with (figure 3c,d) or without (figure 3a,b) the BFM torque–speed relationship. Note that the results shown in figure 3a,c are
accessible to the general reader via the analytical results from equations (2.5)–(2.8), as no computational step is required for the
HIs between filaments. It is possible to estimate the drag coefficients Af∥, Af⟂, Bf and Df of a helical filament analytically using
resistive-force theory instead of SBT [28].

First, we observe that negative speed increments only emerge when the BFM operates according to its characteristic torque–
speed curve (figure 3c,d). This demonstrates that the load-dependent generation of torque is an essential physical ingredient
for the observed slowdown. The only way for this mechanism to manifest as the number of flagella increases is if the load on
each motor is affected by the number of flagella. For bacteria to slow down, the torque supplied by each motor would need to
decrease, suggesting that a load-reducing cooperativity between flagella is also required.

One source of cooperativity is the HIs between flagellar filaments. It is known that helical filaments rotating in parallel
require less actuating torque than filaments rotating on their own at the same angular velocity (see fig. 7f in [28]). Suppose a
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left-handed helical filament, corresponding to the ‘normal’ polymorphic shape of bacterial flagella [34], is rotating counterclock-
wise with a fixed angular velocity +ez (this defines the direction of the z-axis). On average, this filament would be pumping
fluid along its axis of rotation in the positive z direction. A neighbouring identical filament would respond to this upward flow
by rotating counterclockwise, even in the absence of external forces or torques on the second filament. This is because of the
anisotropic Stokes drag on slender filaments, which dictates that the local force density induced by the upward flow on the
left-handed helical filament has a component in the positive ϕ direction. These contributions add up to a net counterclockwise
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Figure 3. Physical mechanism for bacterial slowdown. By systematically introducing into our computational model (a) the HIs between flagellar filaments (b and d)
and the torque–speed relationship of the BFM (c and d ), we are able to confirm that the observed slowdown is due primarily to the torque-generating capacity of the
BFM (c and d). On their own, HIs cannot generate negative speed increments (b), but they do contribute to bringing the critical flagellar number within a biologically
relevant range (d). The speed increments, U(N) − U(N − 1), are normalized by the swimming speed of a monoflagellated bacterium, U(1).
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Figure 4. Cargo load sharing illustrated via electrical analogy. (a) In the laboratory frame, the torque balance on a swimming multi-flagellated bacterium can be
described as an electrical circuit with N  voltage sources (motors or torque-generating units). The total potential difference (torque, NTm) generated by the voltage
sources produces a current (angular velocity, ω*) in parallel branches of the circuit that represents the bacterial cell body and the flagellar filaments as resistors with
specified electrical resistances (hydrodynamic resistance to rotation, D*). The motors share the load of the cell body or ‘cargo’. (b) The electrical circuit in (a) can be
simplified to a single-loop circuit containing N  voltage sources with internal resistances Dm given by Ohm’s law, equation (3.2). (c) Each individual motor perceives
the combined effect of rotating the flagellar filament and cell body in opposite directions as equivalent to rotating a single propeller with effective hydrodynamic
resistance Dm.
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torque induced by the first filament on the second. If this torque is not resisted by any external mechanism, the second filament
will rotate counterclockwise. Since helical filaments rotate more easily together than on their own, these additive constructive
HIs contribute to the decrease in the effective load per motor as the number of flagella increases.

Surprisingly, the slowdown occurs even in the absence of HIs (figure 3c), suggesting that the load-reducing cooperativity
between flagella goes beyond hydrodynamic effects, as we explain in §3.4. Nevertheless, HIs are important because they bring
the critical number of flagella within the biologically relevant range for E. coli bacteria (from seven or more flagella in figure 3c,
to three or four flagella in figure 3d).

In summary, the physical mechanism for bacterial slowdown combines the load dependence of torque generation by the
flagellar motors (kinked torque–speed curve in figure 2b, in black) and the load reduction due to cooperativity between flagella
(fan of load lines in figure 2b, in colour).

3.4. Non-hydrodynamic cooperativity between flagella via cargo load sharing
To understand the non-hydrodynamic component of load reduction, we need to make a distinction between the load or
hydrodynamic resistance to rotation of the cell body (the ‘cargo’) and that of the filaments (the ‘propellers’). The effective
load per motor decreases with the number of flagella—even without HIs—because each motor is responsible for rotating one
propeller but all motors share the load of the cargo.

