Scattering, Acoustic Black Holes and
Mathieu Functions

A boundary spectral method for diffraction by multiple
variable poro-elastic plates

Matthew Colbrook
University of Cambridge




Collaborators for papers referenced in this talk

Anastasia Kisil Lorna Ayton Matthew Priddin
(Manchester)  (Cambridge) (Cambridge)

With special thanks also to Justin Jaworski at Lehigh who's discussed
numerous aspects with me, and who | hope to be working with on future
projects soon!



Sketch of talk

Goal: Numerically solve scattering problems with complex boundary
conditions. Want: accurate, fast and flexible (and easy-to-use?).

Outline:
@ Motivation

Building a numerical method
Acoustic black holes

Conclusions and future work

Extra slides: Comparison with BEM - feel free to ask about this in
discussion

Take home message:

o Classical separation of variables can be made into an effective spectral
method for solving 2D scattering problems (multiple plates),
satisfying these requirements.

@ It's particularly flexible with respect to boundary conditions.
@ We can use it to study problems such as acoustic black holes.



Motivation

o Application: A big problem in aero-acoustics is noise reduction.

@ Current challenge: developing fast and accurate numerical tools
for scattering problems.
— predict effect of physical parameters and external forces.

@ Can we model complicated boundary conditions such as elasticity?
(this is difficult via traditional methods)

Elastic — absorbs energy — reduced noise



Wind turbines

See, e.g., C. & Ayton, JSV, 2019 for modelling elastic tips of turbines.



Airport noise (at least before the virus!)

Daytime aircraft noise (dB)
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Average noise levels near Heathrow - a major health concern.



Owls are silent predators - can we copy them?

Wing modelled as poro-elastic plate

See this talk (in particular the awesome video demonstration):
http://www.newton.ac.uk/seminar/20190815133014001

For details on paper that combines numerical method with data from owls
wings, see Lorna Ayton’s wavinar on 7th July.



Acoustic black holes and metamaterials

Constant thickness plate
Damping layer

/ Truncated edge
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Scattering problem

Acoustic 2D scattering governed by the Helmholtz equation
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Typical boundary conditions on 0D:
@ Zero normal velocity (Neumann: prescribed d¢/0n = ¢,)
e Continuity of pressure (Dirichlet: prescribed ¢)

e Impedance/porosity
(Robin: prescribed linear combination of ¢, and ¢)

o Elastic deformation (more on this later)

Sommerfeld radiation condition at infinity (radiates to infinity):
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Crucial for well-posed problem (and important physically)!



Elastic boundary conditions for a single plate

Porous plate —d < x < d, y = 0 with evenly-spaced circular apertures of
radius R and fractional open area ay. Plate deformation 7(x) satisfies:
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Kinematic condition for incident field ¢r:
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N2 = 2[¢]/(Tk3R) = average fluid displacement in apertures.

Endpoint xp either free n”(x0) = 7" (x0) = 0 or clamped 7(x0) = 7'(x0) = 0.



Separation of variables

Elliptic coordinates x = d cosh(v) cos(7), y = dsinh(v)sin(7)

o(v,7) = Z amsem(7)Hsem(v).

m=1

Will determine the unknown coefficients using collocation.



Angular Mathieu functions

Expand in a rapidly convergent sine series:
sem(Q;T) =sem(T) = ZB sin(I7), Q= d’k3/4.

For the even order solutions, eigenvalue problem becomes
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A similar system holds for the odd order solutions.



Radial Mathieu functions

Expand in a rapidly convergent Bessel function series:
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where p,, = 1 if mis even and p,, = 0 if m is odd.

Hsen(v)

Normalisation constants Cp, such that Hse],(0) = 1.

WARNING: Care needed in some regimes to avoid underflow and
overflow associated with cancellations between the Bessel and Hankel
functions. Solve this using asymptotics (details in paper).

Bottom line: With a bit of care, both types of Mathieu functions can be
accurately and efficiently evaluated = can be used with collocation.



Employing the boundary conditions
Expansion of 7 in Chebyshev polynomials of the first kind
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Collocate thin plate equation at N — 4 Chebyshev points
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+4 relations for n BCs = (M + N) x (M + N) system for coefficients.

Bottom line: Easy to employ complicated BCs with collocation and
(standard) spectral methods.



Acoustic black hole

Aluminium plate of thickness h(x) with

B(x) = 1251,7(?;) E =69 x 10°Pa, v =0.35
2 (B0 — mo()a) = —prc§ (1“2 ) 1w

NB: in this talk, physical parameters chosen for aluminium plate in air.



