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“To classify is to bring order into chaos.” ―  George Pólya

For papers and talk slides/videos, visit: 
http://www.damtp.cam.ac.uk/user/mjc249/home.html

A classification theory for data-driven 

Koopman Spectral Computations
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Data-driven dynamical systems
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Why should you care about Koopman?

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜑𝜆𝑗

(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  
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−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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+ HUGE recent interest in their spectral properties…

Why should you care about Koopman?
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New Papers on
“Koopman Operators”

number of papers

doubles every 5 yrs
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Central in data-driven era

Loads of applications!!!

When I got into Koopman 
and had too much time 
during covid to produce this 
plot. The trend continues…
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Loads of applications!!!

Central in data-driven era



Let’s see an example!

Go to board…
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Extended Dynamic Mode Decomposition (EDMD)

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 
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𝜓𝑘 , 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋 𝑗𝑘

Extended Dynamic Mode Decomposition (EDMD)

𝒦𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=
𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))

⋮ ⋱ ⋮
𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦(1)) ⋯ 𝜓𝑁(𝑦(1))
⋮ ⋱ ⋮

𝜓1(𝑦(𝑀)) ⋯ 𝜓𝑁(𝑦(𝑀))

Ψ𝑌 𝑗𝑘

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

quadrature weights

quadrature points

Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 
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Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 

𝒦 ⟶ 𝕂 = Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
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⋮ ⋱ ⋮

𝜓1(𝑦(𝑀)) ⋯ 𝜓𝑁(𝑦(𝑀))

Ψ𝑌 𝑗𝑘

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

Galerkin
Approximation
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• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.
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Example: EDMD does NOT converge

Spε(𝒦𝑆) = 𝑧 ∈ ℂ: 𝒦𝑆 − 𝑧𝐼 −1 −1 ≤ 𝜀

15

• Duffing oscillator: ሶ𝑥 = 𝑦, ሶ𝑦 = −𝛼𝑦 + 𝑥(1 − 𝑥2), sampled Δ𝑡 = 0.3.

• Gaussian radial basis functions, Monte Carlo integration (𝑀 = 50000)

𝛼 = 0 𝛼 = 0.3



Example: EDMD does NOT converge

Spε(𝒦𝑆) = 𝑧 ∈ ℂ: 𝒦𝑆 − 𝑧𝐼 −1 −1 ≤ 𝜀

16

• Duffing oscillator: ሶ𝑥 = 𝑦, ሶ𝑦 = −𝛼𝑦 + 𝑥(1 − 𝑥2), sampled Δ𝑡 = 0.3.

• Gaussian radial basis functions, Monte Carlo integration (𝑀 = 50000)

𝛼 = 0 𝛼 = 0.3

How do we get convergence here?



Residual DMD (ResDMD)

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘
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https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
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𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚
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∗𝑊Ψ𝑌

𝐾1 𝑗𝑘
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?

What’s the missing

Residual DMD (ResDMD)

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘
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Residual DMD (ResDMD)

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = 𝒦𝑔 − 𝜆𝑔, 𝒦𝑔 − 𝜆𝑔

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘
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Residual DMD (ResDMD)

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = σ𝑘,𝑗=1

𝑁 𝐠𝑘𝐠𝑗 𝒦𝜓𝑘 − 𝜆𝜓𝑘 , 𝒦𝜓𝑗 − 𝜆𝜓𝑗

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = lim

𝑀→∞
𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠 

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Infinite-
dimensional 

residual

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Bound projection errors!
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Let’s get precise!

Go to board…

24



Class of systems: Ω𝔻 = 𝐹: ഥ𝔻 → ഥ𝔻| 𝐹 cts, measure preserving, invertible .

Data an algorithm can use: 𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ ഥ𝔻, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

Theorem A: There does not exist any sequence of deterministic algorithms Γ𝑛  
using 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

NB: Similarly, no random algorithms converging with probability > 1/2.hhhh

Theorem A (impossibility)
Implies 𝓚 is unitary
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Let’s define “algorithm”!

Go to board…
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Class of systems: Ω𝔻 = 𝐹: ഥ𝔻 → ഥ𝔻| 𝐹 cts, measure preserving, invertible .

Data an algorithm can use: 𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ ഥ𝔻, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

Theorem A: There does not exist any sequence of deterministic algorithms Γ𝑛  
using 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

NB: Similarly, no random algorithms converging with probability > 1/2.hhhh

Theorem A (impossibility)
Implies 𝓚 is unitary
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Proof idea: Constructing an adversary

𝐹0: rotation by 𝜋, Sp 𝒦𝐹0
= {±1}

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻|0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅. 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.

Conjugacy of data (𝒙𝒋 → 𝒚𝒋) with 𝑭𝟎

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

29
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𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚



Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).
snapshots
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𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚



Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.
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Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚

snapshots



Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.

Lemma: 𝐹1 = 𝐻1
−1 ∘ 𝐹0 ∘ 𝐻1 on annulus 𝒜1.

Consistent data ⇒ Γ𝑛1
𝐹1 = Γ𝑛1

෪𝐹1 , dist(𝑖, Γ𝑛1
𝐹1 ) ≤ 1

BUT Sp(𝒦𝐹1
) = Sp(𝒦𝐹0

) = {±1}

snapshots

Sp(𝒦) = 𝕋

Sp 𝒦 = {±1}

snapshots

Rotation by 𝜋
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Consistent data ⇒ Γ𝑛𝑘
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) = {±1}
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⋮

CANNOT CONVERGE
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Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts, measure preserving .

𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ 𝒳, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

Theorem B: There exists deterministic algorithms Γ𝑛2,𝑛1
 using input data 

𝒯𝐹 such that lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛2,𝑛1
𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝒳

𝑚.

Double limit lim
𝑛2→∞

lim
𝑛1→∞

Theorem B (possibility using ResDMD ideas)
35



Limits of limits: Towers of algorithms

Def: Γ𝑛𝑘,…,𝑛1
 with lim

𝑛𝑘→∞
… lim

𝑛1→∞
 Γ𝑛𝑘,…,𝑛1

 convergent a tower of algorithms.

First appeared in dynamical systems theory:

Steve Smale

“Is there any purely 
iterative convergent 
rational map for 
polynomial zero 
finding?” Curtis McMullen

“Yes for cubic, no for higher 
degree. Quartic and quintic can 
be solved using towers of 
algorithms. Sextic cannot be 
solved in any number of limits.”

• Smale, “On the efficiency of algorithms of analysis.” Bull. Am. Math. Soc., 1985.
• McMullen, “Families of rational maps and iterative root-finding algorithms.” Annals Math., 1987.
• McMullen, “Braiding of the attractor and the failure of iterative algorithms.” Invent. Math. 1988.
• Doyle, McMullen, “Solving the quintic by iteration.” Acta Math., 1989.

algorithms
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

          Theorem A: SCI > 1

          Theorem B: SCI ≤ 2

 

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

combine SCI = 2

So far literature has only 
proven upper bounds, 
that need not be sharp…
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Results from Koopman literature

SCI: Fewest number of limits needed to solve a computational problem.

Previous techniques prove upper bounds on SCI.              
“N/C”: method need not converge. “n/a”: algorithm not applicable to problem. 

Also in Ulam’s method for Markov processes, SRB measure computation, control,…

Superscript ∗: SCI upper bound reduced by 1 if we can control quadrature errors.

39
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.

• Δ𝑚+1: SCI ≤ 𝑚.

• Σ𝑚: SCI ≤ 𝑚, final limit from below.      
   E.g., Σ1: Γ𝑛 𝐹 ⊂ Sp 𝒦𝐹 + 𝐵2−𝑛 0 .

• Π𝑚: SCI ≤ 𝑚, final limit from above.      
   E.g., Π1: Sp 𝒦𝐹 ⊂ Γ𝑛 𝐹 + 𝐵2−𝑛 0 .

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.

• Δ𝑚+1: SCI ≤ 𝑚.

• Σ𝑚: SCI ≤ 𝑚, final limit from below.      
   E.g., Σ1: Γ𝑛 𝐹 ⊂ Sp 𝒦𝐹 + 𝐵2−𝑛 0 .

• Π𝑚: SCI ≤ 𝑚, final limit from above.      
   E.g., Π1: Sp 𝒦𝐹 ⊂ Γ𝑛 𝐹 + 𝐵2−𝑛 0 .

verification

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

trust output covers spectrum
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Classification for Koopman I

Different classes:

Ω𝒳 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts  

Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts, m. p.  

Ω𝒳
𝛼 = 𝐹: 𝒳 → 𝒳 | 𝐹 mod. cty. 𝛼  

[𝑑𝒳(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝛼(𝑑𝒳 𝑥, 𝑦 )]

Optimal algorithms and 
classifications of 
dynamical systems.

3 limits needed 
in general!

Theorems A + B
42



Classification for 
Koopman II

43



Example: Theorem C
For smooth, measure-preserving 
systems on a torus, learning 
eigenfunctions or even determining 
if there are any has SCI = 2 (even if 
we can sample derivatives).

Finding finite-dimensional 
embeddings in which the dynamics 
are linear (e.g., autoencoders, latent 
space representation) is very hard!

44Classification for 
Koopman II



General tool in data-driven dynamical systems/PDEs
45

Adversarial arguments generalize to:

• “Learning the 𝐹”. E.g., SINDy        (𝑥𝑛+1 = 𝐹(𝑥𝑛))

• Solving PDEs with neural networks (PINNs)

• Learning PDEs from forcing-solution pairs (e.g., hyperbolic)

• Brunton, Proctor, Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proc. Natl. 
Acad. Sci. USA, 2016.

• Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang, “Physics-informed machine learning,” Nature Reviews Physics, 2021.
• Boulle, Halikias, Townsend, “Elliptic PDE learning is provably data-efficient,” Proc. Natl. Acad. Sci. USA, 2023.



Where does this leave us?
• Many problems NECESSARILY require multiple limits.

• New tools for lower bounds (impossibility results) for Koopman learning.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.
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Where does this leave us?
• Many problems NECESSARILY require multiple limits.

• New tools for lower bounds (impossibility results) for Koopman learning.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.

• Future work:
• Other function spaces.
• Partial observations, continuous-time.
• Control and uses of Koopman.
• Other data-driven dynamical system methods.
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Where does this leave us?
• Many problems NECESSARILY require multiple limits.

• New tools for lower bounds (impossibility results) for Koopman learning.

• Combine with upper bounds (algorithms)     
 ⇒ classify difficulty of problems + prove optimality of algorithms.

• Ergodic theory + approximation theory + computational analysis 
 ⇒ started to map out this terrain.

• Future work:
• Other function spaces.
• Partial observations, continuous-time.
• Control and uses of Koopman.
• Other data-driven dynamical system methods.

Where does your problem/method fit into the SCI hierarchy? Is it optimal?
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