

Learning unitary Koopman operators from trajectory data

Matthew Colbrook University of Cambridge 26/02/2025

C., "The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems," **SIAM Journal on Numerical Analysis**, 61(3), 2023.

Data-driven dynamical systems

State $x \in \Omega \subseteq \mathbb{R}^d$.

<u>**Unknown</u>** function $F: \Omega \to \Omega$ governs dynamics: $x_{n+1} = F(x_n)$.</u>

Goal: Learning from data $\{x^{(m)}, y^{(m)} = F(x^{(m)})\}_{m=1}^{M}$.

Applications: chemistry, climatology, control, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, plasmas, robotics, video processing, etc.

Koopman Operator \mathcal{K} : A global linearization

- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.
- C., "The Multiverse of Dynamic Mode Decomposition Algorithms," Handbook of Numerical Analysis, 2024

Koopman Operator \mathcal{K} : A global linearization

- \mathcal{K} acts on <u>functions</u> $g: \Omega \to \mathbb{C}$, $[\mathcal{K}g](x) = g(F(x))$.
- Function space: $g \in L^2(\Omega, \omega)$, positive measure ω , inner product $\langle \cdot, \cdot \rangle$.

- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.
- C., "The Multiverse of Dynamic Mode Decomposition Algorithms," Handbook of Numerical Analysis, 2024

Koopman Operator \mathcal{K} : A global linearization

- \mathcal{K} acts on <u>functions</u> $g: \Omega \to \mathbb{C}$, $[\mathcal{K}g](x) = g(F(x))$.
- Function space: $g \in L^2(\Omega, \omega)$, positive measure ω , inner product $\langle \cdot, \cdot \rangle$.

- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.
- C., "The Multiverse of Dynamic Mode Decomposition Algorithms," Handbook of Numerical Analysis, 2024

• Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.

• Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

C., "The Multiverse of Dynamic Mode Decomposition Algorithms," Handbook of Numerical Analysis, 2024

Koopman mode decomposition

Encodes: geometric features, invariant measures, transient behavior, long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of $\mathcal K$ and its spectral properties.

[•] Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynamics, 2005.

Koopman mode decomposition

Encodes: geometric features, invariant measures, transient behavior, long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of ${\mathcal K}$ and its spectral properties.

[•] Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynamics, 2005.

Our setting – unitary evolution

$$[\mathcal{K}g](x) = g(F(x)), \qquad g \in L^2(\Omega, \omega)$$
$$g(x_n) = [\mathcal{K}^n g](x_0)$$

Assume: System is **measure-preserving** (*F* preserves ω)

$$\Leftrightarrow \|\mathcal{K}g\| = \|g\| \text{ (isometry)}$$
$$\Leftrightarrow \mathcal{K}^*\mathcal{K} = I$$
$$\Rightarrow \operatorname{Spec}(\mathcal{K}) \subseteq \{z : |z| \le 1\}$$

(NB: consider unitary extensions of $\mathcal K$ via Wold decomposition.)

Our setting – unitary evolution

$$[\mathcal{K}g](x) = g(F(x)), \qquad g \in L^2(\Omega, \omega)$$
$$g(x_n) = [\mathcal{K}^n g](x_0)$$

Assume: System is **measure-preserving** (*F* preserves ω)

$$\Leftrightarrow \|\mathcal{K}g\| = \|g\| \text{ (isometry)}$$
$$\Leftrightarrow \mathcal{K}^*\mathcal{K} = I$$
$$\Rightarrow \operatorname{Spec}(\mathcal{K}) \subseteq \{z : |z| \le 1\}$$

(NB: consider unitary extensions of \mathcal{K} via Wold decomposition.)

```
WANT: Approximation of \mathcal K that preserves \|\cdot\| (e.g., stability, long-time behavior etc.)...
```


Lots of Koopman operators are built up from operators like these!

The most important slide

Circulant matrix

 $\in \mathbb{C}^{N \times N}$

- Spectrum is {0}.
- Spectrum is unstable.
- Nilpotent evolution.

- Spectrum converges to unit circle as $N \rightarrow \infty$.
- Spectrum is stable.
- Unitary evolution.

Extended Dynamic Mode Decomposition (EDMD)

Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.

