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Part 1: Data-driven dynamical systems

State x € ) € R4,

Unknown function F:Q — ) governs dynamics: x,,.1 = F(x,).

Goal: Learning from data {x(m),y(m) = F(x(m))}Zzl.

Applications: chemistry, climatology,

control, electronics, epidemiology, \ /
finance, fluids, molecular dynamics, \Q, ///
neuroscience, plasmas, robotics, |\

video processing, etc.

Surveys:
e Brunton, Budisi¢, Kaiser, Kutz, “Modern Koopman theory for dynamical systems,” SIAM Review, 2022.

e Budisi¢, Mohr, Mezié, “Applied Koopmanism,” Chaos, 2012.
* C., “The Multiverse of Dynamic Mode Decomposition Algorithms,” Handbook of Numerical Analysis, 2024.



Koopman Operator K : A global linearization
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Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932,



Koopman Operator K : A global linearization
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* K acts on functions g: Q = C, [Kg](x) = g(F(x)).

* Function space: g € L? (), w), positive measure w, inner product (-,).

Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932,



Koopman Operator K : A global linearization
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* K acts on functions g: Q = C, [Kg](x) = g(F(x)).

* Function space: g € L? (), w), positive measure w, inner product (-,).
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Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932,



KOOpman OperatOr :}C A gl_(\hal linaarizatinn

New Papers on
“Koopman Operators”
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Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932,



Koopman mode decomposition

eigenfunction of K generalized

J n eigenfunction of K
9= D e+ [ degGods

eigenvalues 4; T

T
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eigenvalues 4; —TT

Encodes: geometric features, invariant measures, transient behavior,
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezié, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.



spectral properties.



Example: Dynamic Mode Decomposition (DMD)

Given dictionary {1, ..., N} of functions ;: Q - C, L{x(m)’y(m) —
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Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.

Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Nonlinear system
“Hit it with Koopman!”
Data becomes quadrature

A linear algebra problem

Catch: Infinite dimensions
(almost always necessary to deal with nonlinearity)



A simple example on £%(Z)
(Why it’s not just DMD + MATLAB's “eig”)
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* Spectrum is unit circle.  Spectrum is {0}.

e Spectrum is stable. e Spectrum is unstable.
* Continuous spectra. * Discrete spectra.

* Unitary evolution. * Nilpotent evolution.

Example might look silly, but lots of Koopman operators are built up from operators like these!



Challenges of infinite dimensions

Sp(K) = {4 € C: K — Al isnotinvertible}
* Too much: Spurious eigenvalues 4 € Sp(KX)
* Too little: Miss parts of Sp(XK)

* Continuous spectra (Sp(K') not just eigenvalues!)

* Verification. Truncate/discretize
* Preserving key structures. K K € CNXN

Caution

* Choice of dictionary.
* Instability (non-normal X, non-normal discretizations of normal X)

 Compact representations (low-rank, neural networks, pseudoeigenfunctions etc.)

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,”

Commun. Pure Appl. Math., 2024.



Today’s talks

 Claire Valva: On Consistent Spectral Approximation of
Koopman Operators Using Resolvent Compactification

e Dimitrios Giannakis: Learning Dynamical Systems with the
Spectral Exterior Calculus

* Nathan Kutz: Shallow Recurrent Decoders for Encoding
Operators

* Jean-Christophe Loiseau: Low-Rank Approximation of the
Koopman Operator

e Zlatko Drmac: A Data Driven Koopman-Schur Decomposition — |
for Computational Analysis of Nonlinear Dynamics

* Igor Mezié: Operator Is the Model

e Catherine Drysdale: Rigged DMD: Data-Driven Koopman
Decompositions via Generalized Eigenfunctions




Operator learning for PDEs

Unknown partial differential operator governing the system L(u) = f

Goal: Learn the solution operator from input-output pairs {( f;, u;)}

Source Solution

Many applications:

‘ Fluid dynamics,
continuum mechanics,

guantum mechanics,

1 weather forecasting,

reduced-order modelling,

Recent surveys: parameter optimization, ...
B., Townsend, “A Mathematical Guide to Operator Learning”, 2023.
Kovachki, Lanthaler, Stuart, “Operator Learning: Algorithms and Analysis”, 2023.




Neural operators

Aim: Approximate solution operators of unknown PDEs E(u) — f
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[Quanta Magazine; Lu et al, 2021] [Quanta Magazine; Li et al, 2020] [Gin et al., 2020]



Neural operators

Aim: Approximate solution operators of unknown PDEs ﬁ(u) — f

f — | Learn £—1 > Evaluate | — u
/ / A\'l/b
Va\

Neural operators can be defined as compositions of integral operators and
nonlinear activation functions:

v =a ([ KO )ui(s) dy+ (o))



Connections with NLA and main challenges

Neural operators can be defined as compositions of integral operators and
nonlinear activation functions:

(@) = ([ KO 0)us)dy-+ () )

7

Numerical linear algebra insights ~ ==——————) Choice of K



Connections with NLA and main challenges

Class of PDE =~ =———» Solution operator property = Matrix structure

Operator learning motivates numerical linear algebra research on matrix
recovery problems and infinite-dimensional NLA.

Challenges:

1. How should we discretize neural operators?
2. How much training data is required?
3. What PDE can we learn?

4. Which neural operator architecture should we use?



Discretization

How should we discretize neural operators?

