
Chapter 1

Variational Methods

1.1 Stationary Values of Functions

Recall Taylor’s Theorem for a function f(x) in three dimensions with a displacement

δx = (δx, δy, δz):

f(x + δx) = f(x) +
∂f

∂x
δx+

∂f

∂y
δy +

∂f

∂z
δz + higher order terms (1.1)

so that

δf = f(x + δx) − f(x) =
∂f

∂x
δx+

∂f

∂y
δy +

∂f

∂z
δz + · · ·

= ∇f . δx + · · · .

In the limit |δx| → 0 we write

df = ∇f . dx. (1.2)

This result is true in any number n of dimensions.

At an extremum (a maximum or minimum) f must be stationary, i.e. the first variation

df must vanish for all possible directions of dx. This can only happen if ∇f = 0 there.

Note that if we try to find the extrema of f by solving ∇f = 0, we may also find other

stationary points of f which are neither maxima nor minima, for instance saddle points.

(This is the same difficulty as in one dimension, where a stationary point may be a point

of inflection rather than a maximum or minimum.)

If we need to find the extrema of f in a bounded region – for instance,
within a two-dimensional unit square – then not only must we solve
∇f = 0 but we must also compare the resulting values of f with those
on the boundary of the square. It is quite possible for the maximum
value to occur on the boundary without that point being a stationary
one.
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Example: Consider the Gaussian ‘bump’:

f(x, y, z) = exp(−x2 − y2 − z2).

Then ∇f = −2(x, y, z)f . Setting this equal to zero gives

(x, y, z) = (0, 0, 0), i.e. maximum at the origin.

Constrained stationary values

Suppose that we wish to find the extrema of f(x) subject to a

constraint of the form g(x) = c, where c is some constant. In

this case, the first variation df must still vanish, but now not

all possible directions for dx are allowed: only those which lie

in the surface defined by g(x) = c. Hence, since df = ∇f .dx,

the vector ∇f must lie perpendicular to the surface.

But recall that the normal to a surface of the form g(x) = c is in the direction ∇g.
Hence ∇f must be parallel to ∇g, i.e., ∇f = λ∇g for some scalar λ.

This gives us the method of Lagrange’s undetermined multiplier : solve the n equations

∇(f − λg) = 0 (1.3)

for x together with the single constraint equation

g(x) = c. (1.4)

The resulting values of x give the stationary points of f subject to the constraint. Note

that while solving the total of n+1 equations it is usually possible to eliminate λ without

ever finding its value; hence the description “undetermined”.

If there are two constraints g(x) = c and h(x) = k, then we

need a multiplier for each constraint, and we solve

∇(f − λg − µh) = 0 (1.5)

together with the two constraints. The extension to higher num-

bers of constraints is straightforward.
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Worked Example 1: Constrained Maximization

A cuboid is inscribed in an ellipsoid with semi-axes

a, b and c. What is its maximum volume?

We must find values of x, y and z which max-

imize the cuboid’s volume f(x, y, z) ≡ 8xyz sub-

ject to the constraint

g(x, y, z) ≡ x2

a2
+
y2

b2
+
z2

c2
= 1

which ensures that the vertices of the cuboid lie on the surface of the ellipse. We introduce

an undetermined multiplier λ and consider the three components of the equation ∇(f −
λg) = 0:

8yz − 2λx

a2
= 0,

8xz − 2λy

b2
= 0,

8xy − 2λz

c2
= 0.

Multiplying these equations by x, y and z respectively, we see that

8xyz = 2λ
x2

a2
= 2λ

y2

b2
= 2λ

z2

c2
.

Hence either λ = 0, or
x2

a2
=
y2

b2
=
z2

c2
.

The first possibility would imply that the volume 8xyz is zero, which is clearly a minimum

rather than the maximum which we seek, so we exclude this from now on. Remembering

the constraint
x2

a2
+
y2

b2
+
z2

c2
= 1

we conclude that
x2

a2
=
y2

b2
=
z2

c2
=

1

3
,

i.e., (x, y, z) = 1√
3
(a, b, c). The required maximum volume is therefore 8abc/3

√
3.

Note that we can also, if we wish, deduce that λ = 4abc/
√

3, but this is of no practical

relevance.
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1.2 Functionals

Now introduce functionals, real-valued mappings whose arguments

are functions, i.e. F : one or more functions → R.

Let y(x) be a function of x in some interval a < x < b, and consider the definite

integral

F =

∫ b

a

(
{y(x)}2 + y′(x)y′′(x)

)
dx. (1.6)

F is clearly independent of x; instead it depends only on the function y(x). F is a simple

example of a functional, and to show the dependence on y we normally denote it F [y].

We can also think of functionals as an extension of the concept of a function of many

variables – e.g. g(x1, x2, . . . , xn), a function of n variables – to a function of an infinite

number of variables, because F depends on every single value that y takes in the range

a < x < b.

We shall be concerned in this chapter with functionals of the form

F [y] =

∫ b

a

f(x, y, y′) dx (1.7)

where f depends only on x and the value of y and its first derivative at x. However,

the theory can be extended to more general functionals (for example, with functions

f(x, y, y′, y′′, y′′′, . . . ) which depend on higher derivatives, or double integrals with two

independent variables x1 and x2 instead of just x).

1.3 Variational Principles

Functionals are useful because many laws of physics and of physical chemistry can be

recast as statements that some functional F [y] is minimised.

For example, a heavy chain suspended between two fixed points hangs in equilibrium

in such a way that its total gravitational potential energy (which can be expressed as a

functional) is minimised. A mechanical system of heavy elastic strings minimises the total

potential energy, both elastic and gravitational. Similar principles apply when electric

fields and charged particles are present (we include the electrostatic potential energy)

and when chemical reactions take place (we include the chemical potential energy).

Two fundamental examples of such variational principles are due to Fermat and

Hamilton.
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Fermat’s Principle

Consider a light ray passing through a medium of variable refractive index µ(r). The

path it takes between two fixed points A and B is such as to minimise the optical path

length
∫ B

A

µ(r) dl, (1.8)

where dl is the length of a path element.

Strictly speaking, Fermat’s principle only applies in the geometrical optics approximation; i.e., when the
wavelength of the light is small compared with the physical dimensions of the optical system, so that light
may be regarded as rays. This is true for a telescope, but not for Young’s slits: when the geometrical
optics approximation fails to hold, diffraction occurs.

For example, consider air above a hot surface, say a tarmac road

on a hot day. The air is hotter near the road and cooler above, so

that µ is smaller closer to the road surface. A light ray travelling

from a car to an observer minimises the optical path length by

staying close to the road, and so bends appropriately. The light

seems to the observer to come from a low angle, leading to a virtual

image (and hence to the “mirage” effect).

Hamilton’s Principle of Least Action

Consider a mechanical system with kinetic energy T and potential energy V which is in

some given configuration at time t1 and some other configuration at time t2. Define the

Lagrangian of the system by

L = T − V, (1.9)
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and define the action to be

S =

∫ t2

t1

L dt (1.10)

(a functional which depends on the way the system moves). Hamilton’s principle states

that the actual motion of the system is such as to minimise the action.
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1.4 The Calculus of Variations

How do we find the function y(x) which minimises, or more generally makes stationary,

our archetypal functional

F [y] =

∫ b

a

f(x, y, y′) dx, (1.11)

with fixed values of y at the end-points (viz. fixed y(a) and y(b))?

We consider changing y to some “nearby” function y(x) + δy(x), and calculate the

corresponding change δF in F (to first order in δy). Then F is stationary when δF = 0

for all possible small variations δy.

Note that a more “natural” notation would be to write dF rather than δF , since we will consider only the
first-order change and ignore terms which are second order in δy. However, the notation δ is traditional
in this context.

Now

δF = F [y + δy] − F [y]

=

∫ b

a

f(x, y + δy, y′ + (δy)′) dx−
∫ b

a

f(x, y, y′) dx

=

∫ b

a

{
f(x, y, y′) +

∂f

∂y
δy +

∂f

∂y′
(δy)′

}
dx−

∫ b

a

f(x, y, y′) dx

[using a Taylor expansion to first order]

=

∫ b

a

{
∂f

∂y
δy +

∂f

∂y′
(δy)′

}
dx

=

[
∂f

∂y′
δy

]b

a

+

∫ b

a

{
∂f

∂y
δy − d

dx

(
∂f

∂y′

)
δy

}
dx

[integrating by parts]

=

∫ b

a

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
δy dx

since δy = 0 at x = a, b (because y(x) is fixed there). It is clear that δF = 0 for all

possible small variations δy(x) if and only if

d

dx

(
∂f

∂y′

)
=
∂f

∂y
. (1.12)

This is Euler’s equation.
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Notation

∂f/∂y′ means “differentiate with respect to y′, keeping x and y

constant”, and it seems impossible for y′ to change if y does not.

But ∂/∂y and ∂/∂y′ in Euler’s equation are just formal derivatives

(as though y and y′ were unconnected) and in practice it is easy

to do straightforward “ordinary” partial differentiation.

Example: if f(x, y, y′) = x(y′2 − y2) then

∂f

∂y
= −2xy,

∂f

∂y′
= 2xy′, (1.13)

∂f

∂x
= (y′2 − y2).

Note however that d/dx and ∂/∂x mean very different things: ∂/∂x means “keep

y and y′ constant” whereas d/dx is a so-called “full derivative”, so that y and y′ are

differentiated with respect to x as well.

Continuing with the above example (1.13),

∂

∂x

(
∂f

∂y′

)
= 2y′, (1.14)

but
d

dx

(
∂f

∂y′

)
=

d

dx
(2xy′) = 2y′ + 2xy′′. (1.15)

Hence Euler’s equation for this example is

2y′ + 2xy′′ = −2xy (1.16)

or

y′′ +
1

x
y′ + y = 0 (1.17)

(Bessel’s equation of order 0).

Several Dependent Variables

Suppose, instead of just one dependent variable y(x), we have n dependent variables

y1(x), y2(x), . . . , yn(x), so that our functional is

F [y1, . . . , yn] =

∫ b

a

f(x, y1, . . . , yn, y
′
1, . . . , y

′
n) dx ? (1.18)
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In this case, Euler’s equation applies to each yi(x) independently, so that

d

dx

(
∂f

∂y′i

)
=
∂f

∂yi
(1.19)

for i = 1, . . . , n.

The proof is very similar to before:

δF =

∫ b

a

{
∂f

∂y1
δy1 + · · · + ∂f

∂yn
δyn +

∂f

∂y′

1

(δy1)
′ + · · · + ∂f

∂y′

n

(δyn)′
}

dx

=

∫ b

a

n∑

i=1

{
∂f

∂yi
δyi +

∂f

∂y′

i

(δyi)
′

}
dx

=

n∑

i=1

∫ b

a

{
∂f

∂yi
− d

dx

(
∂f

∂y′

i

)}
δyi dx

using the same manipulations (Taylor expansion and integration by parts). It is now clear that we can
only have δF = 0 for all possible variations of all the yi(x) if Euler’s equation applies simultaneously to
each and every one of the yi.

1.5 A First Integral

In some cases, it is possible to find a first integral (i.e., a constant of motion) of Euler’s

equation. Consider
df

dx
=
∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
(1.20)

(calculating d
dx
f
(
x, y(x), y′(x)

)
using the chain rule). Using Euler’s equation,

df

dx
=
∂f

∂x
+ y′

d

dx

(
∂f

∂y′

)
+ y′′

∂f

∂y′

=
∂f

∂x
+

d

dx

(
y′
∂f

∂y′

)

[product rule]

so that
d

dx

(
f − y′

∂f

∂y′

)
=
∂f

∂x
. (1.21)

Now, if f has no explicit x -dependence, so that ∂f/∂x = 0, we immediately

deduce that

f − y′
∂f

∂y′
= constant. (1.22)
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(Note that “f has no explicit x-dependence” means that x does

not itself appear in the expression for f , even though y and y′ im-

plicitly depend on x; so f = y′2−y2 has no explicit x-dependence

while f = x(y′2 − y2) does.)

If there are n dependent variables y1(x), . . . , yn(x), then the first integral above is

easily generalised to

f −
n∑

i=1

y′i
∂f

∂y′i
= constant (1.23)

if f has no explicit x-dependence.

1.6 Applications of Euler’s Equation

Geodesics

A geodesic is the shortest path on a given surface between two specified points A and

B. We will illustrate the use of Euler’s equation with a trivial example: geodesics on the

Euclidean plane.

The total length of a path from (x1, y1) to (x2, y2) along the path y(x) is given by

L =

∫ B

A

dl =

∫ B

A

√
dx2 + dy2

=

∫ B

A

√

1 +

(
dy

dx

)2

dx =

∫ x2

x1

√
1 + y′2 dx.

Note that we assume that y(x) is single-valued, i.e., the path does not curve back on

itself.

We wish to minimise L over all possible paths y(x) with the end-points held fixed, so

that y(x1) = y1 and y(x2) = y2 for all paths. This is precisely our archetypal variational

problem with

f(x, y, y′) =
√

1 + y′2, (1.24)
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and hence
∂f

∂y
= 0,

∂f

∂y′
=

y′√
1 + y′2

. (1.25)

The Euler equation is therefore

d

dx

(
y′√

1 + y′2

)
= 0 =⇒ y′√

1 + y′2
= k, a constant. (1.26)

So y′2 = k2/(1 − k2). It is clear that k 6= ±1, so y′ is a constant, m say. Hence the

solutions of Euler’s equation are the functions

y = mx+ c (1.27)

(where m and c are constants) – i.e., straight lines! To find the particular values of m

and c required in this case we now substitute in the boundary conditions y(x1) = y1,

y(x2) = y2.

It is important to note two similarities with the technique of minimising a function f(x) by solving
∇f = 0.

Firstly, we have not shown that this straight line does indeed produce a minimum of L: we have shown
only that L is stationary for this choice, so it might be a maximum or even some kind of “point of
inflection”. It is usually easy to confirm that we have the correct solution by inspection – in this case it
is obviously a minimum. (There is no equivalent of the one-dimensional test f ′′(x) > 0 for functionals,
or at least not one which is simple enough to be of any use.)

Secondly, assuming that we have indeed found a minimum, we have shown only that it is a local minimum,
not a global one. That is, we have shown only that “nearby” paths have greater length. Once again,
however, we usually confirm that we have the correct solution by inspection. Compare this difficulty
with the equivalent problem for functions, illustrated by the graph below.

An alternative method of solution for this simple geodesic prob-

lem is to note that f(x, y, y′) =
√

1 + y′2 has no explicit x-

dependence, so we can use the first integral:

const. = f − y′
∂f

∂y′
=
√

1 + y′2 − y′
y′√

1 + y′2

=
1√

1 + y′2
,
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i.e., y′ is constant (as before).

Worked Example 2: Geodesics on the Surface of a Sphere

Recall that in orthogonal curvilinear coordinates (q1, q2, q3),

dr = h1 dq1 e1 + h2 dq2 e2 + h3 dq3 e3.

In spherical polar coordinates,

dr = dr er + r dθ eθ + r sin θ dφ eφ.

Without loss of generality, we may take the sphere to be of

unit radius: the length of a path from A to B is then

L =
∫ B

A
|dr|

=
∫ B

A

√
dθ2 + sin2 θ dφ2 [since dr = 0]

=
∫ θB

θA

√
1 + sin2 θ φ′2 dθ

where the path is described by the function φ(θ). Using Euler’s equation,

d

dθ

(
∂

∂φ′

√
1 + sin2 θ φ′2

)
=

∂

∂φ

√
1 + sin2 θ φ′2 = 0

so that
sin2 θ φ′

√
1 + sin2 θ φ′2

is a constant, c say. Hence

φ′ =
c

sin θ
√

sin2 θ − c2

and the problem reduces to integrating this with respect to θ.