۲

- Rowley, Mezić, Bagheri, Schlatter, Henningson, "Spectral analysis of nonlinear flows," J. Fluid Mech., 2009.
- Kutz, Brunton, Brunton, Proctor, "Dynamic mode decomposition: data-driven modeling of complex systems," **SIAM**, 2016.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

$$G_{jk} = \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) \approx \langle \psi_k, \psi_j \rangle$$

$$G_{jk} = \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) \approx \langle \psi_k, \psi_j \rangle$$

Measure-preserving: $\mathbf{g}^* G \mathbf{g} \approx ||g||^2 = ||\mathcal{K}g||^2 \approx \mathbf{g}^* \mathbb{K}^* G \mathbb{K} \mathbf{g}$

$$G_{jk} = \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) \approx \langle \psi_k, \psi_j \rangle$$

Measure-preserving: $\mathbf{g}^* G \mathbf{g} \approx ||g||^2 = ||\mathcal{K}g||^2 \approx \mathbf{g}^* \mathbb{K}^* G \mathbb{K} \mathbf{g}$

Enforce: $G = \mathbb{K}^* G \mathbb{K}$

$$G_{jk} = \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) \approx \langle \psi_k, \psi_j \rangle$$

Measure-preserving: $\mathbf{g}^* G \mathbf{g} \approx ||g||^2 = ||\mathcal{K}g||^2 \approx \mathbf{g}^* \mathbb{K}^* G \mathbb{K} \mathbf{g}$

The mpEDMD algorithm

Algorithm 4.1 The mpEDMD algorithm

Input: Snapshot data $\mathbf{X} \in \mathbb{C}^{d \times M}$ and $\mathbf{Y} \in \mathbb{C}^{d \times M}$, quadrature weights $\{w_m\}_{m=1}^M$, and a dictionary of functions $\{\psi_j\}_{j=1}^N$.

- 1: Compute the matrices Ψ_X and Ψ_Y and $\mathbf{W} = \text{diag}(w_1, \ldots, w_M)$.
- 2: Compute an economy QR decomposition $\mathbf{W}^{1/2} \Psi_X = \mathbf{QR}$, where $\mathbf{Q} \in \mathbb{C}^{M \times N}$, $\mathbf{R} \in \mathbb{C}^{N \times N}$.
- 3: Compute an SVD of $(\mathbf{R}^{-1})^* \Psi_Y^* \mathbf{W}^{1/2} \mathbf{Q} = \mathbf{U}_1 \Sigma \mathbf{U}_2^*$.
- 4: Compute the eigendecomposition $\mathbf{U}_2\mathbf{U}_1^* = \hat{\mathbf{V}}\Lambda\hat{\mathbf{V}}^*$ (via a Schur decomposition).
- 5: Compute $\mathbb{K} = \mathbf{R}^{-1}\mathbf{U}_2\mathbf{U}_1^*\mathbf{R}$ and $\mathbf{V} = \mathbf{R}^{-1}\hat{\mathbf{V}}$.

Output: Koopman matrix \mathbb{K} with eigenvectors \mathbf{V} and eigenvalues $\boldsymbol{\Lambda}$.

$$V_N = \text{span} \{\psi_1, \dots, \psi_N\}$$
$$\mathcal{P}_{V_N}: L^2(\Omega, \omega) \to V_N$$
orthogonal projection

As $M \to \infty$, unitary part of polar decomposition of $\mathcal{P}_{V_N} \mathcal{KP}_{V_N}^*$.

Spectral measures \rightarrow diagonalisation

• Finite dimensions: Unitary $B \in \mathbb{C}^{n \times n}$, orthonormal basis of e-vectors $\{v_j\}_{i=1}^n$

$$v = \left[\sum_{j=1}^{n} v_j v_j^*\right] v, \qquad Bv = \left[\sum_{j=1}^{n} \lambda_j v_j v_j^*\right] v, \qquad \forall v \in \mathbb{C}^n$$

Spectral measures \rightarrow diagonalisation

• Finite dimensions: Unitary $B \in \mathbb{C}^{n \times n}$, orthonormal basis of e-vectors $\{v_j\}_{i=1}^n$

$$v = \left[\sum_{j=1}^{n} v_{j} v_{j}^{*}\right] v, \qquad Bv = \left[\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{*}\right] v, \qquad \forall v \in \mathbb{C}^{n}$$

• Infinite dimensions: Unitary \mathcal{K} . Typically, no basis of e-vectors! Spectral theorem: (projection-valued) spectral measure \mathcal{E}

$$g = \left[\int_{\operatorname{Spec}(\mathcal{K})} 1 \, \mathrm{d}\mathcal{E}(\lambda) \right] g, \qquad \mathcal{K}g = \left[\int_{\operatorname{Spec}(\mathcal{K})} \lambda \, \mathrm{d}\mathcal{E}(\lambda) \right] g, \qquad \forall g \in L^2(\Omega, \omega)$$

Spectral measures \rightarrow diagonalisation

• Finite dimensions: Unitary $B \in \mathbb{C}^{n \times n}$, orthonormal basis of e-vectors $\{v_j\}_{i=1}^n$

$$v = \left[\sum_{j=1}^{n} v_{j} v_{j}^{*}\right] v, \qquad Bv = \left[\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{*}\right] v, \qquad \forall v \in \mathbb{C}^{n}$$