Representation Equivalent Neural Operators:
a Framework for Alias-free Operator Learning

Aliasing-free operator learning

Francesca Bartolucci' Emmanuel de Bézenac® Bogdan Raonié®*

Roberto Molinaro® Siddhartha Mishra®® Rima Alaifari®

200% : ' . .
No Equivalence 1 Representation Equivalence
- . I
1 Delft University of Technology, Netherlands _175% I
2 Seminar for Applied Mathematics, ETH, Zurich. Switzerland X 1 F ran Cesca
3 ETH Al Center, Zurich, Switzerland ~ 150% 1
- o I H
S ! Bartolucci
L 125% I
Abstract o — I CNN
-= 100% :
Recently, operator learning, or learning mappings between infinite-dimensional o !
function spaces, has garnered significant attention, notably in relation to learning < 75%
partial differential equations from data. Conceptually clear when outlined on paper, o
neural operators necessitate discretization in the transition to computer implemen- +
PR S SR o - U 50%
tations. This step can compromise their integrity, often causing them to deviate =
from the underlying operators. This research offers a fresh take on neural operators a
with a framework Representation equivalent Neural Operators (ReNO) designed to O 25%
address these issues. At its core is the concept of operator aliasing, which measures CNO
inconsistency between neural operators and their discrete representations. We 0%
explore this for widely-used operator learning techniques. Our findings detail how o 25 50 ! 75 100 125 150 175 200
aliasing introduces errors when handling different discretizations and grids and luti
loss of crucial continuous structures. More generally, this framework not only Resolution

sheds light on existing challenges but, given its constructive and broad nature, also
potentially offers tools for developing new neural operators.



Sample complexity

How much data do we need to train neural operators?

10!

T I I
—e— Fourier Neural Operator
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—+ GreenLearning | Elliptic PDE learning is provably data-efficient

. a1 . . b b
Nicolas Boullé™' (2, Diana Halikias*, and Alex Townsend

100 s

Edited by David Donoho, Stanford University, Stanford, CA; received March 8, 2023; accepted July 21, 2023

Partial differential equations (PDE) learning is an emerging field that combines
physics and machine learning to recover unknown physical systems from experimental
data. While deep learning models traditionally require copious amounts of training
data, recent PDE learning techniques achieve spectacular results with limited data
availability. Still, these results are empirical. Our work provides theoretical guarantees
on the number of input—output training pairs required in PDE learning. Specifically, we
10-2 ! ! ! exploit randomized numerical linear algebra and PDE theory to derive a provabiy data-
0 50 100 150 200 efficient algorithm that recovers solution operators of three-dimensional uniformiy
elliptic PDEs from input—output data and achieves an exponential convergence rate
of the error with respect to the size of the training dataset with an exceptionally high
probability of success.

Testing error

Diana Halikias

Size of training dataset

Data-efficient operator learning



Learning feasibility

What PDE can we learn?

Operator learning without the adjoint

Nicolas Boullé NBEOOTDCAM. AC.UK
Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Cambridge, CB3 0WA, UK
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Department af Mathematics
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Abstract

There is a mystery at the heart of operator learning: how can one recover a non-self-
adjoint operator from data without probing the adjoint? Current practical approaches
suggest that one can accurately recover an operator while only using data generated by the
forward action of the operator without access to the adjoint. However, naively, it seems
essential to sample the action of the adjoint. In this paper, we partially explain this mystery
by proving that without querying the adjoint, one can approximate a family of non-self-
adjoint infinite-dimensional compact operators via projection onto a Fourier basis. We then
apply the result to recovering Green'’s functions of elliptic partial differential operators and
derive an adjoint-free sample complexity bound. While existing theory justifies low sample
complexity in operator learning, ours is the first adjoint-free analysis that attempts to close
the gap between theory and practice.

Adjoint-free operator learning
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Architectures and approximation theory

Which neural operator architecture should we use?

Margaret Trautner

Multiscale operator learning

LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS"

KAUSHIK BHATTACHARYA'T, NIKOLA B. KOVACHKI}, AAKILA RAJANT, ANDREW M.
STUART?, AND MARGARET TRAUTNER/

Abstract.

Multiscale partial differential equations (PDEs) arise in various applications, and several schemes
have been developed to solve them efficiently. Homogenization theory is a powerful methodology that
eliminates the small-scale dependence, resulting in simplified equations that are computationally
tractable while accurately predicting the macroscopic response. In the field of continuum mechanics,
homogenization is crucial for deriving constitutive laws that incorporate microscale physics in order
to formulate balance laws for the macroscopic quantities of interest. However, obtaining homogenized
constitutive laws is often challenging as they do not in general have an analytic form and can exhibit
phenomena not present on the microscale. In response, data-driven learning of the constitutive law
has been proposed as appropriate for this task. However, a major challenge in data-driven learning
approaches for this problem has remained unexplored: the impact of discontinuities and corner inter-
faces in the underlying material. These discontinuities in the coefficients affect the smoothness of the
solutions of the underlying equations. Given the prevalence of discontinuous materials in continuum
mechanics applications, it is important to address the challenge of learning in this context; in partic-
ular, to develop underpinning theory that establishes the reliability of data-driven methods in this
scientific domain. The paper addresses this unexplored challenge by investigating the learnability of
homogenized constitutive laws for elliptic operators in the presence of such complexities. Approxi-
mation theory is presented, and numerical experiments are performed which validate the theory in
the context of learning the solution operator defined by the cell problem arising in homogenization
for elliptic PDEs.




Summary

* 9:45-10:05 : Francesca Bartolucci
Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning

e 11:00-11:20 : Diana Halikias
Elliptic PDE Learning Is Provably Data-Efficient

e 15:45-16:05 : Samuel Otto

Operator learning without the adjoint

 16:10-16:30 : Margaret Trautner

Operator Learning for Multiscale Elliptic PDEs with History Dependence
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