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State 𝑥𝑥 ∈ Ω ⊆ ℝ𝑑𝑑 . 

Unknown function 𝐹𝐹:Ω → Ω governs dynamics: 𝑥𝑥𝑛𝑛+1 = 𝐹𝐹(𝑥𝑥𝑛𝑛).

Goal: Learning from data 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)) 𝑚𝑚=1
𝑀𝑀

.

Applications: chemistry, climatology,                     
control, electronics, epidemiology,           
finance, fluids, molecular dynamics,        
neuroscience, plasmas, robotics,                      
video processing, etc.
Surveys:
• Brunton, Budišić, Kaiser, Kutz, “Modern Koopman theory for dynamical systems,” SIAM Review, 2022.
• Budišić, Mohr, Mezić, “Applied Koopmanism,” Chaos, 2012.
• C., “The Multiverse of Dynamic Mode Decomposition Algorithms,” Handbook of Numerical Analysis, 2024.

Part 1: Data-driven dynamical systems



Koopman Operator 𝒦𝒦: A global linearization

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.

𝑔𝑔:Ω → ℂ

“observable”

Koopman von Neumann



• 𝒦𝒦 acts on functions 𝑔𝑔:Ω → ℂ, 𝒦𝒦𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝐹𝐹(𝑥𝑥)).
• Function space: 𝑔𝑔 ∈ 𝐿𝐿2(Ω,𝜔𝜔), positive measure 𝜔𝜔, inner product �,� .
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New Papers on
“Koopman Operators”

number of papers
doubles every 5 yrs

Koopmania!
(wikipedia)



Koopman mode decomposition

𝑔𝑔(𝑥𝑥) = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜑𝜑𝜆𝜆𝑗𝑗(𝑥𝑥) + �
−𝜋𝜋

𝜋𝜋

𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥  d𝜃𝜃

𝑔𝑔 𝑥𝑥𝑛𝑛 = 𝒦𝒦𝑛𝑛𝑔𝑔 𝑥𝑥0 = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛𝜑𝜑𝜆𝜆𝑗𝑗 𝑥𝑥0 + �

−𝜋𝜋

𝜋𝜋

𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥0  d𝜃𝜃

Encodes: geometric features, invariant measures, transient behavior, 
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of 𝒦𝒦 and its spectral properties. 

generalized
eigenfunction of 𝒦𝒦

eigenfunction of 𝒦𝒦

• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.



• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.
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Given dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁  of functions 𝜓𝜓𝑗𝑗:Ω → ℂ, 

𝒦𝒦           𝕂𝕂 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋 −1Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌 = ( 𝑊𝑊Ψ𝑋𝑋)† 𝑊𝑊Ψ𝑌𝑌 ∈ ℂ𝑁𝑁×𝑁𝑁

𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 =

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋 𝑗𝑗𝑗𝑗

Example: Dynamic Mode Decomposition (DMD)

𝒦𝒦𝒦𝒦𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

=
𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(1))

⋮ ⋱ ⋮
𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(𝑀𝑀))

Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑦𝑦(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑦𝑦(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑦𝑦(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑦𝑦(𝑀𝑀))
Ψ𝑌𝑌 𝑗𝑗𝑗𝑗

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Nonlinear system

A linear algebra problem

Catch: Infinite dimensions
(almost always necessary to deal with nonlinearity)

“Hit it with Koopman!”
Data becomes quadrature



⋱ ⋱
0 1

0 1
0 1

0 ⋱
⋱

 

0 1
⋱ ⋱

⋱ 1
0

∈ ℂ𝑁𝑁×𝑁𝑁

A simple example on ℓ2 ℤ
(Why it’s not just DMD + MATLAB’s “eig”)

• Spectrum is unit circle.
• Spectrum is stable.
• Continuous spectra.
• Unitary evolution.

• Spectrum is 0 .
• Spectrum is unstable.
• Discrete spectra.
• Nilpotent evolution.

Example might look silly, but lots of Koopman operators are built up from operators like these!