Substitute u = cot θ so that du = − cosec2 θ dθ. Then

φ =
∫ −c du√

1−c2 cosec2 θ

=
∫ −c du√

1−c2(1+u2)

=
∫ −du√

a2−u2
where a =

√
1 − c2

c

= cos−1(u/a) + φ0

where φ0 is a constant of integration. Hence the geodesic path is given by

cot θ = a cos(φ− φ0)

and the arbitrary constants a and φ0 must be found using the end-points. This is a great

circle path.
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The Brachistochrone

A bead slides down a frictionless wire, starting from rest at a point A. What shape must

the wire have for the bead to reach some lower point B in the shortest time? (A similar

device was used in some early clock mechanisms.)

Using conservation of energy, 1
2
mv2 = mgy, i.e., v =

√
2gy. Also dl = v dt, so

dt =

√
dx2 + dy2

√
2gy

=
1√
2g

√
1 + y′2
√
y

dx. (1.28)

The time taken to reach B is therefore

T [y] =
1√
2g

∫ xB

0

√
1 + y′2

y
dx (1.29)

and we wish to minimise this, subject to y(0) = 0, y(xB) = yB. We note that the

integrand has no explicit x-dependence, so we use the first integral

const. =

√
1 + y′2

y
− y′

∂

∂y′

√
1 + y′2

y

=

√
1 + y′2

y
− y′2√

y
√

1 + y′2

=
1√

y
√

1 + y′2
.

Hence y(1 + y′2) = c, say, a constant, so that

y′ =

√
c− y

y
or

√
y

c− y
dy = dx. (1.30)

Substitute y = c sin2 θ; then

dx = 2c

√
sin2 θ

1 − sin2 θ
sin θ cos θ dθ

= 2c sin2 θ dθ

= c(1 − cos 2θ) dθ.
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Using the initial condition that when y = 0 (i.e., θ = 0), x = 0, we obtain

x = c(θ − 1
2
sin 2θ),

y = c sin2 θ

which is an inverted cycloid. The constant c is found by applying the other condition,

y = yB when x = xB .

Note that strictly speaking we should have said that y′ = ±
√

(c − y)/y above. Taking the negative root
instead of the positive one would have lead to

x = −c(θ − 1
2 sin 2θ),

y = c sin2 θ,

which is exactly the same curve but parameterised in the opposite direction.

Light and Sound

Consider light rays travelling through a medium with refractive index inversely propor-

tional to
√
z where z is the height. By Fermat’s principle, we must minimise

∫
dl√
z
. (1.31)

This is exactly the same variational problem as for the Brachistochrone, so we conclude

that light rays will follow the path of a cycloid.

More realistically, consider sound waves in air. Sound waves

obey a principle similar to Fermat’s: except at very long wave-

lengths, they travel in such a way as to minimise the time taken

to travel from A to B, ∫ B

A

dl

c
, (1.32)
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where c is the (variable) speed of sound (comparable to 1/µ for

light). Consider a situation where the absolute temperature T of

the air is linearly related to the height z, so that T = αz + T0 for

some temperature T0 at ground level. Since the speed of sound is

proportional to the square root of the absolute temperature, we

have c ∝
√
αz + T0 =

√
Z say. This leads once again to the

Brachistochrone problem (for Z rather than z), and we conclude

that sound waves follow paths z(x) which are parts of cycloids,

scaled vertically by a factor 1/α (check this as an exercise).

1.7 Hamilton’s Principle in Mechanical Problems

Hamilton’s principle can be used to solve many complicated problems in rigid-body me-

chanics. Consider a mechanical system whose configuration can be described by a number

of so-called generalised coordinates q1, q2, . . . , qn. Examples:

• A particle with position vector r = (x1, x2, x3) moving through

space. Here we can simply let q1 = x1, q2 = x2 and q3 = x3:

there are three generalised coordinates.

• A pendulum swinging in a vertical plane: here there is only

one generalised coordinate, q1 = θ, the angle to the vertical.

• A rigid body (say a top) spinning on its axis on a smooth plane.

This requires five generalised coordinates: two to describe the

position of the point of contact on the plane, one for the angle

of the axis to the vertical, one for the rotation of the axis

about the vertical, and one for the rotation of the top about

its own axis.

The Lagrangian L = T − V is a function of t, q1, . . . , qn and q̇1, . . . , q̇n, so

S =

∫
L
(
t, q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)

)
dt. (1.33)
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This is a functional with n dependent variables qi(t), so we can use Euler’s equation (with

t playing the role of x, and qi(t) playing the role of yi(x)) for each of the qi independently:

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
(1.34)

for each i. In this context these equations are known as the Euler–Lagrange equations.

In the case when L has no explicit time-dependence, the first integral (from §1.5)

gives us that

L −
n∑

i=1

q̇i
∂L

∂q̇i
= constant. (1.35)

It is frequently the case that T is a homogeneous quadratic in the q̇i, i.e., it is of the form
n∑

i=1

n∑

j=1

aij(q1, . . . , qn) q̇iq̇j (1.36)

where the coefficients aij do not depend on any of the “generalised velocities” q̇i or on t,

and V also does not depend on the velocities or time so that V = V (q1, . . . , qn). Then it

can be shown that

L −
n∑

i=1

q̇i
∂L

∂q̇i
= (T − V ) − 2T = −(T + V ), (1.37)

i.e., the total energy E = T + V is conserved when there is no explicit time-dependence.

This fails however when the external forces vary with time or when the potential is

velocity-dependent, e.g., for motion in a magnetic field.

A Particle in a Conservative Force Field

Here

L = 1
2
m(ẋ2

1 + ẋ2
2 + ẋ2

3) − V (x1, x2, x3); (1.38)

hence the Euler–Lagrange equations are

d

dt
(mẋ1) = −∂V

∂x1
,

d

dt
(mẋ2) = −∂V

∂x2
,

d

dt
(mẋ3) = −∂V

∂x3
,

or in vector notation
d

dt
(mṙ) = −∇V, (1.39)

i.e., F = ma where F = −∇V is the force and a = r̈ is the

acceleration.
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Two Interacting Particles

Consider a Lagrangian

L = 1
2
m1|ṙ1|2 + 1

2
m2|ṙ2|2 − V (r1 − r2), (1.40)

where the only force is a conservative one between two particles with masses m1 and m2

at r1 and r2 respectively, and depends only on their (vector) separation.

We could use the six Cartesian coordinates of the particles as generalised coordinates;

but instead define

r = r1 − r2, (1.41)

the relative position vector, and

R =
m1r1 +m2r2

M
, (1.42)

the position vector of the centre of mass, where M = m1 +m2 is the total mass. Now

|ṙ1|2 =
∣∣∣Ṙ +

m2

M
ṙ
∣∣∣
2

=
(
Ṙ +

m2

M
ṙ
)

.
(
Ṙ +

m2

M
ṙ
)

= |Ṙ|2 +
m2

2

M2
|ṙ|2 +

2m2

M
Ṙ . ṙ

and similarly

|ṙ2|2 = |Ṙ|2 +
m2

1

M2
|ṙ|2 − 2m1

M
Ṙ . ṙ.

Let r = (x1, x2, x3), R = (X1, X2, X3), and use these as generalised coordinates. Then

L = 1
2
M |Ṙ|2 +

m1m2

2M
|ṙ|2 − V (r)

= 1
2
M(Ẋ2

1 + Ẋ2
2 + Ẋ2

3 ) +
m1m2

2M
(ẋ2

1 + ẋ2
2 + ẋ2

3) − V (x1, x2, x3).

The Euler–Lagrange equation for Xi is therefore

d

dt
(MẊi) = 0, (1.43)

i.e., R̈ = 0 (the centre of mass moves with constant velocity); and for xi is

d

dt

(m1m2

M
ẋi

)
= −∂V

∂xi
, (1.44)

i.e., µr̈ = −∇V where µ is the reduced mass m1m2/(m1 + m2) (the relative position

vector behaves like a particle of mass µ).

Note that the kinetic energy T is a homogeneous quadratic in the Ẋi and ẋi; that V

does not depend on the Ẋi and ẋi; and that L has no explicit t-dependence. We can

deduce immediately that the total energy E = T + V is conserved.
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1.8 The Calculus of Variations with Constraint

In §1.1 we studied constrained variation of functions of several variables. The exten-

sion of this method to functionals (i.e., functions of an infinite number of variables) is

straightforward: to find the stationary values of a functional F [y] subject to G[y] = c, we

instead find the stationary values of F [y] − λG[y], i.e., find the function y which solves

δ(F − λG) = 0, and then eliminate λ using G[y] = c.

Worked Example 3: The Catenary

Consider a uniform chain of length L, with mass per unit

length ρ, hanging under gravity between the points (−1, 1)

and (1, 1). It adopts a form of minimum potential energy,

that is it minimises
∫ 1

−1

ρgy dl ∝ F [y] ≡
∫ 1

−1

y
√

1 + y′2 dx

subject to the prescribed length,

L = G[y] ≡
∫ 1

−1

√
1 + y′2 dx.

This is equivalent to minimising F − λG, i.e., to solving

δ

∫ 1

−1

(y − λ)
√

1 + y′2 dx = 0.

The integrand has no explicit x-dependence, so we use the first integral

c = (y − λ)
√

1 + y′2 − y′(y − λ) y′√
1+y′2

= y−λ√
1+y′2

,

where c is a constant, whence

x =

∫
c dy√

(y − λ)2 − c2
.

Making the substitution y = λ+ c cosh θ we obtain

x = c cosh−1

(
y − λ

c

)
+ x0

where x0 is an arbitrary constant of integration. Hence the solution is

y = λ+ c cosh

(
x− x0

c

)
,
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which is a catenary.

We have three unknown constants, to be found using the equation for y at each of the

two end-points, together with the constraint equation. We immediately obtain x0 = 0 by

symmetry (or by solving the end-point equations for x0). Now y′ = sinh(x/c) and hence√
1 + y′2 = cosh(x/c); so

L =
∫ 1

−1
cosh x

c
dx

= 2c sinh 1
c
.

This equation must, in general, be solved numerically for c given L; then λ can be found

using the end-point at (1, 1),

1 = λ+ c cosh
1

c
.

This completes the solution.
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1.9 The Variational Principle for Sturm–Liouville

Equations

We will now show how variational calculus can be used in the solution of second order

linear ordinary differential equations of fairly general type. Under appropriate conditions,

any second order ODE can be written as a Sturm-Liouville problem with weight function

w. We shall show in this section that the following three problems are equivalent:

(i) Find the eigenvalues λ and eigenfunctions y(x) which solve the Sturm–Liouville

problem

− d

dx

(
p(x)y′

)
+ q(x)y = λw(x)y (1.45)

in a < x < b, where neither p nor w vanish in the interval.

(ii) Find the functions y(x) for which

F [y] =

∫ b

a

(py′2 + qy2) dx (1.46)

is stationary subject to G[y] = 1 where

G[y] =

∫ b

a

wy2 dx. (1.47)

The eigenvalues of the equivalent Sturm–Liouville problem in (i) are then given by

the values of F [y].

(iii) Find the functions y(x) for which

Λ[y] =
F [y]

G[y]
(1.48)

is stationary; the eigenvalues of the equivalent Sturm–Liouville problem are then

given by the values of Λ[y].

Hence Sturm–Liouville problems can be reformulated as variational problems.

Note the similarity between (iii) and the stationary property of the eigenvalues of a symmetric matrix
(recall that it is possible to find the eigenvalues of a symmetric matrix A by finding the stationary values
of a

TAa/aT
a over all possible vectors a). The two facts are in fact closely related.

To show that (ii) is equivalent to (i), consider

δ(F − λG) = δ

∫ b

a

(py′2 + qy2 − λwy2) dx. (1.49)
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Using Euler’s equation, F − λG is stationary when

d

dx
(2py′) = 2qy − 2λwy, (1.50)

i.e.,

− d

dx
(py′) + qy = λwy, (1.51)

which is the required Sturm–Liouville problem: note that the Lagrange multiplier of the

variational problem is the same as the eigenvalue of the Sturm–Liouville problem.

Furthermore, multiplying the Sturm–Liouville equation by y and integrating, we ob-

tain ∫ b

a

(
−y d

dx
(py′) + qy2

)
dx = λ

∫ b

a

wy2 dx = λG[y] = λ (1.52)

using the constraint. Hence

λ =

∫ b

a

(
−y d

dx
(py′) + qy2

)
dx

= [−ypy′]ba +

∫ b

a

(py′2 + qy2) dx

[integrating by parts]

=

∫ b

a

(py′2 + qy2) dx = F [y],

using “appropriate” boundary conditions. This proves that the stationary values of F [y]

give the eigenvalues.

There are two ways of showing that (ii) is equivalent to (iii).

The first, informal way is to note that multiplying y by some constant α say does not in fact change the
value of Λ[y]. This implies that when finding the stationary values of Λ we can choose to normalise y so
that G[y] = 1, in which case Λ is just equal to F [y]. So finding the stationary values of Λ is equivalent
to finding the stationary values of F subject to G = 1.

The second, formal way is to calculate

δΛ =
F + δF

G + δG
− F

G

=
F + δF

G

(
1 − δG

G

)
− F

G

[using a Taylor expansion for (1 + δG/G)−1 to first order]

=
δF

G
− F δG

G2
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(again to first order). Hence δΛ = 0 if and only if δF = (F/G) δG;

that is, Λ is stationary if and only if

δF − Λ δG = 0. (1.53)

But this is just the same problem as (ii); so finding the stationary

values of Λ is the same as finding the stationary values of F subject

to G = 1.

In the usual case that p(x), q(x) and w(x) are all positive, we have that Λ[y] ≥ 0.

Hence all the eigenvalues must be non-negative, and there must be a smallest eigenvalue

λ0; Λ takes the value λ0 when y = y0, the corresponding eigenfunction. But what is the

absolute minimum value of Λ over all functions y(x)? If it were some value µ < λ0, then

µ would be a stationary (minimum) value of Λ and would therefore be an eigenvalue,

contradicting the statement that λ0 is the smallest eigenvalue. Hence Λ[y] ≥ λ0 for any

function y(x).

As an example, consider the simple harmonic oscillator

−y′′ + x2y = λy (1.54)

subject to y → 0 as |x| → ∞. This is an important example as it is a good model for

many physical oscillating systems. For instance, the Schrödinger equation for a diatomic

molecule has approximately this form, where λ is proportional to the quantum mechanical

energy level E; we would like to know the ground state energy, i.e., the eigenfunction

with the lowest eigenvalue λ.

Here p(x) = 1, q(x) = x2 and w(x) = 1, so

Λ[y] =

∫∞
−∞(y′2 + x2y2) dx
∫∞
−∞ y2 dx

. (1.55)

We can solve this Sturm–Liouville problem exactly: the lowest eigenvalue turns out to

be λ0 = 1 with corresponding eigenfunction y0 = exp(−1
2
x2). But suppose instead that

we didn’t know this; we can use the above facts about Λ to try to guess at the value of

λ0. Let us use a trial function

ytrial = exp(−1
2
αx2), (1.56)

where α is a positive constant (in order to satisfy the boundary conditions). Then

Λ[ytrial] =
(α2 + 1)

∫∞
−∞ x2 exp(−αx2) dx

∫∞
−∞ exp(−αx2) dx

. (1.57)
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We recall that
∫∞
−∞ exp(−αx2) dx =

√
π/α and

∫∞
−∞ x2 exp(−αx2) dx = 1

2

√
π/α3 (by

integration by parts). Hence Λ[ytrial] = (α2 + 1)/2α.

We know that Λ[ytrial], for any α, cannot be less than λ0. The smallest value of

(α2 + 1)/2α is 1, when α = 1; we conclude that λ0 ≤ 1, which gives us an upper bound

on the lowest eigenvalue.

In fact this method has given us the exact eigenvalue and eigenfunction; but that is

an accident caused by the fact that this is a particularly simple example!

