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Data-driven dynamical systems

* Compact metric space (X, d) — the state space

| Dynamics (geometry)

e x € X —the state 19th century

cts F: X —» X —the dynamics: x,,.1 = F(x,)



Data-driven dynamical systems

* Compact metric space (X, d) — the state space

e x € X —the state

cts F: X —» X —the dynamics: x,,.1 = F(x,)

e Borel measure w on X

* Function space L* = L*(X, w) (elements g called “observables”)[”

» Koopman operator Kr: L? - L% |[Krg](x) = g(F(x))

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).

| Dynamics (geometry)
19th century

Analysis
20t century



Data-driven dynamical systems

* Compact metric space (X, d) — the state space

| Dynamics (geometry)

e x € X —the state 19th century

* Unknown cts F: X — X —the dynamics: x,,.1 = F(x,)

e Borel measure w on X

Analysis
e Function space L* = L*(X, w) (elements g called “observables”)[” 20t century

» Koopman operator Kr: L? - L?; [Krg](x) = g(F(x))

—_—

* Available snapshot data: {(x(m),y(m) — F(x(m))) m=1,.., M}} Data

215t century

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).



Why should you care about Koopman?

Fundamental in ergodic theory

Peter Walters

An Introduction
to Ergodic Theory

’;é:' Springer

E.g., key to ergodic theorems of
Birkhoff and von Neumann.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Why should you care about Koopman?

Fundamental in ergodic theory Can provide a diagonalization of a nonlinear system.
continuous

spectrum
eigenfunction of X

/ —
z Cr; P2, (x) + ¢9g(x) do

Peter Walters g (.X') =
eigenvalues 4;

g(xn) — :Kn (xo)

= > afyle e+ j 5.9(x0) d0

B spin eigenvalues 4;
/) Springer

An Introduction
to Ergodic Theory

Spectral properties encode: geometric features,
E.g., key to ergodic theorems of invariant measures, transient behavior, long-time
Birkhoff and von Neumann. behavior, coherent structures, quasiperiodicity, etc.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Why should you care about Koopman?

+ HUGE recent interest in their spectral properties...

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.
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Let’s see an example!
Go to board...
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Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1

e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
quadrature points m=1
(Wi ) = Zi=1 Wi ( <_>)1/> () (G GO P (@) Yy (D) ]
“ ' ! ‘ P (x™) o Y (xMD) wy ) \ P (x®) oy (M)
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(@) Py @)\ wy Y@ Yy D)

(K, ;) = IM_ywih; (x ) (™) = : : : :
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Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1
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e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1

(Wi ¥5) = Tpma Wi ) (x ) (D) D) s YD) P ]
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e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Example: EDMD does NOT converge

* Duffing oscillator: x = y, y = —ay + x(1 — x4), sampled At = 0.3.
e Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Spe(Ks) ={z € C: |(Ks —z)7*|7* < &}

Compute Sp,, local adaptive controlon ¢ { 0
i | _ |

.. . Approximation error
[ m.p. system dissipative system ! | p'p' o R
1.5 g = O | spurious | | | B (c) EDMD does not converge
(a) a= 100 b s e A gy
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Example: EDMD does NOT converge

* Duffing oscillator: x = y, y = —ay + x(1 — x4), sampled At = 0.3.
e Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Spe(Ks) ={z € C: |(Ks —z)7*|7* < &}

=
E
=

[ m.p. system dissipative system
1.5 ‘ ‘ ‘ -] , -
o = O spurious a=0.3
1 (a) EDMD evals (b)
<
05/ &5 2 |
% ’.:"\ a;'
0| {(0 -,-s.?:i.::;. 3 |
0.5/ RRX 1
1l — Spg contour |
® EDMD evals
A5 |
&N O \,\?3:\?3 '\@0@ NLO
Re()) Re())

|

Compute Sp,, local adaptive controlon ¢ { 0
i | _ |

Approximation error

4n0_

©). .