Challenges of infinite dimensions
Sp 𝒦𝒦 = {𝜆𝜆 ∈ ℂ:𝒦𝒦 − 𝜆𝜆𝜆𝜆 is not invertible} 

• Too much: Spurious eigenvalues 𝜆𝜆 ∉ Sp(𝒦𝒦)
• Too little: Miss parts of Sp(𝒦𝒦)
• Continuous spectra (Sp 𝒦𝒦  not just eigenvalues!)
• Verification.
• Preserving key structures.
• Choice of dictionary.
• Instability (non-normal 𝒦𝒦, non-normal discretizations of normal 𝒦𝒦)
• Compact representations (low-rank, neural networks, pseudoeigenfunctions etc.)

Truncate/discretize  
𝒦𝒦           𝕂𝕂 ∈ ℂ𝑁𝑁×𝑁𝑁

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” 
Commun. Pure Appl. Math., 2024.



Today’s talks
• Claire Valva: On Consistent Spectral Approximation of 

Koopman Operators Using Resolvent Compactification
• Dimitrios Giannakis: Learning Dynamical Systems with the 

Spectral Exterior Calculus
• Nathan Kutz: Shallow Recurrent Decoders for Encoding 

Operators
• Jean-Christophe Loiseau: Low-Rank Approximation of the 

Koopman Operator
• Zlatko Drmač: A Data Driven Koopman-Schur Decomposition 

for Computational Analysis of Nonlinear Dynamics
• Igor Mezić: Operator Is the Model
• Catherine Drysdale: Rigged DMD: Data-Driven Koopman 

Decompositions via Generalized Eigenfunctions



Operator learning for PDEs

Recent surveys:

• B., Townsend, ‘‘A Mathematical Guide to Operator Learning’’, 2023.

• Kovachki, Lanthaler, Stuart, ‘‘Operator Learning: Algorithms and Analysis’’, 2023.

Unknown partial differential operator governing the system

Goal: Learn the solution operator from input-output pairs

Source Solution
Many applications:

Fluid dynamics, 

continuum mechanics, 

quantum mechanics, 

weather forecasting, 

reduced-order modelling, 

parameter optimization, …



Learn Evaluate

DeepONet

[Quanta Magazine; Lu et al, 2021] [Quanta Magazine; Li et al, 2020]

Fourier Neural Operator DeepGreen

[Gin et al., 2020]

Neural operators

Aim: Approximate solution operators of unknown PDEs                      



Learn Evaluate

Neural operators

Neural operators can be defined as compositions of integral operators and 

nonlinear activation functions:

Aim: Approximate solution operators of unknown PDEs                      



Connections with NLA and main challenges

Neural operators can be defined as compositions of integral operators and 

nonlinear activation functions:

Choice of KNumerical linear algebra insights



Connections with NLA and main challenges

Operator learning motivates numerical linear algebra research on matrix 

recovery problems and infinite-dimensional NLA.

Class of PDE Solution operator property Matrix structure

1. How should we discretize neural operators?

2. How much training data is required?

3. What PDE can we learn?

4. Which neural operator architecture should we use?

Challenges:



Discretization

Francesca 

Bartolucci

How should we discretize neural operators?

Aliasing-free operator learning



Sample complexity

Diana Halikias

How much data do we need to train neural operators?

Data-efficient operator learning



Learning feasibility

What PDE can we learn?

Samuel Otto

Adjoint-free operator learning



Architectures and approximation theory

Margaret Trautner

Which neural operator architecture should we use?

Multiscale operator learning



Summary

• 9:45-10:05 : Francesca Bartolucci
Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning

• 11:00-11:20 : Diana Halikias
Elliptic PDE Learning Is Provably Data-Efficient

• 15:45-16:05 : Samuel Otto 
Operator learning without the adjoint

• 16:10-16:30 : Margaret Trautner
Operator Learning for Multiscale Elliptic PDEs with History Dependence
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