The Rayleigh–Ritz Method

The Rayleigh–Ritz method is a systematic way of estimating the eigenvalues, and in

particular the lowest eigenvalue, of a Sturm–Liouville problem. The first step is to re-

formulate the problem as the variational principle that Λ[y], the Rayleigh quotient, is

stationary. Secondly, using whatever clues are available (for example, symmetry consid-

erations or general theorems such as “the ground state wavefunction has no nodes”) we

make an “educated guess” ytrial(x) at the true eigenfunction y0(x) with lowest eigenvalue

λ0. It is preferable for ytrial to contain a number of adjustable parameters (e.g., α in the

example above).

We can now find Λ[ytrial], which will depend on these adjustable parameters. We

calculate the minimum value Λmin of Λ with respect to all the adjustable parameters; we

can then state that the lowest eigenvalue λ0 ≤ Λmin. If the trial function was a reasonable

guess then Λmin should actually be a good approximation to λ0.

If we wish, we can improve the approximation by introducing

more adjustable parameters.

The fact that Λ[y] is stationary with respect to variations in the

function y means that if ytrial is close to the true eigenfunction y0

(say within O(ε) of it) then the final calculated value Λmin will

be a very good approximation to λ0 (within O(ε2) in fact). If

the inclusion of further adjustable parameters fails to significantly

improve the approximation then we can be reasonably sure that

the approximation is a good one.

Note that if the trial function happens to include the exact solution y0 as a special
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case of the adjustable parameters, then the Rayleigh–Ritz method will find both y0 and

λ0 exactly. This is what happened in the example above.

An alternative to calculating Λ[ytrial] and minimising it with respect to the adjustable

parameters is to calculate F [ytrial] and G[ytrial], and to minimise F subject to G = 1.

These procedures are equivalent, as we showed at the start of this section.

Worked Example 4: The Rayleigh–Ritz Method

The oscillations of a drum (e.g., a timpani, or more generally any circular membrane

under tension and fixed at its boundary) obey Bessel’s equation of order zero,

y′′ +
1

x
y′ + λy = 0,

in 0 ≤ x ≤ 1, with boundary conditions that y should be non-singular at x = 0 and that

y(1) = 0. Here λ = ω2/c2 where ω is the frequency of oscillation of the drum and c is

the wave speed. (This equation may be derived by converting the two-dimensional wave

equation on the surface of the drum into plane polar coordinates and assuming a radially

symmetric solution with a fixed frequency ω of oscillation.)

A drum can oscillate at many different frequencies, corresponding to the different

eigenvalues of this Sturm–Liouville problem; but the fundamental (i.e., lowest) frequency

is of the greatest interest since this is the one a listener will hear. (When a drum is struck,

all of the possible frequencies are produced to varying extents, but the harmonics, i.e., the

higher frequencies, usually decay rapidly leaving only the fundamental.) It is therefore

natural to use the Rayleigh–Ritz method to estimate the lowest eigenvalue of Bessel’s

equation (and thereby estimate the fundamental frequency).

Before we can proceed, we must put the equation into standard Sturm–Liouville

self-adjoint form. By inspection we see that the appropriate equation is

− d

dx

(
x

dy

dx

)
= λxy.

The equivalent variational problem is therefore that F [y] =
∫ 1

0
xy′2 dx is stationary sub-

ject to G[y] =
∫ 1

0
xy2 dx = 1. We shall use a trial solution of the form

ytrial = a+ bx2 + cx4

(chosen because we anticipate that the lowest eigenvalue corresponds to a solution which

is even in x). This trial solution trivially satisfies the boundary condition at x = 0, and

satisfies the condition at x = 1 so long as a+ b+ c = 0.

We now calculate

F [ytrial] =

∫ 1

0

xy′2trial dx =
∫ 1

0
x(2bx+ 4cx3)2 dx

= b2 + 8
3
bc + 2c2
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and

G[ytrial] =

∫ 1

0

xy2
trial dx =

∫ 1

0
x(a + bx2 + cx4)2 dx

= 1
2
a2 + 1

2
ab+ 1

6
(b2 + 2ac) + 1

4
bc + 1

10
c2

= 1
6
b2 + 5

12
bc + 4

15
c2,

using a = −b− c.

We must either minimise F/G – which turns out to be rather messy algebraically –

or minimise F subject to G = 1. We choose the latter; hence we minimise F − λG with

respect to both b and c. So

0 =
∂

∂b
(F − λG) = (2 − 1

3
λ)b+ (8

3
− 5

12
λ)c (1)

and

0 =
∂

∂c
(F − λG) = (8

3
− 5

12
λ)b+ (4 − 8

15
λ)c. (2)

Eliminating b and c from these equations, and rearranging, we find that

3λ2 − 128λ+ 640 = 0,

which has two solutions

λ =
1

3

(
64 ±

√
2176

)
= 5.7841 . . . or 36.8825 . . . .

We recall that the eigenvalues of the Sturm–Liouville equation are given by the values

of the Lagrange multiplier λ. Therefore the lowest eigenvalue of this problem is approxi-

mately 5.7841 (and certainly no larger). We could find the corresponding values of b and

c (and hence a) by substituting this value of λ into either equation (1) or (2) (both give

the same result); note that we find only the ratio a : b : c because the normalisation of

ytrial is not important.

In fact, the true value of the lowest eigenvalue is 5.7832 . . . , so the Rayleigh–Ritz

method has produced an extremely good estimate.

Higher eigenvalues

Once we have found a good approximation y0 trial to y0, we can proceed to find approximations to the
higher eigenvalues λ1, λ2, . . . . Just as λ0 is the absolute minimum of Λ[y] over all possible functions y, so
λ1 is the absolute minimum of Λ[y] over functions which are constrained to be orthogonal to y0. (Recall
that y1 is orthogonal to y0 in the sense that

∫ b

a
wy0y1 dx = 0.) Hence, to estimate λ1 we proceed as

before but choose our new trial function y1 trial in such a way that it is orthogonal to our previous best
approximation y0 trial.

This process can be continued to higher and higher eigenvalues but of course becomes less and less
accurate.



Chapter 2

Poisson’s Equation

2.1 Physical Origins

Poisson’s equation,

∇2Φ = σ(x), (2.1)

arises in many varied physical situations. Here σ(x) is the “source term”, and is often zero,

either everywhere or everywhere bar some specific region (maybe only specific points).

In this case, Laplace’s equation,

∇2Φ = 0, (2.2)

results.

The Diffusion Equation

Consider some quantity Φ(x) which diffuses. (This might be say the concentration of

some (dilute) chemical solute, as a function of position x, or the temperature T in some

heat conducting medium, which behaves in an entirely analogous way.) There is a cor-

responding flux, F, of Φ – that is, the amount crossing an (imaginary) unit area per

unit time. Experimentally, it is known that, in the case of a solute, the flux is given by

F = −k∇Φ where k is the diffusivity ; in the case of temperature, the flux of heat is given

by F = −k∇T where k is the coefficient of heat conductivity. (Note that the minus sign

occurs because the flux is directed towards regions of lower concentration.)

The governing equation for this diffusion process is

∂Φ

∂t
= k∇2Φ (2.3)

26
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where k is referred to, generically, as the diffusion constant. If we are interested in

the steady-state distribution of solute or of temperature, then ∂Φ/∂t = 0 and Laplace’s

equation, ∇2Φ = 0, follows.

When there are sources S(x) of solute (for example, where solute is piped in or where

the solute is generated by a chemical reaction), or of heat (e.g., an exothermic reaction),

the steady-state diffusion is governed by Poisson’s equation in the form

∇2Φ = −S(x)

k
. (2.4)

The diffusion equation for a solute can be derived as follows. Let Φ(x) be the concentration of solute at
the point x, and F(x) = −k∇Φ be the corresponding flux. (We assume here that there is no advection
of Φ by the underlying medium.)

Let V be a fixed volume of space enclosed by an (imaginary) surface S. In a small time δt, the quantity
of solute leaving V is given by ∫∫

S

Fδt . n dS. (2.5)

Hence [∫∫∫

V

Φ dV

]t+δt

t

= −
∫∫

S

F . n dS δt. (2.6)

Dividing by δt and taking the limit as δt → 0,

d

dt

∫∫∫

V

Φ dV = −
∫∫

S

F . n dS =

∫∫

S

k∇Φ . n dS, (2.7)

and hence by the Divergence Theorem,
∫∫∫

V

∂Φ

∂t
dV =

∫∫∫

V

∇ . (k∇Φ)dV. (2.8)

As this is true for any fixed volume V , we must have

∂Φ

∂t
= ∇ . (k∇Φ) (2.9)

everywhere. Assuming that k is constant, we obtain the diffusion equation

∂Φ

∂t
= k∇2Φ. (2.10)
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If there are also sources (or sinks) of solute, then an additional source term results:

∂Φ

∂t
= k∇2Φ + S(x) (2.11)

where S(x) is the quantity of solute (per unit volume and time) being added to the solution at the
location x. Poisson’s equation for steady-state diffusion with sources, as given above, follows immediately.

The heat diffusion equation is derived similarly. Let T (x) be the temperature field in some substance
(not necessarily a solid), and H(x) the corresponding heat field. We have the relation H = ρcT where
ρ is the density of the material and c its specific heat. The corresponding heat flux is −k∇T . A similar
argument to the above applies again, resulting in

∂H

∂t
= k∇2T + S(x) (2.12)

where S represents possible sources of heat. Hence

∂T

∂t
= κ∇2T + (ρc)−1S(x) (2.13)

where κ = k/ρc is the coefficient of thermal diffusivity. The equation for steady-state heat diffusion with
sources is as before.

Electrostatics

The laws of electrostatics are

∇ . E = ρ/ǫ0 ∇× E = 0

∇ . B = 0 ∇× B = µ0J (2.13)

where ρ and J are the electric charge and current fields respectively. Since ∇ × E = 0,

there is an electric potential Φ such that E = −∇Φ; hence ∇ . E = ρ/ǫ0 gives Poisson’s

equation

∇2Φ = −ρ/ǫ0. (2.14)

In a region where there are no charges or currents, ρ and J vanish. Hence we obtain

Laplace’s equation

∇2Φ = 0. (2.15)

Also ∇×B = 0 so there exists a magnetostatic potential ψ such that B = −µ0∇ψ; and

∇2ψ = 0.

Gravitation

Consider a mass distribution with density ρ(x). There is a corre-

sponding gravitational field F(x) which we may express in terms of
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a gravitational potential Φ(x). Consider an arbitrary fixed volume

V with surface S containing a total mass MV =
∫∫∫

V ρ(x) dV .

Gauss showed that the flux of the gravitational field through S is

equal to −4πGMV . Hence

∫∫

S

F . n dS = −4πGMV

=⇒ −
∫∫

S

∇Φ . n dS = −4πG

∫∫∫

V

ρ(x) dV

=⇒
∫∫∫

V

∇ . (∇Φ) dV = 4πG

∫∫∫

V

ρ(x) dV.

This is true for all volumes V , so we must have

∇2Φ = ∇ . (∇Φ) = 4πGρ. (2.16)

Other applications

These include the motion of an inviscid fluid; Schrödinger’s equa-

tion in Quantum Mechanics; and the motion of biological organ-

isms in a solution.

2.2 Separation of Variables for Laplace’s Equation

Plane Polar Coordinates

We shall solve Laplace’s equation ∇2Φ = 0 in plane polar coordinates (r, θ) where the

equation becomes
1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2

∂2Φ

∂θ2
= 0. (2.17)

Consider solutions of the form Φ(r, θ) = R(r)Θ(θ) where each function R, Θ is a function

of one variable only. Then

1

r

∂

∂r

(
r
∂Φ

∂r

)
=

Θ(θ)

r

d

dr

(
r
dR

dr

)
(2.18)
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and
1

r2

∂2Φ

∂θ2
=
R(r)

r2

d2Θ

dθ2
. (2.19)

Hence after rearrangement,
r

R

d

dr

(
r
dR

dr

)
= −Θ′′

Θ
. (2.20)

The LHS is a function of r only, and the RHS of θ only; hence both must be constant, λ

say. Then

Θ′′ = −λΘ

=⇒ Θ =





A+Bθ λ = 0

A cos
√
λ θ +B sin

√
λ θ λ 6= 0

To obtain a sensible physical solution, replacing θ by θ + 2π should give the same value

of ∇Φ (see later). This is true only if Θ′(θ + 2π) = Θ′(θ) ∀ θ; i.e., either λ = 0 or

cos 2π
√
λ = 1 and sin 2π

√
λ = 0 (2.21)

which implies 2π
√
λ = 2nπ for some integer n. (Note that the possibility that λ < 0 is

ruled out at this stage.) Hence

Θ =





A +Bθ n = 0

A cosnθ +B sinnθ n 6= 0
(2.22)

Returning to (2.18),

r

R

d

dr

(
r
dR

dr

)
= λ = n2

=⇒ r2R′′ + rR′ − n2R = 0.

It is easily shown (either by direct verification or by making the

substitution u = ln r) that the solutions of this equation are

R =




C +D ln r n = 0

Crn +Dr−n n 6= 0
(2.23)

Hence, we obtain possible solutions to (2.17) as

Φ = RΘ =





(C +D ln r)(A+Bθ) n = 0

(Crn +Dr−n)(A cosnθ +B sin nθ) n 6= 0
(2.24)
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We note that the combination θ ln r does not satisfy the requirement above for 2π-

periodicity of ∇Φ, and so we exclude it. Equation (2.17) is linear and so we may form

a superposition of the above solutions; in fact the general solution is an arbitrary linear

combination of all the possible solutions obtained above, that is

Φ = A0 +B0θ + C0 ln r +

∞∑

n=1

(Anr
n + Cnr

−n) cosnθ +

∞∑

n=1

(Bnr
n +Dnr

−n) sinnθ

(2.25)

where we have relabelled all the arbitrary constants, e.g., AC has become An and BD

has become Dn. We can make this expression more compact by defining A−n = Cn and

B−n = Dn for n > 0; then

Φ = A0 +B0θ + C0 ln r +

∞∑

n=−∞
n 6=0

rn(An cosnθ +Bn sinnθ). (2.26)

Although this is more compact, the first expression is often easier to use.

Notes:

(i) Why did we require that ∇Φ, rather than Φ itself, be periodic?

In many cases (e.g. temperature, diffusion), Φ must clearly be

periodic and so we shall further need B0 = 0. But in other

cases (e.g. electrostatics, gravitation), Φ is not itself a physi-

cal quantity, only a potential; it is ∇Φ which has a physical

significance (e.g., the force). For example, consider the mag-

netostatic potential around a wire carrying a current I ; here

ψ = −(I/2π)θ, which is multi-valued, but B = −µ0∇ψ (the

quantity of physical interest) is of magnitude µ0I/2πr and is

single valued.

(ii) A common mistake made during separation of variables is to retain too many arbi-

trary constants; e.g. to write

∑
Cnr

n(An cos nθ +Bn sinnθ). (2.27)

For each n, this looks like 3 arbitrary constants (An, Bn, Cn); but of course there

are really only two arbitrary quantities (CnAn and CnBn, which we have relabelled

as An and Bn above).
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(iii) The above derivation also applies to 3D cylindrical polar coordinates in the case

when Φ is independent of z.

Worked Example 5: Steady-State Temperature Distribution in a Cylinder

An infinitely long cylinder of radius a is heated on its bound-

ary as shown. The steady-state temperature T (r, θ) (note no

dependence on z) satisfies

∇2T = 0 in r < a

subject to

T (a, θ) =





+T0 0 ≤ θ < π,

−T0 π ≤ θ < 2π.

The general solution for plane polar coordinates applies; we choose to use it in its second

form as given in the lecture notes. We require that the temperature be finite at r = 0

for a physically realistic solution: so C0 = 0, and also, for all negative n, An = Bn = 0

(since they are the coefficients of rn
{

cos
sin

}
nθ). Finally, T must be periodic in θ (i.e., not

multi-valued), so B0 = 0. Hence

T (r, θ) = A0 +
∞∑

n=1

rn(An cosnθ +Bn sin nθ).

On r = a this gives

T (a, θ) = A0 +

∞∑

n=1

(Ana
n cosnθ +Bna

n sin nθ).