Incident plane wave, kg = 20, h(x) = 0.001x? + hg
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Left: ho = 10-5. Right: hy = 103,



Quadrupole at (x,y) = (—1,0.001), ky = 25,

h(x) = 0.001(x + 1) + hg

5
0.005 40
4
05
0008 Real Part
Imaginary Part 0
-0.01
= 0015 =05
-0.02
o Bl Real Part
-0.025 Imaginary Part
002
15
0.03F o
Y os 0% 0w 092 09
-0.035 2
4 08 06 04 02 0 02 04 06 08 1 4 08 -06 04 02 0 02 04 06 08 1
z T
) %0
120 60 120 2x10 60

15718
6x10° !Iilii
MAns
240 300 240 300

Left: "hg = 10~°. Right: hg = 1073,




In case you were worried about convergence...
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Left: Incident plane wave for hg = 107¢ (dashed) and hg = 103 (full). Right:
Quadrupole for hg = 107° (dashed) and hg = 10~3 (full).

Bottom line: Several digits of relative accuracy, even for these singular

elastic BCs.



Pros and cons vs other boundary type methods

Cons
No singular integrals or quadrature No proof of convergence
Very flexible w.r.t. BCs
Implicit sine series for far field
Can stably evaluate near field
Much easier to use
than state of art BEM
Deals with multiple plates No curved boundaries yet
More accurate than basic BEM No analysis of singularities?
Dense system - no numerical
Faster than basic BEM ana.lysis of structure of
linear system yet,
e.g. low rank, FMM, ...

Bottom line: Proposed method is more suited to the kinds of problems
and applications we are looking at and low-mid frequency scattering off
plates. More work needed for other regimes such as very large kp.



Conclusion

Numerical:
@ Can cope with complex boundary conditions.
@ Achieved goal of accurate, fast and flexible.
@ Bonus: (very) easy to use and modify.
Future work will take advantage of these in applications but physical:
@ Acoustic BHs can lead to “transparent” plates.

@ Acoustic BHs can produce counter-intuitive scattering and sound
absorption.

@ (Not shown) Acoustic BCs can lead to reduced scattered sound.

Can we also employ dampeners to absorb sound?

Future work will also look at other geometries.



References for method in this talk

(Porous/Robin BCs) M.J. Colbrook, M.J. Priddin. “Fast and spectrally accurate
numerical methods for perforated screens.” Submitted, should appear soon!

(Elastic BCs) M.J. Colbrook, A.V. Kisil. “Scattering, Acoustic Black Holes and
Mathieu Functions: A boundary spectral method for diffraction by multiple
variable poro-elastic plates.” Submitted.

(Application with owls) L.J. Ayton, M.J. Colbrook, T.F. Geyer, P. Chaitanya, E.
Sarradj. “Reducing aerofoil-turbulence interaction noise through
chordwise-varying porosity.” Submitted.

For further papers in this program, slides of this talk and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html
https://github.com/MColbrook/MathieuFunctionCollocation

See also related papers:

(Basic M function method + UTM) M.J. Colbrook, L.J. Ayton, A.S. Fokas.
“The unified transform for mixed boundary condition problems in
unbounded domains.” Proceedings of the Royal Society A, 2019.

(Elastic UTM) M.J. Colbrook, L.J. Ayton. “A spectral collocation method for
acoustic scattering by multiple elastic plates.” JSV, 2019.



Comparison with BEM

Compare with Cavalieri, Wolf, & Jaworski, “Numerical solution of acoustic
scattering by finite perforated elastic plates”, Proceedings A 2016.

Uses BEM method with basis functions constructed using vibration modes
of the plate (computed using standard spectral methods).
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Constant parameters:
Q = vacuum bending wave Mach number
e = 0.0021 = fluid-loading
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Left: Convergence of elastic BEM for ky = 0.5 (100 modes). Right: Same but for
ko = 20 (number of modes shown).
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Left: Convergence of Mathieu function collocation for kg = 0.5. The vertical
dashed lines are positioned at the bending wavenumbers kg = ko /2 (too small to
plot for Q = 10). Right: Same but for ky = 20.
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Left: Times taken for elastic BEM. Right: Same but for Mathieu function
collocation. Note the difference in orders of magnitude on the horizontal and

vertical axes - the Mathieu function collocation approach is much faster.
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