• Infinite dimensions: Unitary \mathcal{K} . Typically, no basis of e-vectors! Spectral theorem: (projection-valued) spectral measure \mathcal{E}

$$g = \left[\int_{\operatorname{Spec}(\mathcal{K})} 1 \, \mathrm{d}\mathcal{E}(\lambda) \right] g, \qquad \mathcal{K}g = \left[\int_{\operatorname{Spec}(\mathcal{K})} \lambda \, \mathrm{d}\mathcal{E}(\lambda) \right] g, \qquad \forall g \in L^2(\Omega, \omega)$$

• Spectral measures: $\mu_g(U) = \langle \mathcal{E}(U)g, g \rangle (||g|| = 1)$ probability measure.

Spectral measures \rightarrow dynamics

 μ_g probability measures on $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$

Characterize forward-time dynamics \Rightarrow Koopman mode decomposition.

$$\mathcal{L}_{g}^{(N,M)}(U) = \sum_{\lambda_{j} \in U} |v_{j}^{*}Gg|^{2}$$

$$W_{1}(\mu,\nu) = \sup \left\{ \int_{\mathbb{T}} \varphi(\lambda) d(\mu-\nu)(\lambda) : \varphi \text{ Lipschitz } 1 \right\}$$

$$Captures weak convergence of measures$$

Theorem: Suppose quadrature rule converges & $\lim_{N \to \infty} \operatorname{dist}(h, V_N) = 0$ for any $h \in L^2(\Omega, \omega)$. Then for $g \in L^2(\Omega, \omega)$ & $\mathbf{g}_N \in \mathbb{C}^N$ with $\lim_{N \to \infty} \|g - \Psi \mathbf{g}_N\| = 0$, $\lim_{N \to \infty} \limsup_{M \to \infty} W_1\left(\mu_g, \mu_g^{(N,M)}\right) = 0$. If $V_N = \{g, \mathcal{K}g, \dots, \mathcal{K}^{N-1}g\}$ & $g = \Psi \mathbf{g}$, then $\lim_{M \to \infty} W_1\left(\mu_g, \mu_g^{(N,M)}\right) \leq \frac{\log(N)}{N}$. $\lim_{N \to \infty} W_1\left(\mu_g, \mu_g^{(N,M)}\right) \leq \frac{\log(N)}{N}$.

Further convergence

- Projection-valued measures (e.g., functional calculus, L² forecasting).
- Koopman mode decomposition.
- Spectrum.
- Generalized eigenfunctions (but that's another story!)

Key ingredient: **unitary** discretization.

Lorenz system

 $\dot{x}_1 = 10(x_2 - x_1), \qquad \dot{x}_2 = x_1(28 - x_3) - x_2, \qquad \dot{x}_3 = x_1x_2 - 8/3x_3, \qquad \Delta_t = 0.1$ $g(x_1, x_2, x_3) = c \tanh((x_1x_2 - 3x_3)/5), \qquad V_N = \operatorname{span}\{g, \mathcal{K}g, \dots, \mathcal{K}^{N-1}g\}$

Cdf: $F_{\mu}(\theta) = \mu(\{\exp(it) : -\pi \le t \le \theta\})$

Lorenz system

$$\dot{x}_1 = 10(x_2 - x_1), \qquad \dot{x}_2 = x_1(28 - x_3) - x_2, \qquad \dot{x}_3 = x_1x_2 - 8/3x_3, \qquad \Delta_t = 0.1$$

$$g(x_1, x_2, x_3) = c \tanh((x_1x_2 - 3x_3)/5), \qquad V_N = \operatorname{span}\{g, \mathcal{K}g, \dots, \mathcal{K}^{N-1}g\}$$

Coherent features!

Nonlinear pendulum

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -\sin(x_1), \quad \Omega = [-\pi, \pi]_{\text{per}} \times \mathbb{R}, \quad \Delta_t = 0.5$$

 $g(x) = \exp(ix_1) x_2 \exp(-x_2^2/2), \quad V_N = \operatorname{span}\{g, \mathcal{K}g, \dots, \mathcal{K}^{99}g\}$

 $\log_{10}(|v_j|)$

Dissipation, low accuracy

Conservative, high accuracy

Robustness to noise: Gauss. noise for Ψ_X , Ψ_Y

Mean inf. dim. residual (EDMD)

Mean inf. dim. residual (mpEDMD)

• Baddoo, Herrmann, McKeon, Kutz, Brunton, "Physics-informed dynamic mode decomposition (piDMD)," preprint.

Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

Future work (with Davide)

Earliest published image of an eigenvector from Daniel Bernoulli's 1733 masterpiece "Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae".