This is a standard Fourier series, so we may calculate the Fourier coefficients using the

standard formulae:

A0 =
1

2π

∫ 2π

0

T (a, θ) dθ = 0 (by anti-symmetry of T (a, θ))

Ana
n =

1

π

∫ 2π

0

T (a, θ) cosnθ dθ = 0

Bna
n =

1

π

∫ 2π

0

T (a, θ) sinnθ dθ

=
1

π

∫ π

0

T0 sinnθ dθ − 1

π

∫ 2π

π

T0 sin nθ dθ

=





4T0/nπ n odd,

0 n even.
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Hence the final solution for all r and θ is

T =
4T0

π

∑

n odd

rn

nan
sinnθ.

Spherical Polar Coordinates: Axisymmetric Case

In spherical polars (r, θ, φ), in the case when we know Φ to

be axisymmetric (i.e., independent of φ, so that ∂Φ/∂φ = 0),

Laplace’s equation becomes

1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
= 0. (2.28)

Seek solutions of the form Φ(r, θ) = R(r)Θ(θ). Then

1

R
(r2R′)′ = − 1

Θ sin θ
(Θ′ sin θ)′ (2.29)

and both sides must be constant, λ say. So

(Θ′ sin θ)′ = −λΘ sin θ. (2.30)

Let ζ = cos θ, and use the chain rule to replace d/dθ by d/dζ :

d

dθ
=

dζ

dθ

d

dζ
= − sin θ

d

dζ
. (2.31)

So

− sin θ
d

dζ

(
− sin2 θ

dΘ

dζ

)
= −λΘ sin θ

=⇒ d

dζ

(
(1 − ζ2)

dΘ

dζ

)
+ λΘ = 0.

This is Legendre’s equation; for well-behaved solutions at ζ =

±1 (i.e., θ = 0, π) we need λ = n(n + 1) for some non-negative

integer n, in which case

Θ = CPn(ζ) = CPn(cos θ) (2.32)

where C is an arbitrary constant.
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Returning to (2.21),

(r2R′)′ = λR

=⇒ r2R′′ + 2rR′ − n(n + 1)R = 0,

to which the solution is

R = Arn +Br−n−1. (2.33)

The general solution to Laplace’s equation in the axisymmetric case is therefore (absorb-

ing the constant C into A and B)

Φ(r, θ) =
∞∑

n=0

(Anr
n +Bnr

−n−1)Pn(cos θ). (2.34)

Non-axisymmetric Case

A similar analysis when Φ may depend on φ shows that the general solution is

Φ(r, θ, φ) =
∞∑

n=0

n∑

m=−n

(Amnrn + Bmnr−n−1)Pm
n (cos θ)eimφ (2.35)

where Pm
n (ζ) are the associated Legendre functions which satisfy the associated Legendre equation

d

dζ

(
(1 − ζ2)

dΘ

dζ

)
+

(
n(n + 1) +

m

1 − ζ2

)
Θ = 0) (2.36)

when m and n are integers, n ≥ 0, −n ≤ m ≤ n.

Worked Example 6: Diffusion of a Solute past a Solid Sphere

Consider fluid at rest surrounding a fixed solid

sphere of radius a at the origin. The fluid

contains a solute which diffuses through the

fluid, and we are interested in the steady state.

At large distances from the sphere (where the

sphere has negligible effect) we assume that

there is a constant flux of solute parallel to the

z-axis of magnitude F (possibly due, for ex-

ample, to an externally imposed concentration

gradient).

The flux is −k∇Φ where Φ is the concentration. There can be no flux across r = a,

so êr . ∇Φ = 0 on r = a, or equivalently ∂Φ
∂r

(a, θ) = 0 for all θ.
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Far from the sphere, we must have ∇Φ ∼ −F
k
êz, i.e., Φ ∼ −F

k
z; so we require that as

r → ∞, Φ ∼ −F
k
r cos θ = −F

k
rP1(cos θ).

We use the general axisymmetric solution, and must choose the arbitrary constants

to ensure the correct behaviour as r → ∞. This can only occur if A1 = −F
k

and An = 0

for all n ≥ 2. Thus

Φ = A0 −
F

k
rP1(cos θ) +

∞∑

n=0

Bnr
−n−1Pn(cos θ).

On r = a, we must have

∂Φ

∂r

∣∣∣
r=a

= −F
k
P1(cos θ) −

∞∑

n=0

(n+ 1)Bna
−n−2Pn(cos θ) = 0

for all θ. Using the orthogonality of Legendre polynomials (multiply by Pm(cos θ), sub-

stitute ζ = cos θ, and integrate from ζ = −1 to 1), or by inspection, we find that B0 = 0,

B1 = −Fa3/2k and Bn = 0 for all n ≥ 2. So the solution is

Φ = A0 −
F

k

(
r +

a3

2r2

)
cos θ,

and A0 remains an arbitrary constant (it measures, in some sense, the average of the

concentrations far up and downstream).

Note that the boundary conditions involved only P1(cos θ) and no other Pn; and so

does the solution. This is usual: boundary conditions can often be expressed in terms of

just a few Pn, and only those terms need be retained from the general solution. For this

purpose it is useful to know the following:

1 = P0(cos θ)

cos θ = P1(cos θ)

cos2 θ =
2

3
P2(cos θ) +

1

3
P0(cos θ)

2.3 Uniqueness Theorem for Poisson’s Equation

Consider Poisson’s equation

∇2Φ = σ(x) (2.37)

in a volume V with surface S, subject to so-called Dirichlet boundary conditions Φ(x) =

f(x) on S, where f is a given function defined on the boundary.

From a physical point of view, we have a well-defined problem;

say, find the steady-state temperature distribution throughout V ,
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with heat sources given by σ(x), subject to a specified temperature

distribution on the boundary. No further conditions are required in

real life to ensure that there is only one solution. Mathematically,

then, can we show that the problem above has a unique solution?

Suppose that there are actually two (or more) solutions Φ1(x) and Φ2(x). Let Ψ =

Φ1 − Φ2. Then

∇2Ψ = ∇2Φ1 −∇2Φ2 = σ − σ = 0 in V (2.38)

subject to

Ψ = f − f = 0 on S. (2.39)

One solution of this problem for Ψ is clearly Ψ = 0; is it unique? Consider

∇ . (Ψ∇Ψ) = ∇Ψ . ∇Ψ + Ψ∇ . (∇Ψ)

= |∇Ψ|2 + Ψ∇2Ψ

= |∇Ψ|2.

Hence
∫∫∫

V

|∇Ψ|2 dV =

∫∫∫

V

∇ . (Ψ∇Ψ) dV

=

∫∫

S

Ψ∇Ψ . n dS

= 0

because Ψ = 0 on S. But |∇Ψ|2 ≥ 0 everywhere; its integral can only be zero if |∇Ψ|
is zero everywhere, i.e., ∇Ψ ≡ 0, which implies that Ψ is constant throughout V . But

Ψ = 0 on S, so Ψ ≡ 0 throughout V . Thus Φ1 = Φ2, which demonstrates that our

problem has a unique solution, as expected.

A similar theorem holds when instead of Dirichlet boundary conditions we have Neu-

mann boundary conditions: that is to say instead of Φ being specified (by the function

f) on the boundary S, ∂Φ/∂n is specified on S, where we use the notation

∂Φ

∂n
≡ n . ∇Φ. (2.40)
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2.4 Minimum and Maximum Properties of Laplace’s

Equation

Suppose that Φ satisfies ∇2Φ = 0 in a volume V with surface S. Then both the minimum

and maximum values of Φ occur somewhere on S (and possibly also somewhere inside

V ).

Why is this? Suppose Φ has a local maximum somewhere

in the interior of V . At that point we must have ∂Φ/∂x =

∂Φ/∂y = ∂Φ/∂z = 0 (stationary point); and as it is a max-

imum, ∂2Φ/∂x2 < 0, ∂2Φ/∂y2 < 0, ∂2Φ/∂z2 < 0. But this

cannot happen since 0 = ∇2Φ = ∂2Φ/∂x2 +∂2Φ/∂y2 +∂2Φ/∂z2.

The same applies to minima.

This is not a formal proof since it is actually possible for a maximum to have

∂2Φ

∂x2
=

∂2Φ

∂y2
=

∂2Φ

∂z2
= 0, (2.41)

a case we haven’t considered: compare with the possibility in 1D that a maximum could have d2y/dx2 =
0. However, the theorem can still be shown to hold.

Example: in the worked example of the steady-state temperature distribution in a

cylinder, we can deduce that |T | ≤ T0 in r < a.
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2.5 Green’s Function

The Delta Function in 3D

In 1D, δ(x − x0) is a function which is zero everywhere except at x = x0, and is infinite

there in such a way that ∫ b

a

δ(x− x0) dx = 1 (2.42)

whenever x0 ∈ (a, b). As a consequence,
∫ b

a
f(x)δ(x − x0) dx = f(x0). We extend the

definition to 3D via

δ(x − x0) = δ(x− x0)δ(y − y0)δ(z − z0) (2.43)

where x0 = (x0, y0, z0). Then

∫∫∫

V

f(x)δ(x − x0) dV = f(x0) (2.44)

whenever x0 ∈ V (and the integral is 0 otherwise).

Green’s Function

Suppose that we wish to solve Poisson’s equation in a volume V with surface S on which

Dirichlet boundary conditions are imposed. The Green’s function G(x;x0) associated

with this problem is a function of two variables: x, the position vector, and x0, a fixed

location. It is defined as the solution to

∇2G(x;x0) = δ(x − x0) in V ,

G = 0 on S.
(2.45)

(Physically, we can think of G as the “potential” from a point source at x0 with the

boundary held at zero potential.)

It is possible to prove that G is symmetric, i.e., G(x;x0) = G(x0;x). This can be useful as a check that
G has been correctly calculated. Physically, this corresponds to the remarkable fact that the potential
at x due to a source at x0 is the same as the potential at x0 due to a source at x, regardless of the shape
of S.

When V is all space (i.e., the limit of a sphere whose radius tends to ∞), Green’s

function is known as the fundamental solution.

For a problem with Neumann boundary conditions, G(x;x0) is

defined to satisfy ∂G/∂n = 1/A on S, where A =
∫∫

S dS is the



NST IB Mathematical Methods II 39

surface area of S, rather than G = 0 there. In many cases S is

infinitely large, in which case the boundary condition reduces to

∂G/∂n = 0.

The Fundamental Solution in 3D

Consider first x0 = 0. Then ∇2G = δ(x) and G → 0 as |x| → ∞. The problem is

spherically symmetric about the origin, so we expect G to be a function of r alone. Try

G = g(r). By the definition of δ(x), if VR is the sphere of radius R with surface SR,

1 =

∫∫∫

VR

δ(x) dV =

∫∫∫

VR

∇ . (∇G) dV

=

∫∫

SR

∇G . n dS =

∫∫

SR

g′(r) dS

(n is just the unit radial vector)

= g′(R)

∫∫

SR

dS = 4πR2g′(R)

=⇒ g′(R) =
1

4πR2
for all R

=⇒ g′(r) =
1

4πr2

=⇒ g(r) = − 1

4πr
+ A, (2.36)

where A is a constant. As r → ∞, G→ 0, so A = 0. Hence the solution is −1/4π|x|.

Shifting the origin to a non-zero x0, we see that in general the fundamental solution

in 3D is

G(x;x0) = − 1

4π|x − x0|
. (2.46)

Example: an electron located at x0 is an electrostatic point source, so the charge

distribution in space is ρ(x) = −e δ(x − x0). Hence the electrostatic potential obeys

∇2Φ = (e/ǫ0) δ(x − x0) (2.47)

using a result from §2.1. The solution Φ is therefore just a factor e/ǫ0 times the funda-

mental solution, i.e., −e/4πǫ0|x−x0|. This is the standard formula for the potential due

to an electron.
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The Fundamental Solution in 2D

Again, we solve ∇2G = δ(x), where the delta-function is now

in 2D. We will see that a solution with G → 0 as |x| → ∞ is

impossible; instead we will find a solution such that |∇G| → 0.

As before, G = g(r) (where r is now the plane polar radius). Applying the Divergence

Theorem in 2D to a circle of radius R,

1 =

∫∫

r≤R

δ(x) dV =

∫∫

r≤R

∇ . (∇G) dV

=

∮

r=R

∇G . n dl =

∮

r=R

g′(r) dl

= 2πRg′(R)

=⇒ g′(r) =
1

2πr

=⇒ g(r) =
1

2π
ln r + constant.

(Note that g′(r) → 0 as r → ∞, but g(r) → ∞, whatever the constant.)

Shifting the origin, we see that the fundamental solution in 2D is

G(x;x0) =
1

2π
ln |x − x0| + constant. (2.48)

Example: consider an infinitely long charged wire in three dimensions lying along the

z-axis, with a charge density of µ per unit length. What is the electric potential Φ around

the wire?

We assume the wire to be mathematically perfect, i.e., of infinitesimal width. Then

the electric charge distribution, in 3D, is ρ = µδ(x)δ(y). (Check that this gives the

correct result for the amount of charge in a unit length of the wire.) But it is clear

that this problem is fundamentally two-dimensional, with ρ = µδ(x) where x = (x, y);

and the potential satisfies ∇2Φ = −µδ(x)/ǫ0. Hence the potential is (up to an arbi-

trary additional constant) just given by an appropriate multiple of the two-dimensional

fundamental solution, namely

Φ = − µ

2πǫ0
ln |x| = − µ

2πǫ0
ln
√
x2 + y2 = − µ

2πǫ0
ln r (2.49)

where r is the perpendicular distance to the wire (i.e., the “r” of cylindrical polar coor-

dinates rather than of spherical polars).
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2.6 The Method of Images

We can use the fundamental solution to find Green’s function in

some simple geometries, using the “method of images”. We shall

find a function which satisfies the equation and the boundary con-

ditions; by uniqueness, this must be the Green’s function.

Example: A 3D half-space x > 0

Suppose that the domain D is the half-space of R3 with x > 0. The

Green’s function obeys

∇2G = δ(x − x0) ∀x ∈ D,

G = 0 on x = 0,

G→ 0 as |x| → ∞, x ∈ D.

Consider the solution in all space for the point source at x = x0 to-

gether with another (imaginary) source of strength −1 at the “image

point” x = x1 as shown:

Φ = − 1

4π|x − x0|
− −1

4π|x− x1|
(2.50)

and

∇2Φ = δ(x − x0) − δ(x − x1) (2.51)

by superposition of the two fundamental solutions. This certainly satisfies the require-

ment ∇2Φ = δ(x − x0) for all x ∈ D, because δ(x − x1) ≡ 0 ∀x ∈ D. It also satisfies

Φ → 0 as |x| → ∞; and on x = 0, |x−x0| = |x−x1| so that Φ = 0. Hence by uniqueness,

G(x;x0) = Φ = − 1

4π

(
1

|x − x0|
− 1

|x − x1|

)
. (2.52)
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Example: A 2D quarter-plane x > 0, y > 0

In this case, we need to find G such that

∇2G = δ(x − x0) ∀x ∈ D (2.53)

with G = 0 on both x = 0 and y = 0. We find that we need 3 image sources as shown:

x1 and x2 with strength −1, and x3 with strength +1. Then

G =
1

2π
ln |x − x0| −

1

2π
ln |x − x1| −

1

2π
ln |x − x2| +

1

2π
ln |x − x3| + constant

=
1

2π
ln

|x − x0| |x − x3|
|x − x1| |x − x2|

+ constant.

Clearly ∇2G = δ(x − x0) in D (all the other delta-functions are zero there); on x = 0,

|x−x0| = |x−x1| and |x−x2| = |x−x3|, so choosing the constant to be zero ensures that

G = 0; similarly on y = 0. By uniqueness, then, this is the required Green’s function.