While this fact is not immediately obvious from equation (2.8), the expression for the effective load per motor, it can easily
be brought to light by the following approximation. Computationally, we find that Bf(N)2 ≪ Af∥ (N)Df(N) by a factor of 30 or
more, depending on the number of flagella, which is consistent with the analysis of a single helical filament made by Purcell
[35]. Hence, we neglect the Bf(N)2 terms and approximate the effective load per motor from equation (2.8) as

(3.1)δ ≈ Df(N)D~bD~b + NDf(N)
,

where D~b = Db + NRb2Af⊥ (N) is the effective hydrodynamic resistance of rotating the spheroidal cell body and the entireN-filament bundle around the major axis of the cell body. The simplified equation (3.1) reveals that the effective load per
motor is a weighted average of the load on the filaments (Df) and the load on the cell body (D~b), which is reminiscent of the
effective resistance of multiple resistors connected in parallel. This prompts us to consider the following electrical analogy.

The hydrodynamic description of a swimming multi-flagellated bacterium turns out to be analogous to the electrical circuits
depicted in figure 4. Angular velocities, torques and hydrodynamic resistances are analogous to electrical currents, potential
differences and electrical resistances, respectively. In this framework, the multi-flagellated bacterium is represented as an
electrical circuit with N voltage sources (motors) each supplying a potential difference (torque) of Tm, and generating a current
flow (rotation) in two parallel branches of the circuit: the cell body represented by a resistor of resistance Db and the flagellar
filaments represented by N resistors of resistance Df connected in series (see figure 4a). The closure of the electrical circuit
signifies the torque balance on the independently swimming bacterium. Also, the conservation of current at node P, ωm = ωf − ωb,
conveys that all components of the flagellum rotate at the same absolute speed, although we measure the angular velocity of the
motor and that of the flagellar filament in different frames of reference.

The circuit described in figure 4a is perceived from a laboratory frame but the BFM, a complex piece of molecular machinery
embedded in the cell wall, does not distinguish between different sources of resistance. The motor only feels an effective loadDm which resists the generated torque or potential difference, as shown in figure 4c. To connect the laboratory frame perspective
in figure 4a and the individual motor perspective in figure 4c, we note that the composite circuit in figure 4a can be simplified to
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a single-loop circuit as shown in figure 4b. By applying Ohm’s Law and imposing that the angular velocity of the motors, ωm, is
the same in the two circuits, which are equivalent by construction, we determine that

(3.2)NTmNDf + NTmDb = NTmNDm ,

and thus we deduce that the effective hydrodynamic load perceived by each motor is

(3.3)Dm = DfDbDb + NDf .

This is equivalent to the approximate expression for δ  in equation (3.1) that was derived from the full solution of the
hydrodynamic governing equations.

What the electrical analogy illustrates intuitively is that the motors share the burden of rotating the bacterial cell body, which
leads to a reduction in the effective load per motor as the number of flagella increases.

3.5. Critical flagellar number agrees with empirical observations and increases with viscosity
Our theory predicts that the swimming speed of bacteria would plateau if the flagellar bundle contained more than a critical
number of four filaments, as seen from the negligible speed increments in figure 3d. These results correspond to bacteria with
the typical cell body size and flagellar geometry of E. coli, swimming in the same ambient viscosity as water at 23°C (table 1).
Remarkably, our estimates for the critical number of flagella are in good agreement with the flagellar numbers reported for E.
coli bacteria, which typically have 3.3 ± 0.9 flagellar filaments [12,13].

The various model parameters listed in table 1 influence the critical number of flagella. Of particular biological interest is the
dynamic viscosity of the environment. Bacterial motility is known to depend on both the viscosity [36–38] and the polymeric
or colloidal microstructure of the environment [39–42] in a motor-load dependent manner [43]. Here, we focus on Newtonian
fluids with varying dynamic viscosity above that of water at room temperature.

Because the effective viscous load on each motor is proportional to viscosity (figure 5a), we expect the motors to operate
in a high-load regime up to a larger number of flagella when bacteria swim in highly viscous environments. The delayed
transition between high-load and low-load operation leads to an increase in the critical number of flagella with increasing
ambient viscosity (figure 5b). This suggests that multi-flagellated bacteria could enhance their swimming capacity by growing
additional flagella in more viscous media.

Since the early days of microbial research, it has been postulated that polar monotrichous bacteria are best adapted to aquatic
environments where the viscosity is low (e.g. marine bacteria), whereas peritrichous flagellated bacteria are most efficient in
locomotion through highly viscous environments (e.g. soil bacteria) [11]. Subsequent studies have confirmed that increasing the
ambient viscosity can induce the production of lateral flagella in some bacterial species including Vibrio parahaemolyticus and
Bradyrhizobium diazoefficiens [44,45]. While no direct evidence has been reported for E. coli and other enterobacteria, the current
findings will motivate further inquiry into the mechanisms and time scales over which peritrichous bacteria might adapt their
flagellar number to changes in environmental viscosity.