EDMD does not converge i

‘ How do we get convergence here? \

LUND (dI 5 1Patlve 5ySULelil)

-------- Proposed (dissipative system)| |

dictionary size
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Residual DMD (ResDMD)

M

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = FPX*W‘P);]
G

M
(Kipro ) = ) Wity (4 () = W)
m K1

=1 (1] () jk

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

M
m=1 ]k

M

(Kipro ;) = Z Wy ) i (y™) =

=1 [KPg] (x(m))

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

What'’s the missing ’q,x Wq,x - -
o X ]k

C., Towns: ctral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Aytor aposition,” J. Fluid Mech., 2023.
Code: https: //glthub com/MCoIbrook/ReS|duaI Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wit (x ™) 1 (x ™) = [gj X ij&]
G jk

(K, ¥j) =

M= iDMs

Wi () P () = [gjx*wwg]
1 [%llik]v(x(m)) Ky

Wi (y(m) ‘Pk(y(m)) = FIJY*WLPKI
1 K> jk

jk

(Khw, Kpj) =

M=

3
I

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = [HJX*WW&]
jk

M=M=

(Ktpw, ;) =

Wi (x (™) 9 (y)) = FPX*WWZ]

1 [ (™) ik

M=

(Khw, Kpj) =

Wml/) (y (m)) 1/Jk()’ (m)) [LIJY WLIJY]
1

3
I

jk

Residuals: g = Z _18Yj, 1Kg—2gll* =(Kg— 219, Kg — Ag)

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = [HJX*WW&]
jk

M=M=

(Ktpw, ;) =

Wi (x (™) 9 (y)) = FPX*WWZ]

1 [ (™) ik

M=

(Khw, Kpj) =

Wml/) (y (m)) l/Jk()’ (m)) [LIJY WLIJY]
1

3
I

jk

Residuals: g = Y, 8¢, 1Kg — Agll* = ¥ ;=1 8k Bj (K — Ay, Kp; — 1))

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Bound projection errors!

M
(i) = ) W () 3 (x ) = W]
m=1 'k
M ] Infinite-
(Kpy, ;) = Z Wi (M) gpk(y(m)l = FPX*W‘IJg] - dlmen5|onal
‘n;/1=1 (K] (™) jk residual
(7(¢k»7€¢j> ~ z Wmlpj(y(m)) 1/Jk(y(m)) — [EPY*I{V‘PK] % *
m=1 jk

Residuals: g = Z _18Y;, I1Kg —gll* = hmg[ — AK" — 1K, + |A*G]g

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Let’s get precise!
Go to board...
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Theorem A (impossibility)

Implies K is unitary

—

Class of systems: Qp = {F: D — D| F cts, measure preserving, invertible}.

Data an algorithm can use: T = {(x, y,)|x € D, ||F(x) — y,,,|| < 27™}.

Theorem A: There does not exist any sequence of deterministic algorithms {I’, }
using 7 such that im I, (F) = Sp(Kr) VF € Qp.
Nn—>00

NB: Similarly, no random algorithms converging with probability > 1/2.



Let’s define “algorithm”!
Go to board...
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Theorem A (impossibility)

Implies K is unitary

—

Class of systems: Qp = {F: D — D| F cts, measure preserving, invertible}.

Data an algorithm can use: T = {(x, y,)|x € D, ||F(x) — y,,,|| < 27™}.

Theorem A: There does not exist any sequence of deterministic algorithms {I’, }
using 7 such that im I, (F) = Sp(Kr) VF € Qp.
Nn—>00

NB: Similarly, no random algorithms converging with probability > 1/2.



Proof idea: Constructing an adversary

F,: rotation by , Sp(?CFO) = {1+1}

Phase transition lemma: Let X = {xq,...,xx5},Y = {y4, ..., yn} be distinct
points in annulus A={x€D|0 <R <||x|| <r <1} with XnY = 0.

There exists a measure-preserving homeomorphism H such that H acts as
the identity on D\A and H(y;) = Fo(H(x;)),j =1, ..., N.

Conjugacy of data (x; — y;) with F

Idea: Use lemma to trick any algorithm into oscillating between spectra.

28

* Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.



Proof idea: Constructing an adversary
Suppose (for contradiction) {I’,,} uses T, 71i_r)1(}oI‘,,L(F) = Sp(Kr) VF € Qp.

Build an adversarial F...

29

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim [, (Fy) = Sp(Kx) = Iny st dist(i, I, (Fy)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (E)
Let X, Y correspond to these snapshots.

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim I (Fl) = Sp(Kg;) = 3Any s.t. dist(i, [, (Fl)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (Fl).
Let X, Y correspond to these snapshots.