Further extensions to this idea are possible; e.g., planes inclined

at 60◦ to each other, or a pair of parallel planes.
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Example: Heat flow from a source in a 3D half-space with a wall at constant

temperature

Suppose that the ambient temperature is T0 and that

a wall at x = 0 is held at that temperature, with a

heat source of strength Q at x0. Then

T = T0 −
Q

k
G(x;x0), (2.54)

where G is the Green’s function for the 3D half-space

x > 0. (Why? Because we need to solve ∇2T =

−Q
k
δ(x − x0) here.)

What is the total heat flux across the wall S? It is
∫∫

S

(−k∇T ) . n dS = k

∫ ∞

−∞

∫ ∞

−∞

∂T

∂x
dy dz = −Q

∫ ∞

−∞

∫ ∞

−∞

∂

∂x
G(x;x0)

∣∣∣∣
x=0

dy dz (2.55)

which we can evaluate with some effort (see the worked example in the next section for

an example of this sort of evaluation).

Alternatively, we can use the Divergence Theorem on the surface consisting of the

wall plus the hemisphere at ∞. Since ∇T tends to zero on the hemisphere,

∫∫

S

(−k∇T ) . n dS = −
∫∫∫

V

∇ . (k∇T ) dV

= −k
∫∫∫

V

∇2T dV

= −k
∫∫∫

V

(
−Q
k
δ(x − x0)

)
dV

= Q,

so the total heat radiated across the wall is Q.

Example: A point charge near an earthed boundary plate

Here

Φ = − e

ǫ0
G(x;x0) (2.56)

where G is the Green’s function for the 3D half-space x > 0.
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Now the surface charge density induced on the plate is µ = ǫ0Ex (standard result from electrostatics,
where Ex is the x-component of E). The normal force (per unit area) on the plate, towards the charge,
is

1
2µEx = 1

2ǫ0E
2
x = 1

2ǫ0

(
−∂Φ

∂x

)2

=
e2

2ǫ0

(
∂G

∂x

)2

, (2.57)

and we calculate ∂G/∂x as in the worked example in the next section. We can integrate this over the
whole plate (with considerable effort) to obtain the total force:

e2

2ǫ0

∫
∞

−∞

∫
∞

−∞

x2
0

4π2
(
x2

0 + (y − y0)2 + (z − z0)2
)3 dy dz = · · · =

e2

16πǫ0x2
0

. (2.58)

The force on the charge from the plate is equal and opposite, i.e., e2/4πǫ0(2x0)
2 towards the wall. Note

that we could also have found this directly by considering the force on the charge due to the image
charge, ignoring the plate!

Worked Example 7: Heat Source near an Insulated Wall

Hold a heat source of strength Q at x0 = (x0, y0, z0)

near an insulated plane wall, i.e., one through which

no heat can pass, at x = 0. We must then have

no component of heat flux through the wall; i.e., n.(−k∇T ) =

0 on the wall. Therefore we must solve

∇2T = −Q
k
δ(x − x0) in x > 0

subject to
∂T

∂n
= 0 on x = 0.

This is a problem with Neumann (rather than Dirichlet) boundary conditions.

We use the method of images. Introduce an image source of strength +Q at x1 =

(−x0, y0, z0). (Note that for Dirichlet boundary conditions we would have used −Q for

the strength of the image.) Because ∇T is radial from each source, the total ∇T (from

the two sources combined) must have zero component perpendicular to the wall. Hence

we have ∂T/∂n = 0 as required. Therefore (by uniqueness) the solution is

T =
Q

4πk

{
1

|x − x0|
+

1

|x − x1|

}
.
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Example: Images in a sphere

What is the Green’s function for the domain r < a in 3D? We need

∇2G = δ(x − x0) in r < a,

G = 0 on r = a.

The image point turns out to be at the inverse point

x1 =
a2

|x0|2
x0 (2.59)

(so that a/|x1| = |x0|/a) with strength −a/|x0|, so Green’s function is

G(x;x0) =
1

4π

(
− 1

|x − x0|
+

a/|x0|
|x − x1|

)
. (2.60)

(Check this by first showing that |x − x1|2 = (x − x1) . (x − x1) = (a2/|x0|2)|x − x0|2
when |x| = a.)

Note that the same result holds if we consider the domain r > a instead.

Example: Images in a circle

This is the 2D equivalent of the above. The image point is at

x1 = (a2/|x0|2)x0 as before, but now the strength of the image

can be chosen to be −1, so the Green’s function is

G(x;x0) =
1

2π
ln |x − x0| −

1

2π
ln |x − x1| + constant

=
1

2π
ln
|x − x0|
|x − x1|

+ constant. (2.52)

Choosing the constant correctly, we can ensure that G = 0 on the

circle r = a.
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2.7 The Integral Solution of Poisson’s Equation

The most important application of Green’s function is that it can be used to find the

solution of Poisson’s equation with an arbitrary source distribution.

Green’s Identity

For any smooth functions Φ and Ψ, Green’s Identity is

∫∫∫

V

(Φ∇2Ψ − Ψ∇2Φ) dV =

∫∫

S

(Φ∇Ψ − Ψ∇Φ) . n dS (2.61)

where V is a volume with surface S. Prove this by applying the Divergence Theorem to

the vector field F = Φ∇Ψ − Ψ∇Φ, and using ∇ . (Φ∇Ψ) = ∇Φ . ∇Ψ + Φ∇2Ψ.

The RHS is also written
∫∫

S

(
Φ
∂Ψ

∂n
− Ψ

∂Φ

∂n

)
dS. (2.62)
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The Integral Solution

Consider the general problem of Poisson’s equation with Dirichlet boundary conditions:

∇2Φ = σ in V ,

Φ = f on S.

Apply Green’s Identity, taking Ψ to be the Green’s function G(x;x0) for the problem:
∫∫∫

V

(Φ∇2G−G∇2Φ) dV =

∫∫

S

(Φ∇G−G∇Φ) . n dS

δ(x − x0) σ f 0

=⇒
∫∫∫

V

Φδ(x − x0) dV =

∫∫∫

V

Gσ dV +

∫∫

S

f
∂G

∂n
dS

=⇒ Φ(x0) =

∫∫∫

V

σ(x)G(x;x0) dV +

∫∫

S

f(x)
∂G

∂n
dS. (2.55)

This is the Integral Solution of Poisson’s equation.

Notes:

(i) We can also use the integral solution to solve Laplace’s equation with Dirichlet

boundary conditions, by taking σ(x) = 0.

(ii) A similar result (but with technical differences) can be derived for Neumann bound-

ary conditions, in which case G is defined differently (see §2.5).

(iii) We sometimes wish to take V to be “all space”, by taking

the limit of a sphere whose radius tends to ∞. In this case

we simply use the fundamental solution for G; but (strictly

speaking) we need to ensure that the surface integral tends

to zero (by requiring, for example, that on the surface of the

sphere, Φ(x) → 0 sufficiently quickly as the radius increases).

Then

Φ(x0) =

∫∫∫

R3

σ(x)G(x;x0) dV. (2.63)
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This latter result is easy to understand in many physical situations. For instance,

consider an arbitrary electrostatic charge distribution ρ(x). Then

∇2Φ = −ρ/ǫ0 in R3,

Φ → 0 as |x| → ∞.

(We assume here that the charge distribution decays rapidly far from the origin.) Us-

ing the integral solution of Poisson’s equation, with V = R3, and setting G to be the

fundamental solution in 3D,

Φ(x0) =

∫∫∫

R3

ρ(x)

4πǫ0|x − x0|
dV. (2.64)

We can interpret this physically as the superposition of many infinitesimal charge elements

ρ(x) dV . Each of these is effectively a point charge, and the potential at x0 from such

a point charge (using the standard formula for the electrostatic potential due to a point

charge) is just ρ(x) dV/4πǫ0|x − x0|. Summing over all such infinitesimal elements gives

the above result.

Worked Example 8: Electrostatics -

Using the Integral Solution of Poisson’s Equation

Consider a wire of length 2L carrying a charge density µ per unit length, lying along the

z-axis from z = −L to +L. What is the electric potential Φ?

The charge distribution is ρ(x) = µδ(x)δ(y) for −L ≤ z ≤ L (and zero for |z| > L).

We shall use the integral solution of Poisson’s equation in the whole of space to obtain

the potential at a point (x0, y0, z0). We need Green’s function, which is simply the

fundamental solution here.

Φ(x0) =
∫∫∫
R3

ρ(x)
4πǫ0|x−x0| dV

=
∫ L

−L
µ

4πǫ0|(0,0,z)−x0| dz

= µ
4πǫ0

∫ L

−L
dz√

x2
0
+y2

0
+(z−z0)2

= µ
4πǫ0

[
sinh−1 z−z0√

x2
0
+y2

0

]L

−L

= µ
4πǫ0

{
sinh−1 L−z0√

x2
0
+y2

0

+ sinh−1 L+z0√
x2
0
+y2

0

}
.

This is true for arbitrary locations x0, so replacing x0 by x we obtain

Φ(x, y, z) =
µ

4πǫ0

{
sinh−1 L− z√

x2 + y2
+ sinh−1 L+ z√

x2 + y2

}
.
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In particular, the potential at a point in the (x, y)-plane is given by

Φ(x, y, 0) =
µ

2πǫ0
sinh−1

(
L/
√
x2 + y2

)
.

Note, for completeness, that for very large L, i.e., in the limit as L→ ∞, it is possible

to check (using sinh−1 x ∼ ln x as x→ ∞) that

Φ → − µ

2πǫ0
ln
√
x2 + y2 + constant,

which verifies an earlier result we obtained for the two-dimensional field around an in-

finitely long wire.

Worked Example 9: Solution of Laplace’s Equation in a 3D Half-Space

We wish to solve ∇2Φ = 0 in the half-space x > 0 of R3, with Φ = f(y, z) on the boundary

x = 0.

We use the integral solution of Poisson’s equation (with

σ ≡ 0) in the half-space, with S being the plane x = 0

(strictly speaking, together with the hemisphere at ∞):

Φ(x0) =

∫∫∫

V

σ(x)G(x;x0) dV +

∫∫

S

f(x)
∂G

∂n
dS

= −
∫ ∞

−∞

∫ ∞

−∞
f(y, z)

∂

∂x
G(x;x0) dy dz

(because ∂
∂n

= − ∂
∂x

on S). To calculate this we need to

evaluate

∂G

∂x

∣∣∣∣
x=0

=
∂

∂x

{
− 1

4π|x − x0|
+

1

4π|x − x1|

}∣∣∣∣
x=0

=
1

4π

∂

∂x

{
− 1√

(x− x0)2 + (y − y0)2 + (z − z0)2

+
1√

(x+ x0)2 + (y − y0)2 + (z − z0)2

}∣∣∣∣
x=0

=
1

4π

{
x− x0

{(x− x0)2 + (y − y0)2 + (z − z0)2}3/2

− x+ x0

{(x+ x0)2 + (y − y0)2 + (z − z0)2}3/2

}∣∣∣∣
x=0

= − x0

2π{x2
0 + (y − y0)2 + (z − z0)2}3/2

.
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Therefore

Φ(x0) =
x0

2π

∫ ∞

−∞

∫ ∞

−∞

f(y, z)

{x2
0 + (y − y0)2 + (z − z0)2}3/2

dy dz

or alternatively (swapping x and x0),

Φ(x, y, z) =
x

2π

∫ ∞

−∞

∫ ∞

−∞

f(y0, z0)

{x2 + (y − y0)2 + (z − z0)2}3/2
dy0 dz0.

This is the solution for:

(i) Steady-state temperature distribution with a wall heated to a specified temperature

distribution;

(ii) Steady-state concentration of solute with a wall kept at given concentration;

(iii) Electrostatic potential with a conducting wall held at given potential.



Chapter 3

Cartesian Tensors

3.1 [Revision] Suffix Notation and the Summation

Convention

We will for the moment consider vectors in 3D, though the notation we shall introduce

applies (mostly) just as well to n dimensions. For a general vector

x = (x1, x2, x3) (3.1)

we shall henceforth refer to xi, the ith component of x. The index i may take any of the

values 1, 2 or 3, and we refer to “the vector xi” to mean “the vector whose components

are (x1, x2, x3)”. Similarly we write [x]i = xi, and similarly [x + y]i = xi + yi. Note that

the expression yi = xi implies that y = x; the statement in suffix notation is implicitly

true for all three possible values of i (separately).

We will use the summation convention whereby if a particular suffix (e.g., i) appears

twice in a single term of an expression then it is implicitly summed. For example, in

summation notation we simply write

x . y = xiyi.

Rules of summation convention

Summation convention does not allow any one suffix to appear more than twice within a

single term; so xiyizi is meaningless. Care should be taken to avoid this. (For example,

the vector relation y = (a . b)x must be written yi = ajbjxi, rather than yi = aibixi.)

In any given term, then, there are two possible types of suffix: one that appears

precisely once, e.g., i in ajbjxi, which is known as a free suffix ; and one that appears

51
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precisely twice, e.g., j in ajbjxi, which is known as a dummy suffix. It is an important

precept of summation convention that the free suffixes must match precisely in every

term (though dummy suffixes can be anything you like so long as they do not clash with

the free suffixes). So in the equation

ajbjzk = xk + aiaiykbjbj (3.2)

every term has a free suffix k, and all other suffixes are dummy ones. In vector notation,

this equation reads

(a . b)z = x + |a|2|b|2y.

There need not be any free suffixes at all, as in the equation aizi = (xi + yi)ai (which

reads a . z = (x + y) . a in vector notation). Replacing two free suffixes (e.g. i, j in cij)

by a single dummy suffix (cii) is known as contraction.

Note that (1) the order of variables written in suffix notation is unimportant; the final

term of equation (3.2) could equally well have been written bjykaibjai; and (2) the role

of the dummy suffix is analogous to that of the dummy variable in an integration.

More examples:

(i) y = Ax is written yi = [Ax]i = aijxj .

(ii) C = AB (where A and B are 3 × 3 matrices) is written cij = [AB]ij = aikbkj.

(iii) A matrix C has trace TrC = cii, so the trace of AB becomes Tr(AB) = aikbki.

[Not all expressions written in suffix notation can be recast in vector or matrix no-

tation. For example, aijk = xiyjzk is a valid equation in suffix notation (each term has

three free suffixes, i, j and k), but there is no vector equivalent.]

The Kronecker delta and the alternating tensor:

The Kronecker delta is defined by

δij =





1 i = j

0 i 6= j

and the alternating tensor (also called Levi-Civita or permutation tensor) is defined by

ǫijk =





1 if (i, j, k) is a cyclic permutation of (1, 2, 3)

−1 if (i, j, k) is an anti-cyclic permutation of (1, 2, 3)

0 if any of i, j, k are equal

If I is the n × n identity matrix then [I]ij = δij , and xi = δijxj for any vector xi

(because x = Ix; or because the Kronecker delta just “selects” entries: e.g., δikajk is

equal to aji).
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Using the alternating tensor the expression z = x × y can be written zi = [x × y]i =

ǫijkxjyk. Similarly the determinant of a 3 × 3 matrix A = (aij) is given by ǫijka1ia2ja3k.

This can be written in several other ways; for example,

detA = ǫijka1ia2ja3k = ǫjika1ja2ia3k

[swapping i and j] = −ǫijka2ia1ja3k.

This proves that swapping two rows of a matrix changes the sign of the determinant.

The relation ǫijkǫklm = δilδjm − δimδjl holds, and simplifies the proof of many vector

identities, such as the vector triple product a × (b × c) = (a . c)b− (a . b)c:

[a × (b× c)]i = ǫijkaj [b × c]k

= ǫijkajǫklmblcm

= (δilδjm − δimδjl)ajblcm

= ajbicj − ajbjci

= (a . c)bi − (a . b)ci

= [(a . c)b− (a . b)c]i .

3.2 What is a Vector?

A vector is more than just 3 real numbers. It is also a physical

entity: if we know its 3 components with respect to one set of

Cartesian axes then we know its components with respect to any

other set of Cartesian axes. (The vector stays the same even if its

components do not.)