3.6. Critical number of flagella is determined by motor parameters
The BFM torque–speed relationship varies across bacterial species and is also influenced by temperature and other environmen-
tal conditions [18]. Furthermore, there is a wide range of values reported in the literature for the stall torque of bacterial flagellar
motors, summarized most recently in [27]. To test the applicability of our results to experimental data from other studies, we
investigate the sensitivity of the swimming speed predicted by our model to the parameters describing the shape of the BFM
torque–speed curve (figure 6). We find that the swimming speed is most sensitive to changes in the knee torque and frequency,
which is consistent with our understanding that bacterial slowdown occurs when the motor transitions from the high-load to
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the low-load regime. Nevertheless, our theoretical predictions are robust, as changes of ±10% around the default parameter
values lead to changes of at most 9% in the absolute swimming speed for any given flagellar number. The results of our
sensitivity analysis, shown in figure 6, demonstrate that the critical number of flagella is determined by the location of the ‘knee’
in the torque–speed curve relative to the fan of load lines previously depicted in figure 2b. Recall that the slope of the load lines
is determined by the viscous drag on the flagella and cell body (equation (2.8)), suggesting that the critical number of flagella
to achieve maximum swimming speed is controlled by both the geometry of the bacteria and the torque-generating capacity of
their motors, and hence it will be specific to each bacterial species.

4. Conclusion
In this article, we have introduced a kinematic model of bacterial swimming (figure 2a) that resolves both the full HIs between
flagellar filaments and the torque–speed characteristics of the rotary motors actuating these filaments. Our theoretical model
predicts that bacteria would slow down above a critical number of flagella (figure 2d,e) due to a decrease in the viscous load per
motor, and a subsequent reduction in the torque supplied by each motor (figure 2b,c). We confirm that this slowdown emerges
from a combination of load-dependent torque generation by the motors, and load-reducing cooperativity between the flagella
(figure 3). The cooperativity has a hydrodynamic component due to long-range interactions between the flagellar filaments, and
a non-hydrodynamic component due to ‘cargo’ load sharing between the motors. We illustrate the latter mechanism using an
electrical analogy (figure 4). Our sensitivity analysis demonstrates that the swimming speed is susceptible to the position of
the ‘knee’ in the torque–speed curve (figure 6). This suggests that the critical number of flagella for each bacterial species may
correspond to a distinguished balance between its hydrodynamic drag signature (which is controlled by the geometry of the
cell body and flagella) and the torque-generating capacity of its motors (which is notably characterized by the knee torque and
frequency).

The biological relevance of our theoretical predictions is confirmed by comparison with empirical observations. For standard
swimming conditions (see table 1), our model predicts a critical number of flagella around four (figure 3d), which is remarkably
close to the flagellar numbers measured for E. coli bacteria swimming in similar conditions [12,13]. Investigating the effect
of ambient viscosity yields further biophysical insights (figure 5). Our model predicts that the critical number of flagella
to maximize swimming speed increases with environmental viscosity, hinting at a mechanical advantage of growing more
flagella in media of higher viscosity. This finding is consistent with empirical observations [44,45] and will motivate new
studies to investigate the mechanisms through which peritrichous bacteria might adapt their flagellar number to changes in
environmental viscosity, and quantify the time scales for this adaptation.

While our theoretical model offers valuable insights into bacterial multi-flagellated swimming, it is essential to acknowledge
its intrinsic limitations and possibilities for extension. Our model does not resolve the HIs between the flagellar filaments and
the cell body, but only those between the flagellar filaments. These interactions are expected to dominate the physics of bacterial
swimming due to the close spacing between filaments within the flagellar bundle. Furthermore, the flagellar filaments are
modelled as perfectly rigid, and there is no flexible hook joining the motor and the helical filament. A complete
elastohydrodynamic model would need to account for the elasticity of both flagellar filament and hook [7]. Because our
constant torque results are similar to those of [7], we do not expect the introduction of elasticity to qualitatively change the main
conclusions of our study, although it may alter the theoretically predicted critical number of flagella. Finally, a significant
limitation of our model is that the filaments are rotating around prescribed axes of rotation parallel to the cell body. Therefore,
our model cannot capture the bundling of bacterial flagella [12,46] or the wiggling trajectories of bacteria caused by the finite
angle between the cell body and the flagellar bundle [47].

Since the theoretical predictions are sensitive to the effective load on motors, future studies could extend our model of
steady, synchronized flagellar dynamics towards an unsteady description of flagellated swimming in which the hydrodynamic
load on individual filaments can vary due to changes in their relative positions (e.g. due to bundling), while the motors can
respond to perceived changes in load via dynamic remodelling and stator recruitment [48,49]. Although the mechanisms for
controlling the location and number of flagella are not well understood [50], the average number of flagella appears to be
consistent across empirical observations of the same bacterial species. To fully understand the robustness of bacterial flagellar
numbers, and whether it is related to bacterial motility, future work must compare the fitness gains of multi-flagellarity with the
energy costs of assembling and operating the bacterial flagella [51,52].
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