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NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).



The objects

* Compact metric space (X, d) — the state space

e x € X —the state

* Unknown cts F: X — X —the dynamics: x,,.1 = F(x,)

* Borel measure w on X
* Function space L* = L*(X, w) (elements g called “observables”)

» Koopman operator Kr: L? - L?; [Krg](x) = g(F(x))

* Available Snapshot data: {(x(m),y(m) — F(x(m))) m=1,.., M} | Data

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).
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Outline

e Constructing adversaries — impossibility theorem
* Towers of algorithms — possibility theorem
* The Solvability Complexity Index Hierarchy — classifications

e Where does this leave us?



Example: Theorem A (impossibility)

Class: Qp = {F:ID — D s.t. F cts, measure preserving, invertible}.
Perfect measurement device: T = {(x,y,,):x € D, [|F(x) — y,,|| < 27™}.

* There does not exist any sequence of deterministic algorithms {I’,,} using
input data 75 such that lim I}, (F) = Sp(Ky) VF € Qp.
Nn—>00

* For any sequence of random algorithms {[},,} that uses % No better than
inf IP’(lim Fn(F) — Sp(%p)) < 1/2. 4~ random chance

FEQ.]D) n—oo
e Universal - any type of algorithm or computational model.
* Phase transition at IP = 1/2 optimal.
* Can learn statistics for (), doesn’t help!
* Extends to other X.
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Proof idea (deterministic case)

Fy: rotation by Sp(iKFO) = {11} (easy exercise using Lap. efuns)

Phase transition lemma: Let X = {xq,...,xx5},Y = {y4, ..., yn} be distinct
points in annulus A ={x€D:0<R<||lx|]| <r <1} with XNnY = 0.

There exists a measure-preserving homeomorphism H such that H acts as
the identity on D\A and H(y;) = Fo(H(x;)),j =1, ..., N.

Conjugacy of data (x; — y;) with F

Idea: Use lemma to trick any algorithm into oscillating between spectra.

* Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.



Proof idea (deterministic case)

Tp = {06 ym): IF () — ymll < 27™}

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00

Inductively define an adversarial F.

11
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Proof idea (deterministic case) [#=tmriFe —smi=z"
Suppose (for contradiction) {I’,,} uses T, AEEOF"(F) = Sp(Kr) VF € Qp.

Inductively define an adversarial F.

Base: F;(r,0) = (r, 0+m+ qb(r)), supp(¢) c [1/4, 3/4]
Easy exercise: Sp(KXg;) = T (unit circle).
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Proof idea (deterministic case) [#=tmriFe —smi=z"

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Inductively define an adversarial F.

Base: F;(r,0) = (r, 0+ m+ qb(r)), supp(¢) c [1/4, 3/4]
Easy exercise: Sp(KXg;) = T (unit circle).

Convergence Fn(f{) = Sp(Kg) = IAng s.t. dist(i, [, (77:)) < 1.—— @) =T
BUT [}, reads finite amount of info when outputs I3, (f[)
Let X, Y correspond to these finitely many snapshots.
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Proof idea (deterministic case) [#=tmriFe —smi=z"
Suppose (for contradiction) {I,} uses T, 7li_r)lolan(F) = Sp(Kr) VF € Qp.

Inductively define an adversarial F.

Base: F;(r,0) = (r, 0+ m+ qb(r)), supp(¢) c [1/4, 3/4]
Easy exercise: Sp(KXg;) = T (unit circle).

Rotation by i

Convergence Fn(f{) = Sp(Kg) = IAng s.t. dist(i, [, (77:)) < 1.——Sp@) =T
BUT [}, reads finite amount of info when outputs I3, (f[)
Let X, Y correspond to these finitely many snapshots.

i f{fm\\\\\
Apply lemma: F; = H{! o Fy o H; on annulus A;.
Consistent data = I3, (F;) = [}, (F;), dist(i, [, (F1)) <1
BUT Sp(Kf,) = Sp(Kg,) = {£1} Sp(K) = {+1}




Proof idea (deterministic case)

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

k— o0

Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0
BUT Sp(KFr) = Sp(Xp,) = {£1} CANNOT CONVERGE

A

&
N

Cascade of disks

15
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Proof idea (deterministic case)

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

k— o0

Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0

BUT Sp(Xf) = Sp(Kg,) = {£1} CANNOT CONVERGE

Sp(K) = {z:]z| =1} Sp(X) = {£1} Cascade of disks



Example: Theorem B (possibility)

Class: Q% = {F: X — Xs.t. F cts, measure preserving}.

Perfect measurement device: T = {(x, v,,): x € X, |[|F(x) — y,,|| < 27™}.