For example, suppose that {e1, e2, e3} is a right-handed

orthogonal set of unit vectors, and that a vector v has com-

ponents vi relative to axes along those vectors. That is to

say,

v = v1e1 + v2e2 + v3e3 = vjej . (3.3)

What are the components of v with respect to axes which

have been rotated to align with a different set of unit vectors

{e′
1, e

′
2, e

′
3}? Let

v = v′1e
′
1 + v′2e

′
2 + v′3e

′
3 = v′je

′
j . (3.4)
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Now e′
i . e

′
j = δij , so

v . e′
i = v′je

′
j . e′

i = v′jδij = v′i (3.5)

but also

v . e′
i = vjej . e′

i = vjlij (3.6)

where we define the matrix L = (lij) by

lij = e′
i . ej. (3.7)

Then

v′i = lijvj (3.8)

(or, in matrix notation, v′ = Lv where v′ is the column vector with components v′i). L

is called the rotation matrix.

This looks like, but is not quite the same as, rotating the vector v round to a different vector v
′ using a

transformation matrix L. In the present case, v and v
′ are the same vector, just measured with respect

to different axes. The transformation matrix corresponding to the rotation {e1, e2, e3} 7→ {e′1, e′2, e′3} is
not L (in fact it is L−1).

Now consider the reverse of this argument. Exactly the same discussion would lead

to

vi = l̂ijv
′
j (3.9)

where

l̂ij = ei . e
′
j (3.10)

(we swap primed and unprimed quantities throughout the argument). We note that

l̂ij = lji from their definitions; hence

L̂ = LT (3.11)

and so

v = L̂v′ = LTv′. (3.12)

We can deduce that

v = LTLv, (3.13)

and furthermore, this is true for all vectors v. We conclude that

LTL = I, (3.14)

i.e.,

LT = L−1. (3.15)

(Hence LLT = I also.) L is therefore an orthogonal matrix. In suffix notation, the

equation LTL = I reads

lkilkj = δij , (3.16)
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and LLT = I reads

likljk = δij ; (3.17)

both of these identities will be useful.

Another way of seeing that LLT = I (or, equivalently, LTL = I) is to consider the

components of L directly:

L =




e′
1 . e1 e′

1 . e2 e′
1 . e3

e′
2 . e1 e′

2 . e2 e′
2 . e3

e′
3 . e1 e′

3 . e2 e′
3 . e3




=




e′
1
T

e′
2
T

e′
3
T


 [measured with respect to frame 1].

Alternatively, the ith column consists of the components of ei with respect to the second

frame.

3.3 Tensors

Tensors are a generalisation of vectors. We think informally of a tensor as something

which, like a vector, can be measured component-wise in any Cartesian frame; and which

also has a physical significance independent of the frame, like a vector.

Physical Motivation

Recall the conductivity law, J = σE, where E is the applied

electric field and J is the resulting electric current. This is suitable

for simple isotropic media, where the conductivity is the same in
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all directions. But a matrix formulation may be more suitable in

anisotropic media; for example,

J =




5 0 0

0 4 0

0 0 0


E (3.18)

might represent a medium in which the conductivity is high in

the x-direction but in which no current at all can flow in the

z-direction. (For instance, a crystalline lattice structure where

vertical layers are electrically insulated.)

More generally, in suffix notation we have

Ji = σijEj (3.19)

where σ is the conductivity tensor.

What happens if we measure J and E with respect to a different set of axes? We

would expect the matrix σ to change too: let its new components be σ′
ij . Then

J ′
i = σ′

ijE
′
j . (3.20)

But J and E are vectors, so

J ′
i = lijJj (3.21)

and

Ei = ljiE
′
j (3.22)

from the results regarding the transformation of vectors in §3.2. Hence

σ′
ijE

′
j = J ′

i

= lipJp

= lipσpqEq

= lipσpqljqE
′
j

=⇒ (σ′
ij − lipljqσpq)E

′
j = 0.

This is true for all vectors E′, and hence the bracket must be identically zero; hence

σ′
ij = lipljqσpq. This tells us how σ transforms.
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Compare this argument with the corresponding argument for the case Ax = 0 where A is a matrix; if it
is true for all x then A must be zero, though this is not the case if it is only true for some x’s.

σ is a second rank tensor, because it has two suffixes (σij).

Definition: In general, a tensor of rank n is a mathematical object with n suffixes,

Tijk..., which obeys the transformation law

T ′
ijk... = lipljqlkr . . . Tpqr... (3.23)

where L is the rotation matrix between frames.

Note: for second rank tensors such as σ, the transformation law

T ′
ij = lipljqTpq (3.24)

can be rewritten in matrix notation as T ′ = LTLT – check this yourself!

Examples of Tensors

(i) Any vector v (e.g., velocity) is a tensor of rank 1, because v′i = lipvp.

(ii) Temperature T is a tensor of rank 0 – known as a scalar –

because it is the same in all frames (T ′ = T ).

(iii) The inertia tensor. Consider a mass m which is part of a rigid body, at a location

x within the body. If the body is rotating with angular velocity ω then the mass’s

velocity is v = ω × x, and its angular momentum is therefore

mx × v = mx × (ω × x) = m
(
|x|2ω − (ω . x)x

)
. (3.25)

Changing from a single mass m to a continuous mass distribution with density

ρ(x), so that an infinitesimal mass element is ρ(x) dV , we see that the total angular

momentum of a rigid body V is given by

h =

∫∫∫

V

ρ(x)
(
|x|2ω − (ω . x)x

)
dV, (3.26)
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or, in suffix notation,

hi =

∫∫∫

V

ρ(x)(xkxkωi − ωjxjxi) dV

=

∫∫∫

V

ρ(x)(xkxkδij − xjxi)ωj dV

= Iijωj

where

Iij =

∫∫∫

V

ρ(x)(xkxkδij − xixj) dV (3.27)

is the inertia tensor of the rigid body. Note that the tensor I does not depend on

ω, only on properties of the body itself; so it may be calculated once and for all

for any given body. To see that it is indeed a tensor, note that both h and ω are

vectors, and apply arguments previously used for the conductivity tensor.

(iv) Susceptibility χ. If M is the magnetization (magnetic mo-

ment per unit volume) and B is the applied magnetic field,

then for a simple medium we have M = χ(m)B where χ(m) is

the magnetic susceptibility. This generalises to Mi = χ
(m)
ij Bj

where χ
(m)
ij is the magnetic susceptibility tensor. Similarly

for polarization density P in a dielectric: Pi = χ
(e)
ij Ej where

E is the electric field and χ
(e)
ij is the electric susceptibility

tensor.

(v) The Kronecker delta itself. We have defined δij without reference to frame; i.e., its

components are by definition the same in all frames (δ′ij ≡ δij). Surprisingly, then,

we can show that it is a tensor:

lipljqδpq = lipljp = δij = δ′ij (3.28)

(from §3.2), which is exactly the right transformation law. We can also show that

ǫijk is a tensor of rank 3.

Both δij and ǫijk are isotropic tensors : that is, their compo-

nents are the same in all frames.
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(vi) Stress and strain tensors. In an elastic body, stresses (forces) result from displace-

ments of small volume elements within the body. Let this displacement at a location

x be u; then the strain tensor is defined to be

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.29)

The stress tensor pij is defined as the jth component of the forces within the body

acting on an imaginary plane perpendicular to the ith axis. Hooke’s law for simple

isotropic media says that stress ∝ strain. We can now generalise this to the tensor

formulation

pij = kijklekl (3.30)

where kijkl is a fourth rank tensor, which expresses the linear (but possibly aniso-

tropic) relationship between p and e.

3.4 Properties of Tensors

Linear Combination of Tensors

If Aij and Bij are second rank tensors, and α, β are scalars, then Tij = αAij + βBij is a

tensor.

Proof:

T ′
ij = αA′

ij + βB′
ij

= αlipljqApq + βlipljqBpq

= lipljq(αApq + βBpq)

= lipljqTpq

as required.

This result clearly extends to tensors of rank n.
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Contraction (also known as the Inner Product)

If Tij is a tensor then Tii is a scalar. Proof:

T ′
ii = lipliqTpq = δpqTpq = Tpp = Tii, (3.31)

so Tii has the same value in all frames as required.

We can extend this result: if Tijk...lmn... is a tensor of rankN then Sjk...mn... = Tijk...imn...

is a tensor of rank N − 2. Proof:

S ′
jk...mn... = T ′

ijk...imn...

= lipljqlkr . . . liαlmβlnγ . . . Tpqr...αβγ...

= (lipliα)ljqlkr . . . lmβlnγ . . . Tpqr...αβγ...

= δpαljqlkr . . . lmβlnγ . . . Tpqr...αβγ...

= ljqlkr . . . lmβlnγ . . . Sqr...βγ....

Outer Product

If a and b are vectors then the outer product Tij defined by Tij = aibj is a tensor of rank

two. Proof:

T ′
ij = a′ib

′
j = lipapljqbq = lipljqapbq = lipljqTpq (3.32)

as required.

Similarly (left as an exercise for the reader) we can show that if Aijk... is a tensor of

rank M and Blmn... is a tensor of rank N , then Tijk...lmn... = Aijk...Blmn... is a tensor of

rank M +N .

Example: if a and b are vectors then a . b is a scalar. Proof: Tij = aibj , being an

outer product of two vectors, is a tensor of rank two. Then Tii = aibi, being a contraction

of a tensor, is a scalar, as required. Note that |a|2 = a . a and |b|2 are also scalars; hence

a.b/|a| |b| = cos θ is a scalar, so that the angle between vectors is unaffected by a change

of frame.

Extra example of outer product of (5,1,2) with (1,2,3)

3.5 Symmetric and Anti-Symmetric Tensors

A tensor Tijk... is said to be symmetric in a pair of indices (say i, j) if

Tijk... = Tjik... (3.33)
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or anti-symmetric in i, j if

Tijk... = −Tjik.... (3.34)

For example, δij is symmetric; ǫijk is anti-symmetric in any pair

of indices. Another example: outer product aiaj of vector with

itself is obviously symmetric.

Note: if Aij is a symmetric second rank tensor then the matrix

corresponding to A is symmetric, i.e. A = AT . Similarly for an

anti-symmetric tensor.

Suppose that Sij is a symmetric tensor and Aij an anti-symmetric tensor. Then

SijAij = 0. Proof:

SijAij = −SijAji = −SjiAji

= −SijAij (swapping dummy i and j)

=⇒ 2SijAij = 0,

as required. Try to work out also how to see this “by inspection”, by considering appro-

priate pairs of components.

Example: for any vector a, a × a = 0 because

[a × a]i = ǫijkajak (3.35)

and ǫijk is anti-symmetric in j, k whilst ajak is symmetric.

The properties of symmetry and anti-symmetry are invariant under a change of frame:

that is, they are truly tensor properties. For example, suppose that Tij is symmetric.

Then

T ′
ij = lipljqTpq

= lipljqTqp

= ljqlipTqp = T ′
ji,

so that T ′
ij is also symmetric.
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(Alternative, and simpler, proof for second rank tensors:

T ′ = LTLT =⇒ T ′T = (LTLT )T = LT TLT = LTLT = T ′ (3.36)

using T T = T .)

Symmetry and anti-symmetry occur frequently in practical ap-

plications. For example, the strain tensor eij = 1
2
(∂ui/∂xj +

∂uj/∂xi) is clearly symmetric. In most situations the stress ten-

sor is also symmetric; but in some circumstances (for instance in

crystallography or geodynamics) it is forced to be anti-symmetric

while the strain remains symmetric. Inertia tensors are always

symmetric; conductivity and susceptibility tensors usually are.

Decomposition into Symmetric and Anti-Symmetric Parts

Any second rank tensor Tij can be uniquely expressed as the sum of a symmetric and an

anti-symmetric tensor; for

Tij = Sij + Aij (3.37)

where

Sij = 1
2
(Tij + Tji), Aij = 1

2
(Tij − Tji) (3.38)

are symmetric and anti-symmetric respectively. Exercise: prove that S and A are tensors.

Furthermore, any anti-symmetric tensor Aij can be expressed in terms of a vector ω

(sometimes known as the dual vector) such that

Aij = ǫijkωk. (3.39)

Proof: define ω by

ωk = 1
2
ǫklmAlm. (3.40)

Then

ǫijkωk = 1
2
ǫijkǫklmAlm

= 1
2
(δilδjm − δimδjl)Alm

= 1
2
(Aij − Aji) = Aij

as required. ω is a tensor as it is a contraction of two tensors.
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This definition of ω actually corresponds to setting

A =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


 . (3.41)

Worked Example: Decomposition of Second Rank Tensors

Consider an elastic body subjected to a simple shear, so that the displacement u at a

location x = (x, y, z) is given by

u = (γy, 0, 0)

for some constant γ. Consider the differential of the displacement, ∂ui/∂xj , which is

given by the matrix 


0 γ 0

0 0 0

0 0 0


 . (3.42)

We can decompose this tensor into symmetric and anti-symmetric parts,

∂ui

∂xj

=




0 1
2
γ 0

1
2
γ 0 0

0 0 0


+




0 1
2
γ 0

−1
2
γ 0 0

0 0 0


, (3.43)

in which the symmetric part is just the strain tensor eij. The anti-symmetric part can

also be written in the form ǫijkωk where ω = (0, 0, 1
2
γ).

This decomposition corresponds to writing

u = (γy, 0, 0) = (
1

2
γy,

1

2
γx, 0) + (

1

2
γy,−1

2
γx, 0).

The first term is a stretch at 45◦ to the (x, y)-axes, while the second is a rotation. In

fact, any vector field u which has zero divergence can be decomposed using this method

into a suitable stretch and a solid-body rotation.
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Example: suppose that two symmetric second rank tensors Rij and Sij are linearly

related. Then there must be a relationship between them of the form Rij = cijklSkl. It

is clear that cijkl must be symmetric in i, j (for otherwise, Rij would not be). It is not

necessarily the case that it must also be symmetric in k, l, but without loss of generality

we may assume that it is, by the following argument. Decompose cijkl into a part c
(s)
ijkl

which is symmetric in k, l and a part c
(a)
ijkl which is anti-symmetric. Then

Rij = c
(s)
ijklSkl + c

(a)
ijklSkl = c

(s)
ijklSkl (3.44)

because the second term is the contraction of an anti-symmetric tensor with a symmetric

one, which we showed was zero above. Hence we can ignore any anti-symmetric part of

cijkl.

3.6 Diagonalization of Symmetric Second Rank

Tensors

Suppose Tij is a symmetric second rank tensor. We shall show that there exists a frame

such that, if we transform T to that frame, it has components given by

T ′ =



λ1 0 0

0 λ2 0

0 0 λ3


 . (3.45)

This process is known as diagonalization. The values λ1, λ2

and λ3 are known as the principal values of T , and the Carte-

sian coordinate axes of the corresponding frame are known as the

principal axes. We will see that in fact the principal values are

just the eigenvalues of the matrix corresponding to T , and the

principal axes are the eigenvectors.

Because T is symmetric, we know that there are 3 real eigenvalues and that we can

find 3 corresponding eigenvectors which are orthogonal and of unit length. Let λ1, λ2,

λ3 be the eigenvalues and e′
1, e′

2, e′
3 be the eigenvectors (arranged as a right-handed set

of orthonormal vectors). Change frame to one in which the coordinate axes are aligned

with {e′
1, e

′
2, e

′
3}. What is T ′?

Recall that LT =
(

e′
1

∣∣ e′
2

∣∣ e′
3

)
; i.e., the three columns of LT are the vectors e′

1, e′
2
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and e′
3 (measured relative to the first frame). Hence in matrix notation,

TLT = T
(
e′

1

∣∣ e′
2

∣∣ e′
3

)

=
(
λ1e

′
1

∣∣ λ2e
′
2

∣∣ λ3e
′
3

)
.