Rotation by i

i Mm\\\\\

Lemma: F; = H;! o Fy o H; on annulus A;.
Consistent data = I, (F;) = [}, (F7), dist(i, [, (F)) <1
BUT Sp(Kp,) = Sp(Kf,) = {£1} Sp(X) = {+1}
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,
Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0

BUT Sp(KFr) = Sp(Kp,) = {£1}

CANNOT CONVERGE

k— o0

A

~

O

Cascade of disks
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

— k— oo
Consistent data = I3, (F) = I3, (F), dist(i, I}, (F)) < 1, ny » o
BUT Sp(KFr) = Sp(Xp,) = {£1} CANNOT CONVERGE Py
1
A,
s

Sp(K) = {z:1z| = 1} Sp(¥) = {1} Cascade of disks



Theorem B (possibility using ResDMD ideas)

Q% ={F:X — X | F cts, measure preserving}.
T ={0ym)|x € X, |[F(x) —ymll < 27

Theorem B: There exists deterministic algorithms {Fnz’nl} using input data
Jr such that lim lim I3, ., (F) = Sp(Kp) VF € QY.

nz—)00n1—>00

Double limit lim lim

nz—)OOnl—)OO

35



Limits of limits: Towers of algorithms

Def: {Fnk,---,nl} with lim ... lim [},

nk—)OO ’nl—)OO

L..m, convergent a tower of algorithms.

Ce—

First appeared in dynamical systems theory: algorithms
“Yes for cubic, no for higher
degree. Quartic and quintic can
rational map for be solved using towers of
polynomial zero algorithms. Sextic cannot be
Steve Smale  finding?” CuisMcMullen  solved in any number of limits.’

“Is there any purely
iterative convergent

)

36

Smale, “On the efficiency of algorithms of analysis.” Bull. Am. Math. Soc., 1985.

McMullen, “Families of rational maps and iterative root-finding algorithms.” Annals Math., 1987.
McMullen, “Braiding of the attractor and the failure of iterative algorithms.” Invent. Math. 1988.
Doyle, McMullen, “Solving the quintic by iteration.” Acta Math., 1989.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Theorem A:SCI > 1
combine SCl =2

Theorem B: SCI < 2

So far literature has only
proven upper bounds,
that need not be sharp...

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.



Results from Koopman literature

SCI: Fewest number of limits needed to solve a computational problem.

Algorithm

Comments/Assumptions

Spectral Problem’s Corresponding SCI Upper Bound

KMD

Spectrum

Spectral Measure (if m.p.)

Spectral Type (if m.p.)

Extended DMD [47]

Diffusion maps [90] (see also [10])

general L? spaces

cts.-time, samples V F'
(otherwise additional limit)

cts.-time, m.p. ergodic systems

SCI < 2%

SCI < 2% (general)
SCI < 1 (delay-embedding)

Previous techniques prove upper bounds on SCI.
“N/C”: method need not converge. “n/a”: algorithm not applicable to problem.

varies, see [84]
e.g., a.c. density: SCI < 2%

39

SCI < 2 (see [89]) n/a
S ——
S S VR
ISP A ——

( Are these sharp\?]

Also in Ulam’s method for Markov processes, SRB measure computation, control,...
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.
* A;: One limit, full error control. E.g., d(I},,(F), Sp(Kr)) < 27",

* A, .1:SCl < m.

* Xt SCI < m, final limit from below.

E.g., 2:I,(F) c Sp(Kx) + B,-n(0).
* [1,,,: SCI < m, final limit from above.

E.g., le Sp(g(p) C Fn(F) + Bz—n(O).

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.
* A;: One limit, full error control. E.g., d(I},,(F), Sp(Kr)) < 27",

* A, .1:SCl < m.

* Xt SCI < m, final limit from below.
* [L,,,: SCI inal limit from above.
E.g., I1;: Sp(Kr) c I,(F) + B,-n(0). _

trust output covers spectrum

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.