There exists deterministic algorithms {Fnz,nl} using input data Jr such
that lim lim I3, , (F) = Sp(Xf) VF € Q.

nz—)00n1—>00

Note the double limit lim lim

nz—)OOnl—)OO

17
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Proof Sketch Spe(Kr) ={z € C:||(Kp —zD7H|7" < €}
e Apply a double limit: Al’im 1\}Iim yam(F,z) = |(Kg — 2D~

N = size of dictionary, M = number of snapshots.
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PFOOf SkEtCh Spe(Kr) ={z € C:||(Kp — zD) 7|7t < &}

e Apply a double limit: Al’im 1\}Iim yam(F,z) = |(Kg — 2D~

N = size of dictionary, M = number of snapshots.
* For measure-preserving systems: ||(KXr — zI) 71|71 = dist(z, Sp(Kr)).
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Proof SkEtCh Spe(Kr) ={z € C:||(Kp — zD) 7|7t < &}

e Apply a double limit: Al’im I\Lim yam(F,z) = |(Kg — 2D~

N = size of dictionary, M = number of snapshots.
* For measure-preserving systems: ||(KXr — zI) 71|71 = dist(z, Sp(Kr)).
* Local N-adaptive minimisation of y »,(F, z) over grid to approx. Sp.



Proof sketch

* Apply a double limit: Al’im I\}Iim Ynm(F,z) = ||(Kg — zI)

21

Spe(Kr) ={z € C:||(Kp —zD7H|7F < &}

—1”—1.

N = size of dictionary, M = number of snapshots.

* For measure-preserving systems: ||(KXr — zI) 71|71 = dist(z, Sp(Kr)).

* Local N-adaptive minimisation of yy 5 (F, z) over grid to approx. Sp.

Compute Sp,, local adaptive controlone | 0

[ m.p. system dissipative system |
15— spurious (b) ' 5
== EDMD evals | 107 |

AN \ | s 0.1
‘. .. o 2 !“ \ (
o.o. ° 3 .:. » ’i/.. \) L (
.:. .: ¢ / K ‘ 10™"
* ® ‘ . 75 // _ [ & o

il SW¥s® — Sp,contour NS

® EDMD evals
1 .5 ) = : 001 10-2
N N
'\0.3 A ’QGJ Q QQJ i p\?') ,\0’3 . ’QG') QS Qfo

Re(A)

Approximation error

O

EDMD doés not converge

D
........

= EDMD (m.p. system)
= Proposed (m.p. system) {
-------- EDMD (dissipative system) | 1
)| |

«====e= Proposed (dissipative system

102 103
dictionary size



Towers of algorithms

Call {Fnk,---,nl} with lim ... lim I3, ., convergent a tower of algorithms.

e e \

First appeared in dynamical systems theory: algorithm
“Yes for cubic, no for higher
degree. Quartic and quintic can
rational map for be solved using towers of
polynomial zero algorithms. Sextic cannot be
Steve Smale  finding?” CuisMcMullen  solved in any number of limits.”

“Is there any purely
iterative convergent

22

Smale, “On the efficiency of algorithms of analysis.” Bull. Am. Math. Soc., 1985.

McMullen, “Families of rational maps and iterative root-finding algorithms.” Annals Math., 1987.
McMullen, “Braiding of the attractor and the failure of iterative algorithms.” Invent. Math. 1988.
Doyle, McMullen, “Solving the quintic by iteration.” Acta Math., 1989.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Theorem A:SCI > 1
combine SCl =2

Theorem B: SCI < 2

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Theorem A:SCI > 1
combine SCl =2

Theorem B: SCI < 2

So far literature has only
proven upper bounds,
that need not be sharp...

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.



Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Algorithm

Comments/Assumptions

Spectral Problem’s Corresponding SCI Upper Bound

KMD | Spectrum| Spectral Measure (if m.p.) Spectral Type (if m.p.)
Extended DMD[47] i general L” spaces | SCLS 2TIN/C NS e B
: o < o < g < o varies, see [84]
Residwal MBI L general [ spaces  pUlszpelsspeiss ] e.g,ac density: SCI < 2
i : SCI < 2% (general)
Measurepreserving EDMD 5] | mp-systems SIS IN/C ey <1 (ddlay-embedding)
Hankel DMD[85] ... m.p. ergodicsystems  ISOL < 27IN/C INJC e B
Periodic approximations [86] | . L..ucucee. mp: £ LAC ] SOLS 2 INC LGS 2(ee 87D ] ac. density: SCI=3
Christoffel-Darboux kernel [40] 1....... m.p: ergodic systems LSS 3 A PELE 2 ] e:gyac density: SCI < 2.
cts.-time, samples V F'
< <
Senerator B L (otherwise additional limit) [°7" =2 |N/© et S afecel) e
Compactification [42] | cts-time, m.p. ergodic systems|SCL < 4 IN/C = 1SCI <4 B .
Resolvent compactification [43] _|cts.-time, m.p. ergodic systems|SCI < 5 IN/C = |SCI<5  ~ In/a
Diffusion maps [90] (see also [10])|cts.-time, m.p. ergodic systems|SCI < 3 [n/a n/a n/a

Previous techniques prove upper bounds on SCI. “N/C”: method need not converge without
additional strong assumptions (e.g., observable inside a known finite-dimensional invariant
subspace) “n/a”: indicates algorithm not applicable to problem.

