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“To classify is to bring order into chaos.” -  George Pólya

C., Mezić, Stepanenko  “Limits and Powers of Koopman Learning,” preprint, 2024.
Will appear on arXiv this evening. If you cannot wait – visit 

https:/www.damtp.cam.ac.uk/user/mjc249/home.html

Classifications of

Data-Driven Koopman Learning
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available Snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

The objects
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The question
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Open question: When can we learn spectral properties of Koopman 
operators from trajectory data, and when can we not?

The question

0

1000

2000

3000

4000

5000

6000
2

0
1

0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

Google scholar New Papers on
“Koopman Operators”

number of papers

doubles every 5 yrs

2012

2022

2024

7



• Constructing adversaries – impossibility theorem

• Towers of algorithms – possibility theorem

• The Solvability Complexity Index Hierarchy – classifications

• Where does this leave us?

Outline
8



Class: Ω𝔻 = 𝐹: 𝔻 → 𝔻 s. t. 𝐹 cts, measure preserving, invertible .

Perfect measurement device: 𝒯𝐹 = 𝑥, 𝑦𝑚 : 𝑥 ∈ 𝔻, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

• There does not exist any sequence of deterministic algorithms Γ𝑛  using 
input data 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

• For any sequence of random algorithms Γ𝑛  that uses 𝒯𝐹 

inf
𝐹∈Ω𝔻

ℙ lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹 ≤ 1/2.

Remarks:
• Universal - any type of algorithm or computational model.
• Phase transition at ℙ = 1/2 optimal.
• Can learn statistics for Ω𝔻, doesn’t help!
• Extends to other 𝒳.

Example: Theorem A (impossibility)

No better than 
random chance
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Proof idea (deterministic case)

𝐹0: rotation by 𝜋, Sp 𝒦𝐹0
= {±1} (easy exercise using Lap. efuns)

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻: 0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅. 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.

Conjugacy of data (𝒙𝒋 → 𝒚𝒋) with 𝑭𝟎

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.
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Proof idea (deterministic case)
Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Inductively define an adversarial 𝐹.

𝒯𝐹 = 𝑥, 𝑦𝑚 : 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚
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Proof idea (deterministic case)
Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Inductively define an adversarial 𝐹.

Base: ෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Easy exercise: Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

𝒯𝐹 = 𝑥, 𝑦𝑚 : 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚

snapshots

Sp(𝒦) = 𝕋
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Proof idea (deterministic case)
Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
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෪𝐹1 ) ≤ 1.
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 reads finite amount of info when outputs Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these finitely many snapshots.
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Proof idea (deterministic case)
Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Inductively define an adversarial 𝐹.

Base: ෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Easy exercise: Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

Convergence Γ𝑛
෪𝐹1 → Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 reads finite amount of info when outputs Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these finitely many snapshots.

Apply lemma: 𝐹1 = 𝐻1
−1 ∘ 𝐹0 ∘ 𝐻1 on annulus 𝒜1.

Consistent data ⇒ Γ𝑛1
𝐹1 = Γ𝑛1

෪𝐹1 , dist(𝑖, Γ𝑛1
𝐹1 ) ≤ 1

BUT Sp(𝒦𝐹1
) = Sp(𝒦𝐹0

) = {±1}

𝒯𝐹 = 𝑥, 𝑦𝑚 : 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚

snapshots

Sp(𝒦) = 𝕋

Sp 𝒦 = {±1}

snapshots

Rotation by 𝜋
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Proof idea (deterministic case)

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Class: Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳s. t. 𝐹 cts, measure preserving .

Perfect measurement device: 𝒯𝐹 = 𝑥, 𝑦𝑚 : 𝑥 ∈ 𝒳, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

There exists deterministic algorithms Γ𝑛2,𝑛1
 using input data 𝒯𝐹 such 

that lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛2,𝑛1
𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝒳

𝑚.

Note the double limit lim
𝑛2→∞

lim
𝑛1→∞

Example: Theorem B (possibility)
17



Proof sketch
• Apply a double limit: lim

𝑁→∞
lim

𝑀→∞
𝛾𝑁,𝑀 𝐹, 𝑧 = 𝒦𝐹 − 𝑧𝐼 −1 −1.

𝑵 = size of dictionary, 𝑴 = number of snapshots.

Spε(𝒦𝐹) = 𝑧 ∈ ℂ: 𝒦𝐹 − 𝑧𝐼 −1 −1 ≤ 𝜀

18



Proof sketch
• Apply a double limit: lim

𝑁→∞
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𝑀→∞
𝛾𝑁,𝑀 𝐹, 𝑧 = 𝒦𝐹 − 𝑧𝐼 −1 −1.