> n pendula Does it help collecting

data using geometric integrators?

What happens as $n \to \infty$?

Summary: Geometric integration for EDMD

- EDMD + enforcing measure-preserving (polar decomposition of Galerkin)
- Convergence of spectral measures, spectra, Koopman mode decomposition.
- Long-time stability, improved qualitative behavior.
- Increased stability to noise.
- Simple, flexible: easy to combine with any DMD-type method!
- **OPPORTUNITY:** further structure-preservation (e.g., learning symmetries)

Shameless plug: read more in upcoming CUP book, "Infinite-Dimensional Spectral Computations"

Short video summaries available on YouTube

https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition

References

[1] Colbrook, Matthew J., and Alex Townsend. "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems." Communications on Pure and Applied Mathematics 77.1 (2024): 221-283.
 [2] Colbrook, Matthew J., Lorna J. Ayton, and Máté Szőke. "Residual dynamic mode decomposition: robust and verified Koopmanism." Journal of Fluid Mechanics 955 (2023): A21.

[3] Colbrook, M. J., Li, Q., Raut, R. V., & Townsend, A. "Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems." Nonlinear Dynamics 112.3 (2024): 2037-2061.

[4] Colbrook, Matthew J. "The Multiverse of Dynamic Mode Decomposition Algorithms." arXiv preprint arXiv:2312.00137 (2023).

[5] Colbrook, Matthew J. "The mpEDMD algorithm for data-driven computations of measure-preserving dynamical systems." SIAM Journal on Numerical Analysis 61.3 (2023): 1585-1608.

[6] Colbrook, Matthew J., Catherine Drysdale, and Andrew Horning. "Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators." arXiv preprint arXiv:2405.00782 (2024).

[7] Boullé, Nicolas, and Matthew J. Colbrook. "Multiplicative Dynamic Mode Decomposition." arXiv preprint arXiv:2405.05334 (2024).

[8] Boullé, Nicolas and Matthew J. Colbrook, "On the Convergence of Hermitian Dynamic Mode Decomposition" Physica D: Nonlinear Phenomena, 472 (2025).

[9] Colbrook, Matthew J., Andrew Horning, and Tianyiwa Xie. "Computing Generalized Eigenfunctions in Rigged Hilbert Spaces." arXiv preprint arXiv:2410.08343 (2024).

[10] Zagli, Niccolò, et al. "Bridging the Gap between Koopmanism and Response Theory: Using Natural Variability to Predict Forced Response." arXiv preprint arXiv:2410.01622 (2024).

[11] Colbrook, Matthew J. "Another look at Residual Dynamic Mode Decomposition in the regime of fewer Snapshots than Dictionary Size." Physica D: Nonlinear Phenomena 469 (2024).

[12] Colbrook, Matthew. "The foundations of infinite-dimensional spectral computations." Diss. University of Cambridge, 2020.

[13] Ben-Artzi, J., Colbrook, M. J., Hansen, A. C., Nevanlinna, O., & Seidel, M. (2020). "Computing Spectra--On the Solvability Complexity Index Hierarchy and Towers of Algorithms." arXiv preprint arXiv:1508.03280.

[14] Colbrook, Matthew J., Vegard Antun, and Anders C. Hansen. "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem." Proceedings of the National Academy of Sciences 119.12 (2022): e2107151119.

[15] Colbrook, Matthew, Andrew Horning, and Alex Townsend. "Computing spectral measures of self-adjoint operators." SIAM review 63.3 (2021): 489-524.

[16] Colbrook, Matthew J., Bogdan Roman, and Anders C. Hansen. "How to compute spectra with error control." Physical Review Letters 122.25 (2019): 250201.

[17] Colbrook, Matthew J., and Anders C. Hansen. "The foundations of spectral computations via the solvability complexity index hierarchy." Journal of the European Mathematical Society (2022).

[18] Colbrook, Matthew J. "Computing spectral measures and spectral types." Communications in Mathematical Physics 384 (2021): 433-501.

[19] Colbrook, Matthew J., and Anders C. Hansen. "On the infinite-dimensional QR algorithm." Numerische Mathematik 143 (2019): 17-83.

[20] Colbrook, Matthew J. "On the computation of geometric features of spectra of linear operators on Hilbert spaces." Foundations of Computational Mathematics (2022): 1-82.

[21] Brunton, Steven L., and Matthew J. Colbrook. "Resilient Data-driven Dynamical Systems with Koopman: An Infinite-dimensional Numerical Analysis Perspective." SIAM News 56 (1)

[22] Colbrook, Matthew J., Igor Mezić, and Alexei Stepanenko. "Limits and Powers of Koopman Learning." arXiv preprint arxiv:2407.06312 (2024).