Theorems A+ B

SCI hierarchy of computing the spectrum )
Key ’l 1
| ]1scl=1[_|noexampleclass o 3
[]SCI=2 =»strictinclusion | . Qy: General systems |
\:I SCI — 3 - o* . 3
E‘ .“.-‘4 AS k .....
CREN - A
= 2k ; 4 I
-1?.0 . Q'}: Measure- "o,’ ’..”. Q% Uniform mod. of cty. |
2 I preservingsystems | . : SRR e, S A
=1 :
8 o;o
B ‘,oﬂ Az T’ .....
E ““““ y L
2 |‘r ...... P 7 I
. Q% N Q): Measure- A.
. . preserving and uniform 1
5 mod. of cty. :

Classification for Koopman | _ 3 imits needed

in general!

Different classes:

Qy ={F: X - X | F cts}

Q¥ ={F:X - X | F cts,m.p.}
O ={F:X - X | F mod.cty.a}
[dx (F(x), F(¥)) < a(dx(x,y))]

Optimal algorithms and
classifications of
dynamical systems.

42



Classification for
Koopman Il

-

Increasing difficulty

N NN NN R NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED)

SCI hierarchy of computing spectral types N

Quantum

Key

23

[ 1sCl=1[_]noexampleclass
|| SCl=2 > strictinclusion

S.C. spectrum

¥ [ ]SCI=3 = example

walk .,
0‘1 A3 F’.
/.___ — __..\. _
) Il
= T 2 2
- Yilis
: // P.P. spectrum S.C. part of measure
T P.P.part of measure | Isitergodic?
Limit cycle A.C. spectrum I \
/A.C. part of measure T i
. - . ) S N— 3 _‘-—:z;
Is it wef.lkly mixing” ( \;5:_:{.;_(
AE=— """
Hyperbolic A High Re Ergodic partition
manifold : chaotic flow || of standard map
Lorenz attractor | =
“‘.7| Az |‘-.'~.
‘o’.‘. A ..'o.
2y - [
?".... a ‘..‘v

A]_ e

Full spectral measure
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Classification for
Koopman Il

Example: Theorem C
For smooth, measure-preservin
systems on a torus, learning
eigenfunctions or even determining
if there are any has SCI = 2 (even if
we can sample derivatives).

Finding finite-dimensional
embeddings in which the dynamics
are linear (e.g., autoencoders, latent
space representation) is very hard!

-

Increasing difficulty

SCI hierarchy of computing spectral types

Quantum
walk

\

Key

]scli=1] |no example class
|| SCl=2 > strictinclusion
| | SCI=3 == example

As

|E .
‘e
"

*
.0

\‘ 7
A /
A

.“(’ 3
/ L
¢ R
i |}
- ;
-

Limit cycle |

P.P. spectrum
i P.P. part of measure
A.C. spectrum

. /A.C. part of measure

Wiz e W Is it weakly mixing?
{\ T4 E "

1,

S.C. part of measure
[ Isitergodic?

SN \ =
( S = ===
c— - 7 &

Hyperbolic | A High Re Ergodic partition
manifold : chaotic flow || of standard map
Lorenz attractor | &
o'ﬂ Az k’c..
...... A &."..
2 : Il
v. ..... —_— ?
oy Al .

Full spectral measure :
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General tool in data-driven dynamical systems/PDEs

Adversarial arguments generalize to:

e “Learning the F”. E.g., SINDy (X541 = F(x,))
 Solving PDEs with neural networks (PINNs)

 Learning PDEs from forcing-solution pairs (e.g., hyperbolic)

Brunton, Proctor, Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proc. Natl.
Acad. Sci. USA, 2016.

Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang, “Physics-informed machine learning,” Nature Reviews Physics, 2021.
Boulle, Halikias, Townsend, “Elliptic PDE learning is provably data-efficient,” Proc. Natl. Acad. Sci. USA, 2023.



Where does this leave us?

* Many problems NECESSARILY require multiple limits.
* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.
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Where does this leave us?
* Many problems NECESSARILY require multiple limits.

* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.

Lightyear

was right!
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Where does this leave us?

* Many problems NECESSARILY require multiple limits.
* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.

* Future work:
e Other function spaces. Lightyear
* Partial observations, continuous-time.
e Control and uses of Koopman.
e Other data-driven dynamical system methods.

was right!
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Where does this leave us?

* Many problems NECESSARILY require multiple limits.
* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.

* Future work:
e Other function spaces. Lightyear
* Partial observations, continuous-time.
e Control and uses of Koopman.
e Other data-driven dynamical system methods.

was right!

Where does your problem/method fit into the SCI hierarchy? Is it optimal?
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