𝑵 = size of dictionary, 𝑴 = number of snapshots.
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Proof sketch
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Towers of algorithms

Call Γ𝑛𝑘,…,𝑛1
 with lim

𝑛𝑘→∞
… lim

𝑛1→∞
 Γ𝑛𝑘,…,𝑛1

 convergent a tower of algorithms.

First appeared in dynamical systems theory:

Steve Smale

“Is there any purely 
iterative convergent 
rational map for 
polynomial zero 
finding?” Curtis McMullen

“Yes for cubic, no for higher 
degree. Quartic and quintic can 
be solved using towers of 
algorithms. Sextic cannot be 
solved in any number of limits.”

• Smale, “On the efficiency of algorithms of analysis.” Bull. Am. Math. Soc., 1985.
• McMullen, “Families of rational maps and iterative root-finding algorithms.” Annals Math., 1987.
• McMullen, “Braiding of the attractor and the failure of iterative algorithms.” Invent. Math. 1988.
• Doyle, McMullen, “Solving the quintic by iteration.” Acta Math., 1989.

algorithm

22



Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

          Theorem A: SCI > 1

          Theorem B: SCI ≤ 2

 

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

combine SCI = 2
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

          Theorem A: SCI > 1

          Theorem B: SCI ≤ 2

 

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

combine SCI = 2

So far literature has only 
proven upper bounds, 
that need not be sharp…

25



Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

Previous techniques prove upper bounds on SCI. “N/C”: method need not converge without 
additional strong assumptions (e.g., observable inside a known finite-dimensional invariant 
subspace) “n/a”: indicates algorithm not applicable to problem. 

Appears also in Ulam’s method, computation of SRB measures, control,…

Superscript ∗: SCI upper bound reduced by 1 if we can control quadrature errors.

26



Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit problems, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.
• Δ𝑚+1: problems with SCI ≤ 𝑚.

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit problems, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.
• Δ𝑚+1: problems with SCI ≤ 𝑚.

• Σ𝑚: SCI ≤ 𝑚, final limit converges from below.    
   E.g., Σ1: Γ𝑛 𝐹 ⊂ Sp 𝒦𝐹 + 𝐵2−𝑛 0 .

• Π𝑚: SCI ≤ 𝑚, final limit converges from above.    
   E.g., Π1: Sp 𝒦𝐹 ⊂ Γ𝑛 𝐹 + 𝐵2−𝑛 0 .

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit problems, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.
• Δ𝑚+1: problems with SCI ≤ 𝑚.

• Σ𝑚: SCI ≤ 𝑚, final limit converges from below.    
   E.g., Σ1: Γ𝑛 𝐹 ⊂ Sp 𝒦𝐹 + 𝐵2−𝑛 0 .

• Π𝑚: SCI ≤ 𝑚, final limit converges from above.    
   E.g., Π1: Sp 𝒦𝐹 ⊂ Γ𝑛 𝐹 + 𝐵2−𝑛 0 .

verification

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

trust output covers spectrum
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SCI for Koopman I

Different classes:

Ω𝒳 = 𝐹: 𝒳 → 𝒳 s. t. 𝐹 cts  

Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳 s. t. 𝐹 cts, m. p.  

Ω𝒳
𝛼 = 𝐹: 𝒳 → 𝒳 s. t. 𝐹 mod. cty. 𝛼  

[𝑑𝒳(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝛼(𝑑𝒳 𝑥, 𝑦 )]

Optimal algorithms and 
classifications of 
dynamical systems.

3 limits needed 
in general!

Theorems A + B
30



SCI for Koopman II
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SCI for Koopman II

Example: Theorem C
For smooth, m.p. on a torus, 
learning non-trivial eigenfunctions 
or even determining if there are 
any has SCI = 2 (even if we can 
sample derivatives).

Finding finite-dimensional coordinate 
systems and embeddings in which the 
dynamics are linear (e.g., 
autoencoders, latent space 
representation) is very hard!

NB: Constant is trivial efun, others “non-trivial”!
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Where does this leave us?
• New tools for lower bounds (impossibility results) for Koopman learning.

• Many problems NECESSARILY require multiple limits.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.
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• New tools for lower bounds (impossibility results) for Koopman learning.

• Many problems NECESSARILY require multiple limits.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.

Buzz 
was 

right!
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Buzz 
was 

right!

• New tools for lower bounds (impossibility results) for Koopman learning.

• Many problems NECESSARILY require multiple limits.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.

• Future work:
• Other function spaces.
• Partial observations, continuous-time.
• Control and uses of Koopman.
• Other data-driven dynamical system methods.
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Where does this leave us?
• New tools for lower bounds (impossibility results) for Koopman learning.

• Many problems NECESSARILY require multiple limits.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.

• Future work:
• Other function spaces.
• Partial observations, continuous-time.
• Control and uses of Koopman.
• Other data-driven dynamical system methods.

Where does your method fit into the SCI hierarchy? Is it optimal?

Buzz 
was 

right!
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