So

T ′ = LTLT =




e′
1
T

e′
2
T

e′
3
T





λ1e

′
1 λ2e

′
2 λ3e

′
3




=



λ1 0 0

0 λ2 0

0 0 λ3




because, for example, the top LHS entry is given by e′
1 . λ1e

′
1, and the top RHS entry is

e′
1 . λ3e

′
3.

There is another way of seeing that T ′ =




λ1 0 0
0 λ2 0
0 0 λ3



. The equation Te
′

1 = λ1e
′

1 is true in any frame

(because T is a tensor, e
′

1 a vector and λ1 a scalar). In particular it is true in the frame with {e′1, e′2, e′3}
as coordinate axes. But, measured in this frame, e

′

1 is just (1, 0, 0)T , and T has components T ′; so

T ′




1
0
0



 =




λ1

0
0



 (3.46)

which shows that the first column of T ′ is (λ1, 0, 0)T . Similarly for the other columns.

Note: the three principal values are invariants of T . That is, whatever frame we start

from, when we diagonalize T we will obtain the same values of λ. The eigenvalues are

properties of the tensor, not of the coordinate system.

3.7 Isotropic Tensors

An isotropic tensor is one whose components are the same in all frames, i.e.,

T ′
ijk... = Tijk.... (3.47)

We can classify isotropic tensors up to rank four as follows:

Rank 0: All scalars are isotropic, since the tensor transformation law states that T ′ = T

for tensors of rank zero.
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Rank 1: There are no non-zero isotropic vectors.

Rank 2: The most general isotropic second rank tensor is λδij where λ is any scalar,

as proved below.

Rank 3: The most general isotropic third rank tensor is λǫijk.

Rank 4: The most general isotropic fourth rank tensor is

λδijδkl + µδikδjl + νδilδjk (3.48)

where λ, µ, ν are scalars.

What is the physical significance of an isotropic tensor? Con-

sider the conductivity tensor σij in an isotropic medium. As the

medium is the same in all directions, we expect that σij will be

isotropic too. Hence σij = λδij and

Ji = σijEj = λδijEj = λEi, (3.49)

i.e., J = λE. So we recover the “simple version” of the conductiv-

ity law, as we might expect.

Isotropic Second Rank Tensors

Consider a general tensor T of rank two, with components Tij

with respect to some set of axes {e1, e2, e3}. Suppose that T is

isotropic. Its components should then be unaltered by a rota-

tion of 90◦ about the 3-axis, i.e., with respect to new axes

e′
1 = e2, e′

2 = −e1, e′
3 = e3. (3.50)

The matrix of this rotation is

L =




0 1 0

−1 0 0

0 0 1


 . (3.51)
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Using the matrix formulation of the transformation law for tensors, we see that



T ′

11 T ′
12 T ′

13

T ′
21 T ′

22 T ′
23

T ′
31 T ′

32 T ′
33


 =




0 1 0

−1 0 0

0 0 1






T11 T12 T13

T21 T22 T23

T31 T32 T33







0 −1 0

1 0 0

0 0 1




=



T22 −T21 T23

−T12 T11 −T13

T32 −T31 T33


 .

But, because T is isotropic, T ′
ij = Tij . Hence, comparing matrix entries, we have:

T11 = T22;

T13 = T23 = −T13 so that T13 = T23 = 0;

T31 = T32 = −T31 so that T31 = T32 = 0.

Similarly, considering a rotation of 90◦ about the 2-axis, we find that T11 = T33 and that

T12 = T32 = 0, T21 = T23 = 0. Therefore all off-diagonal elements of T are zero, and all

diagonal elements are equal, say λ. Thus

T =



λ 0 0

0 λ 0

0 0 λ


 , (3.52)

or in suffix notation, Tij = λδij .

In summary, we have shown that any isotropic second rank tensor must be equal to

λδij for some scalar λ.

Worked Example: Evaluation of an Isotropic Integral

We wish to calculate

Tij =

∫ ∫ ∫

All space

xixje
−r2

dV

for each value of i and j.

There are no special directions involved either in the domain of integration or in the

integrand; so T must be isotropic. Hence Tij = λδij for some λ. To calculate λ, consider
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Tii = λδii = 3λ. But we know that

Tii =

∫∫∫

R3

xixie
−r2

dV (3.53)

=

∫∫∫

R3

r2e−r2

dV (3.54)

=

∫ 2π

0

∫ π

0

∫ ∞

0

r2e−r2

r2 sin θ drdθdφ (3.55)

= 4π

∫ ∞

0

r4e−r2

dr (3.56)

= 4π
(3
8

√
π
)
.

Hence we conclude that ∫∫∫

R3

xixje
−r2

dV =
1

2
π
√
π δij.

Such calculations are often of use when a physical situation has symmetry which can be

exploited; for example, consider calculating the inertia tensor of a sphere.

3.8 Tensor Differential Operators

A tensor field is a tensor which depends on the location x. For

example:

(i) Temperature is a scalar field (a tensor field of rank zero), be-

cause T = T (x).

(ii) Any vector field F(x), such as a gravitational force field, is a

tensor field of rank one. In particular, x is itself a vector field,

because it is a vector function of position!

(iii) In a conducting material where the conductivity varies with

location, we have σij = σij(x), a tensor field of rank two.
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We are interested here in calculating the derivatives of tensor fields; we start with

scalars and vectors.

Recall that grad, div, and curl can be written using suffix notation:

Grad: [∇Φ]i =
∂Φ

∂xi
(3.57)

Div: ∇ . F =
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
=
∂Fi

∂xi
(3.58)

Curl: [∇× F]i = ǫijk
∂Fk

∂xj
(3.59)

There is another useful notation: if u, v are vectors then we define the vector

(u . ∇)v =

(
u1

∂

∂x1
+ u2

∂

∂x2
+ u3

∂

∂x3

)
v. (3.60)

In suffix notation,

[(u . ∇)v]i = uj
∂vi

∂xj
. (3.61)

Laplace’s equation ∇2Φ = 0 becomes

∂2Φ

∂xi∂xi
= 0 (3.62)

in suffix notation. Similarly,

[∇2F]i =
∂2Fi

∂xj∂xj
(3.63)

(note that we only use Cartesian coordinates here).

Worked Example: Proving Vector Differential Identities

To prove that ∇ . (Φu) = u.∇Φ+Φ∇ . u where Φ is a scalar field and u is a vector field:

∇ . (Φu) =
∂

∂xi

(Φui) (3.64)

=
∂Φ

∂xi
ui + Φ

∂ui

∂xi
(3.65)

= [∇Φ]iui + Φ
∂ui

∂xi
(3.66)

= u . ∇Φ + Φ∇ . u.
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To prove that ∇× (u × v) = (∇ . v)u − (∇ . u)v + (v . ∇)u − (u . ∇)v where u and v

are vector fields:

[∇× (u × v)]i = ǫijk
∂

∂xj

ǫklmulvm

= (δilδjm − δimδjl)
∂

∂xj

(ulvm)

=
∂

∂xj

(uivj) −
∂

∂xj

(ujvi)

= ui
∂vj

∂xj
+ vj

∂ui

∂xj
− vi

∂uj

∂xj
− uj

∂vi

∂xj

= [(∇ . v)u + (v . ∇)u− (∇ . u)v − (u . ∇)v]i.

We sometimes find it useful to use the differential operator ∂i defined by

∂i =
∂

∂xi
. (3.67)

Then

[∇Φ]i = ∂iΦ; ∇ . F = ∂iFi; [∇× F]i = ǫijk∂jFk. (3.68)

It turns out that ∂i is in fact a tensor of rank one. We know that xj = lijx
′
i (from

x = LT x′) so that
∂xj

∂x′i
=

∂

∂x′i
(lkjx

′
k) = lkj

∂x′k
∂x′i

= lkjδik = lij. (3.69)

(This looks obvious but has to be proved very carefully!) Now let T be some quantity

(perhaps a scalar or a tensor of some rank). Then

∂′iT =
∂T

∂x′i
=
∂T

∂x1

∂x1

∂x′i
+
∂T

∂x2

∂x2

∂x′i
+
∂T

∂x3

∂x3

∂x′i

=
∂T

∂xj

∂xj

∂x′i

= lij
∂T

∂xj
= lij∂jT.

This is true for any quantity T , so

∂′i = lij∂j , (3.70)

i.e., ∂i transforms like a vector, and is hence a tensor of rank one.
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This result allows us to prove that ∇Φ, ∇ . F and ∇ × F are scalars or vectors (as

appropriate). For example, to show that if F is a vector field then ∇×F is a vector field:

[∇× F]′i = ǫ′ijk∂
′
jF

′
k

= lipljqlkrǫpqrljs∂slktFt

[ǫ, ∂ and F are tensors]

= lip(ljqljs)(lkrlkt)ǫpqr∂sFt

= lipδqsδrtǫpqr∂sFt

= lipǫpqr∂qFr

= lip[∇× F]p,

as required.

Alternatively, we can just state that ∇×F is a contraction of the tensor outer product Tijklm = ǫijk∂lFm

(because [∇× F]i = Tijkjk).

As an example of a tensor field of rank three, consider the deriva-

tive of the conductivity tensor, ∂iσjk. This cannot be written using

∇.
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Chapter 4

Complex Analysis

4.1 Complex Differentiation

Recall the definition of differentiation for a real function f(x):

f ′(x) = lim
δx→0

f(x+ δx) − f(x)

δx
. (4.1)

In this definition, it is important that the limit is the same whichever

direction we approach from. Consider |x| at x = 0 for example; if we

approach from the right (δx → 0+) then the limit is +1, whereas if

we approach from the left (δx→ 0−) the limit is −1. Because these

limits are different, we say that |x| is not differentiable at x = 0.

Now extend the definition to complex functions f(z):

f ′(z) = lim
δz→0

f(z + δz) − f(z)

δz
. (4.2)

Again, the limit must be the same whichever direction we approach

from; but now there is an infinity of possible directions.

Definition: if f ′(z) exists and is continuous in some region R

of the complex plane, we say that f is analytic in R. If f(z) is

analytic in some small region around a point z0, then we say that

f(z) is analytic at z0. The term regular is also used instead of

analytic.

Note: the property of analyticity is in fact a surprisingly strong one! For example,

two consequences include:

73
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(i) If a function is analytic then it is differentiable infinitely many times. (Cf. the

existence of real functions which can be differentiated N times but no more, for any

given N .)

(ii) If a function is analytic and bounded in the whole complex plane, then it is constant.

(Liouville’s Theorem.)

The Cauchy–Riemann Equations

Let f(z) be a differentiable complex-valued function of complex variable z. Separate f

and z into real and imaginary parts:

f(z) = u(x, y) + iv(x, y) (4.3)

where z = x + iy and u, v are real functions. Suppose that f is differentiable at z. We

can take δz in any direction; first take it to be real, δz = δx. Then

f ′(z) = lim
δx→0

f(z + δx) − f(z)

δx

= lim
δx→0

u(x+ δx, y) + iv(x+ δx, y) − u(x, y) − iv(x, y)

δx

= lim
δx→0

u(x+ δx, y) − u(x, y)

δx
+ i lim

δx→0

v(x+ δx, y) − v(x, y)

δx

=
∂u

∂x
+ i

∂v

∂x
.

Now take δz to be pure imaginary, δz = iδy. Then

f ′(z) = lim
δy→0

f(z + iδy) − f(z)

iδy

= lim
δy→0

u(x, y + δy) + iv(x, y + δy) − u(x, y) − iv(x, y)

iδy

= −i∂u
∂y

+
∂v

∂y
.

The two values for f ′(z) are the same since f is differentiable, so

∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y

=⇒ ∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

– the Cauchy–Riemann equations. It is also possible to show that if the Cauchy–Riemann

equations hold at a point z, then f is differentiable there (subject to certain technical

conditions on the continuity of the partial derivatives).
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If we know the real part u of an analytic function, the Cauchy–Riemann equations

allow us to find the imaginary part v (up to a constant), and vice versa. For example, if

u(x, y) = x2 − y2 then

∂v

∂y
=
∂u

∂x
= 2x =⇒ v = 2xy + g(x) (4.4)

for some function g(x); so

−2y =
∂u

∂y
= −∂v

∂x
= −2y − g′(x) =⇒ g′(x) = 0 =⇒ g = const. = α, say. (4.5)

Hence

f(z) = x2 − y2 + 2ixy + iα = (x+ iy)2 + iα = z2 + iα. (4.6)

Examples of Analytic Functions

(i) f(z) = z is analytic in the whole of C. Here u = x, v = y, and

the Cauchy–Riemann equations are satisfied (1 = 1; 0 = 0).

(ii) f(z) = zn (n a positive integer) is analytic in C. Here we write z = r(cos θ+ i sin θ)

and by de Moivre’s theorem, zn = rn(cosnθ + i sin nθ). Hence u = rn cosnθ and

v = rn sin nθ: we can check the Cauchy–Riemann equations (using r =
√
x2 + y2,

θ = tan−1(y/x)). The derivative is nzn−1, as expected.

(iii) f(z) = ez = exeiy = ex(cos y + i sin y). So

∂u

∂x
= ex cos y =

∂

∂y
(ex sin y) =

∂v

∂y
;

∂u

∂y
= −ex sin y = −∂v

∂x
. (4.7)

The derivative is

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez, (4.8)

again as expected.

(iv) f(z) = 1/z: check that this is analytic with derivative −1/z2 in any region R which

does not include the origin.

(v) More generally, any rational function – i.e., f(z) = P (z)/Q(z) where P and Q

are polynomials – is analytic except at points where Q(z) = 0. For instance,

f(z) = (z − i)/(z + i) is analytic except at z = −i.
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(vi) Many standard functions obey the usual rules for their derivatives; e.g.,

d

dz
sin z = cos z,

d

dz
sinh z = cosh z,

d

dz
cos z = − sin z,

d

dz
cosh z = sinh z,

d

dz
log z =

1

z
(when log z is defined as later).

The product, quotient and chain rules hold in exactly the same way as for real

functions.

Examples of Non-Analytic Functions

(i) f(z) = Re(z). Here u = x, v = 0, but 1 6= 0. Re(z) is

nowhere analytic.

(ii) f(z) = |z|; here u =
√
x2 + y2, v = 0.

(iii) f(z) = |z|2 = x2 + y2. The Cauchy–Riemann equations are only satisfied at the

origin, so f is only differentiable at z = 0. However, it is not analytic there because

there is no small region containing the origin within which f is differentiable.

(iv) f(z) = z̄ = x − iy (complex conjugate, also denoted z∗). Here u = x, v = −y, so

∂u/∂x = 1 6= −1 = ∂v/∂y.

Harmonic Functions

Suppose f(z) = u+ iv is analytic. Then

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)

=
∂

∂y

(
∂v

∂x

)
=

∂

∂y

(
−∂u
∂y

)
= −∂

2u

∂y2
.

Hence
∂2u

∂x2
+
∂2u

∂y2
= 0, (4.9)

i.e., u satisfies Laplace’s equation in two dimensions. Similarly, v does too. Such functions

u and v are said to be harmonic.
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4.2 Zeros of Complex Functions

The zeros of f(z) are the points z0 where f(z0) = 0. A zero is of order n if

0 = f ′(z0) = f ′′(z0) = · · · = f (n−1)(z0), but f (n)(z0) 6= 0. (4.10)

A zero of order one (i.e., one where f ′(z0) 6= 0) is called a simple zero. Examples:

(i) f(z) = z has a simple zero at z = 0.

(ii) f(z) = (z − i)2 has a zero of order two at z = i.

(iii) f(z) = z2−1 = (z−1)(z+1) has two simple zeros at z = ±1.

(iv) f(z) = (z−w)Ng(z), where w is a complex constant, N a positive integer and g(z)

an analytic function satisfying g(w) 6= 0, has a zero of order N at z = w.

(v) Where are the zeros of f(z) = sinh z? We know there is a simple zero at z = 0.