Appears also in Ulam’s method, computation of SRB measures, control, ...

26
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

* A;: One limit problemes, full error control. E.g., d([},(F), Sp(¥Xr)) < 27 ™.
* A, +1: problems with SCI < m.

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

* A;: One limit problemes, full error control. E.g., d([},(F), Sp(¥Xr)) < 27 ™.
* A, +1: problems with SCI < m.

* Xm: SCI < m, final limit converges from below.

E.g., 2:I,(F) c Sp(Kx) + B,-n(0).
* I1,,,: SCI < m, final limit converges from above.

E.g., H]_: Sp(%p) C Fn(F) + Bz—n(O).

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

* A;: One limit problemes, full error control. E.g., d([},(F), Sp(¥Xr)) < 27 ™.
* A, +1: problems with SCI < m.

* X SCI < m, final limit converges from below.

E.g., 2:I,(F) c Sp(Kx) + B,-n(0).
Inal limit converges from above.

E.g., H]_: Sp(:}(‘p) C Fn(F) + Bz—n(O). L

trust output \ covers spectrum

e [l.: SC| < = verification
m: <

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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SCI for Koopman |

3 limits needed

Increasing difficulty

] : i
= | preserving systems

SCI hierarchy of computing the spectrum )

Key 1| N
|_]scl=1[_]noexampleclass K 3
[ ]SCI=2 > strictinclusion '
]sci=3 ",

*
*
* 1
* :
* H
* ;
. E
..
*

Q'%: Measure-

= . 0% N QF:Measure-
. preserving and uniform |

.
R A
.
.
. *

mod. of cty.

in general!

Different classes:

Qy ={F: X - X s.t.F cts}

QF ={F: X - X s.t.F cts,m.p. }
O ={F:X - X s.t. F mod. cty. a}

[dx (F(x), F(y)) < a(dx(x,y))]

Optimal algorithms and
classifications of
dynamical systems.



SCI for Koopman |l

/

Increasing difficulty

N NN NN R NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED)

SCI hierarchy of computing spectral types N

Key

23

[ ]sCl=1 [ ]noexampleclass
|| SCl=2 > strictinclusion

S.C. spectrum

¥ [ ]SCI=3 = example

Quantum .
walk %,
0‘1 A3 F’.
/.“' o7 '-..\l '
S . » I
7 SR 2 2
il
: . P.P. spectrum S.C. part of measure
L T P.P. part of measure | Isitergodic?
Limit cycle A.C. spectrum I \
/A.C. part of measure A H\ .
Is it weakly mixing? ‘:;,: ==
s =\
Hyperbolic A High Re Ergodic partition
manifold : chaotic flow || of standard map
Lorenz attractor | &
o‘ﬂ Az k’o..
o".'. A ."’oo
2q : I
?."a.. i _..‘7

A]_ p**

Full spectral measure

31



4 SCI hierarchy of computing spectral types N

SCI for Koopman I 97
: N 3 | 1scl=1[_ ]noexampleclass
. 5 | 3 [ ] SCl=2 3 strictinclusion
- [ " S.C. spectrum "'.‘ [ ]SCl=3 = example
Example: Theorem C P | Quantum
For smooth, m.p. on a torus, : 'ﬂ‘\ L
. .- . . . b/ 3 3
learning non-trivial eigenfunctions | _
o o . = s )
or even determining if there are |3 == — t”fz
. B _ .P. spectrum .C. part of measure
any has SCl =2 (even if we can |£i -/ 1 PP, partof measure / e
. . Limit cycle | -L. Spectrum
Q0 art of measure
sample derivatives). S 1 T e iveakty mon N
. . . . . . . S . = =0 e
Finding flnlte-dlmens!onaI. coorglmate i e W A | hgnse | Eoctcparttion
systems and embeddings in which the F el | ooy |} Laotcftow f|efrendard map
dynamics are linear (e.g., ] A i
autoencoders, latent space P I
representation) is very hard! N I,
: <., : 7
fra, ) A ot
NB: Constant is trivial efun, others “non-trivial”! :

\ - Full spectral measure :




Where does this leave us?

* New tools for lower bounds (impossibility results) for Koopman learning.
* Many problems NECESSARILY require multiple limits.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.
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e Other function spaces.
* Partial observations, continuous-time.
e Control and uses of Koopman.
e Other data-driven dynamical system methods.
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= started to map out this terrain.

* Future work:
e Other function spaces.
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e Other data-driven dynamical system methods.

Where does your method fit into the SCI hierarchy? Is it optimal?
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