The others are where

0 = sinh z =
ez − e−z

2
⇐⇒ ez = e−z ⇐⇒ e2z = 1 ⇐⇒ 2z = 2nπi,

(4.11)

where n is an integer. (Check that ex+iy = 1 ⇔ x = 0 and y = 2nπ.) So the

zeros are on the imaginary axis at . . . ,−2πi,−πi, 0, πi, 2πi, 3πi, . . . , and they are

all simple.

Another way of defining the order of a zero is by the first non-zero power of (z − z0)

in its Taylor series. For example, consider the zero of sinh3 z at z = πi. Now sinh z =

− sinh(z − πi) = − sinh ζ where ζ = z − πi, and close to z = πi the Taylor series for

sinh z is therefore

−(ζ + 1
3!
ζ3 + · · · ). (4.12)

Hence the Taylor series for sinh3 z at z = πi is

−(ζ + 1
3!
ζ3 + · · · )3 = −(z − πi)3 − 1

2
(z − πi)5 + · · · . (4.13)

The zero is therefore of order 3.

4.3 Laurent Expansions

Suppose that f(z) is analytic at z0. Then we can expand f in a Taylor Series about z0:

f(z) =

∞∑

n=0

an(z − z0)
n (4.14)
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for suitable complex constants an.

Example: ez has a Taylor Series about z = i given by

ez = eiez−i = ei

∞∑

n=0

(z − i)n

n!
, (4.15)

so an = ei/n!.

Now consider an f(z) which is not analytic at z0, but for which (z−z0)f(z) is analytic.

(E.g., f(z) = ez/(z − z0).) Then, for suitable bn,

(z − z0)f(z) =

∞∑

n=0

bn(z − z0)
n

=⇒ f(z) =
b0

z − z0
+ b1 + b2(z − z0) + b3(z − z0)

2 + · · ·

=
∞∑

n=−1

an(z − z0)
n

where an = bn+1. Generalising this, if (z− z0)
Nf(z) is analytic at z0 then for suitable an,

f(z) =
∞∑

n=−N

an(z − z0)
n. (4.16)

But what if however largeN is, (z−z0)
Nf(z) is still not analytic

at z0? We might try taking N to be “infinite”, and in fact this

does always work.

Formally, it is possible to show that if f(z) is analytic in an

annulus a < |z − z0| < b for some a, b (regardless of whether f is

analytic at z0 itself) then f has a unique Laurent expansion

f(z) =
∞∑

n=−∞
an(z − z0)

n (4.17)

in the annulus.

Examples:

(i) f(z) = ez/z3 =
∑∞

n=0 z
n−3/n! about z0 = 0 has an = 0 for n < −3 and an =

1/(n+ 3)! for n ≥ −3.
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(ii) f(z) = ez/(z2 − 1) about z0 = 1 (where it has a singularity). Here we write

everything in terms of ζ = z − z0, so

f(z) =
eζez0

ζ(ζ + 2)
=
ez0

2ζ
eζ(1 + 1

2
ζ)−1

=
e

2ζ
(1 + ζ + 1

2!
ζ2 + · · · )(1 − 1

2
ζ + · · · )

=
e

2ζ
(1 + 1

2
ζ + · · · )

=
e

2

(
1

z − z0
+

1

2
+ · · ·

)
.

Hence a−1 = e/2, a0 = e/4, etc.

(iii) f(z) = exp(1/z) about z0 = 0 has

e1/z = 1 +
1

z
+

1

2! z2
+

1

3! z3
+ · · · , (4.18)

so that an = 1/(−n)! for n ≤ 0.

(iv) This doesn’t seem to work for f(z) = z−
1/2 – why? We shall see later that it is

impossible to find an annulus around z0 = 0 in which z−
1/2 is analytic.

If f(z) is in fact analytic at z = z0, then its Laurent expansion about z0 is just its

Taylor series.

4.4 Classification of Singularities

Suppose that f has a singularity at z = z0, but is analytic within

some circle |z − z0| < r except at z0 itself. Such a singularity

is called an isolated singularity. Choosing any annulus inside

the circle (e.g., r/2 < |z − z0| < r), we see that f has a Laurent

expansion about z0. We can use the coefficients an of the expansion

to classify the singularity; there are three possible cases.

Essential Isolated Singularities

If there is no integer N such that an = 0 for all n < −N – i.e., if however far n goes

towards −∞ there are always some non-zero an’s – then f is said to have an essential

isolated singularity. Examples:
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(i) exp(1/z) has an essential isolated singularity at z = 0, because all the an’s are

non-zero for n ≤ 0 (we showed above that an = 1/(−n)!).

(ii) sin(1/z) also has an essential isolated singularity at z = 0, because

an =





(−1)(n+1)/2/(−n)! n negative and odd,

0 n positive or even.
(4.19)

However negative n is, there are some non-zero an’s for still more negative n.

Near an essential isolated singularity of a function f(z), it can be shown that f takes all possible complex
values (bar at most one). For example, sin(1/z) takes all possible complex values near the origin; exp(1/z)
takes all except zero.

Poles

If an = 0 for all n < −N (where N is some specific positive integer) but a−N 6= 0, then

f is said to have a pole of order N . (If N = 1, then we call this a simple pole.) This is

the most common, and the most important, of the three cases. Examples:

(i) 1/(z − i) has a simple pole at z = i.

(ii) (cos z)/z (which has Laurent expansion z−1 − 1
2!
z+ 1

4!
z3 − · · · ) has a simple pole at

z = 0.

(iii) 1/(z2 + 1) has two simple poles, at z = ±i.

(iv) z2/{(z − 3)3(z − i)2} has a pole of order 2 at z = i and a pole of order 3 at z = 3.

To show formally that, for instance, there is a pole of order 2 at z = i, notice first

that z2/(z − 3)3 is analytic there so has a Taylor series

b0 + b1(z − i) + b2(z − i)2 + · · · . (4.20)

Hence
z2

(z − 3)3(z − i)2
=

b0
(z − i)2

+
b1

(z − i)
+ b2 + · · · . (4.21)

(v) If g(z) has a zero of order m at z = z0 then 1/g(z) has a pole of order m there (and

vice versa). Hence cot z has a simple pole at the origin, because tan z has a simple

zero there.

To prove this, note that g(z) = (z − z0)
mG(z) for some function G(z) satisfying

G(z0) 6= 0. The function 1/G(z) is analytic at z = z0, so it has a Taylor series

c0 + c1(z − z0) + c2(z − z0)
2 + · · · . Hence

1/g(z) = c0(z − z0)
−m + c1(z − z0)

−m+1 + c2(z − z0)
−m+2 + · · · (4.22)

as required.
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Removable Singularities

If an = 0 for all n < 0 (so that the Laurent expansion is just a0 + a1(z − z0) + · · · ), then

f is said to have a removable singularity. By redefining f(z0) = a0 we can remove the

singularity completely. Examples:

(i) (Somewhat contrived.)

f(z) =





0 z = 0

1 z 6= 0
(4.23)

has a singularity at z = 0. Because the origin is not part of any annulus around

itself, so that f(z) = 1 everywhere in the annulus, the Laurent expansion has a0 = 1

and all other an = 0, so f has a removable singularity; by redefining f(0) = 1 we

obtain an analytic function.

(ii) f(z) = (sin z)/z is not defined at z = 0, but by defining f(0) = 1 we obtain an

analytic function.

(iii) A rational function f(z) = P (z)/Q(z) (where P andQ are polynomials) has a singu-

larity at any point z0 where Q(z0) = 0; but if P (z0) = 0 as well then the singularity

is removable by redefining f(z0) = P ′(z0)/Q
′(z0), assuming that Q′(z0) 6= 0.

Note: the singularity of z−1/2 at z = 0 is not classified under

this scheme (though it might look as if it has a pole), as it has

no Laurent expansion. (See §4.7 for further explanation: in fact

z = 0 is a branch point singularity.)

4.5 Residues

We shall see in Chapter 5 that it is important to be able to calculate the coefficient a−1

of the Laurent expansion of a function f(z) about a pole at z0. This coefficient is called

the residue of the pole, which we shall denote by res
z=z0

f(z).

At a simple pole, the residue is given by a−1 = limz→z0
{(z − z0)f(z)}, because:

lim
z→z0

{(z − z0)f(z)} = lim
z→z0

{
(z − z0)

(
a−1

z − z0
+ a0 + a1(z − z0) + · · ·

)}

= lim
z→z0

{a−1 + a0(z − z0) + a1(z − z0)
2 + · · · }

= a−1.
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In general, at a pole of order N , the residue is given by the useful formula

a−1 = lim
z→z0

{
1

(N − 1)!

dN−1

dzN−1

(
(z − z0)

Nf(z)
)}

(4.24)

which can easily be proved by first writing down the Laurent expansion of f(z) and then

evaluating the right-hand side of the above formula.

Worked Example: Calculating Residues

Example: ez/z3

By expanding ez as a Taylor series, we see that f(z) = ez/z3 has a Laurent expansion

about z = 0 given by

z−3 + z−2 +
1

2
z−1 +

1

3!
+ · · · .

Hence the residue is 1
2

(the coefficient of z−1).

Alternatively, we note that f has a pole of order 3 at z = 0, so we can use the general

formula for the residue at a pole:

res
z=0

f(z) = lim
z→0

{
1

2!

d2

dz2

(
z3f(z)

)}
=

1

2
lim
z→0

{
d2

dz2
ez

}
=

1

2
.

Example: ez/(z2 − 1)

We have already calculated the Laurent expansion of g(z) = ez/(z2 − 1) at z = 1:

ez

z2 − 1
=
e

2

(
1

z − 1
+

1

2
+ · · ·

)
,

so the residue is e/2.

Alternatively, we use the formula for the residue at a simple pole:

res
z=1

g(z) = lim
z→1

(z − 1)ez

z2 − 1
= lim

z→1

ez

z + 1
= e/2.

Example: 1/(z8 − w8)

For any complex constant w, h(z) = (z8 − w8)−1 has 8 simple poles, at z = wenπi/4

(n = 0, 1, . . . , 7). The residue at z = w, say, could be evaluated by factorizing z8 − w8

into its eight linear factors, but is most easily calculated using L’Hôpital’s Rule:

res
z=w

h(z) = lim
z→w

z − w

z8 − w8
= lim

z→w

1

8z7
= 1/8w7.

Example: 1/ sinhπz
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1/ sinh πz has a simple pole at z = ni for all integers n (because the zeros of sinh z are

at nπi and are simple). We could use the Taylor series for sinh πz, or the general residue

formula: again using L’Hôpital’s Rule, the residue is

lim
z→ni

z − ni

sinh πz
= lim

z→ni

1

π cosh πz
=

1

π coshnπi
=

1

π cosnπ
= (−1)n/π.

Example: 1/ sinh3 z

We have seen that sinh3 z has a zero of order 3 at z = πi, with Taylor series

sinh3 z = −(z − πi)3 − 1

2
(z − πi)5 + · · · .

Therefore

1/ sinh3 z = −(z − πi)−3(1 +
1

2
(z − πi)2 + · · · )−1

= −(z − πi)−3(1 − 1

2
(z − πi)2 + · · · )

= −(z − πi)−3 +
1

2
(z − πi)−1 + · · · .

The residue is therefore 1
2
.

4.6 The Point at Infinity

In the complex plane, we can reach the “point at infinity” by going off in any direction.

Conceptually, we may use the Riemann Sphere, which is a sphere resting on the complex

plane with its “South Pole” at z = 0.

For any point in C, drawing a line through the “North Pole” of

the sphere to the point, and noting where this line intersects the

sphere, specifies an equivalent point on the sphere. Then the point

at infinity is equivalent to the “North Pole” of the sphere itself.
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We can use all the concepts of §4.4 on the point at infinity by using the transformation

ζ = 1/z. Let g(ζ) = f(1/ζ) and find the Laurent expansion of g at ζ = 0. Any type of

singularity that g has at ζ = 0 is also said to apply to f “at infinity”. Examples:

(i) f(z) = zn has a pole of order n at ∞ (because g(ζ) = f(1/ζ) = ζ−n which has a

pole of order n at ζ = 0).

(ii) f(z) = ez has an essential singularity at ∞.

The residue at infinity of f is, similarly, defined to be the residue of g(ζ) at ζ = 0;

so, for example, f(z) = 2z has a simple pole at ∞ (because g(ζ) = 2/ζ) with residue 2.

4.7 Multi-Valued Functions

In this section we shall use as our archetypal example log z, the

natural logarithm function. For a complex number z = reiθ, we

define log z = log r + iθ. There are thus infinitely many values,

or “branches”, of log z, for θ may take an infinity of values. For

example,

log i =
πi

2
or

5πi

2
or − 3πi

2
or. . . , (4.25)

depending on which choice of θ we make.

Branch Points

Consider the three curves shown in the diagram. On C1, we could choose θ to be always

in the range (0, π
2
), and then log z would be continuous and single-valued going round C1.

On C2, we could choose θ ∈ (π
2
, 3π

2
) and log z would again be continuous and single-valued.

But for C3, which encircles the origin, there is no such choice; whatever we do, log z cannot

be made continuous around C3 (it must either “jump” somewhere or be multi-valued). A
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branch point of a function – here, the origin – is a point which it is impossible to encircle

with a curve upon which the function is continuous and single-valued. The function is

said to have a branch point singularity at that point.

Examples:

(i) log(z − a) has a branch point at z = a.

(ii) log(z2 − 1) = log(z + 1) + log(z − 1) has two branch points, at ±1.

(iii) z
1/2 =

√
r eiθ/2 has a branch point at the origin. (Useful exercise: verify this.) The

same is true of zα = rαeiαθ when α is any non-integer.

Branch Cuts

If we wish to make log z continuous and single-valued, therefore, we must stop any curve

from encircling the origin. We do this by introducing a branch cut from −∞ on the real

axis to the origin. No curve is allowed to cross this cut. We can then decide to fix on

values of θ lying in the range −π < θ ≤ π only, and we have defined a branch of log z

which is single-valued and continuous on any curve (which doesn’t cross the cut). This

branch is analytic everywhere (with d
dz

log z = 1/z) except on the negative real axis.

(If a curve did cross the cut, from above it to below it say, then

θ would jump from +π to −π, and log z would be discontinuous

and therefore not analytic. This is not allowed.)

This cut is the canonical (i.e., “standard”) branch cut for log z, and the resulting

value of log z is called the principal value of the logarithm.

What are the values of log z just above and below the branch cut? Consider a point

on the negative real axis, z = x, x < 0. Just above the cut, at z = x + i0+, θ = +π, so

log z = log |x| + iπ. Just below it, at z = x+ i0−, log z = log |x| − iπ.
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Note that many different branch cuts are possible: any

cut which stops curves wrapping round the branch point will

do. In diagram (a), we could choose −3π/2 < θ ≤ π/2; the

exact choice is more difficult to write down in case (b), but

this is an equally valid cut.

Exactly the same choices of branch cut can be made for zα

(when α is not an integer). Note that this implies that neither

log z nor zα have Laurent expansions about the origin: for

any annulus a < |z| < b would have to be crossed by a branch

cut, so the function would not be analytic in the annulus.

Multiple Branch Cuts

When there is more than one branch point, we may need more than one branch cut. For

f(z) = {z(z − 1)}1/3 there are two branch points, at 0 and 1.

We need two branch cuts; a possibility is shown in the diagram. Then no curve can

wrap round either 0 or 1. For any z, we write z = r0e
iθ0 where −π < θ0 ≤ π and

z − 1 = r1e
iθ1 where 0 ≤ θ1 < 2π. Then we define

{z(z − 1)}1/3 = 3
√
r0r1 e

i(θ0+θ1)/3. (4.26)

This is continuous so long as we don’t cross either cut:

The value of f(z) just above the cut on the positive real axis at z = x is 3
√
x(x− 1)

(since θ0 = θ1 = 0 there); just below it is 3
√
x(x− 1) e2πi/3 (θ0 = 0, θ1 = 2π). For the cut

on the negative real axis we have 3
√
|x|(|x| + 1) e2πi/3 just above and 3

√
|x|(|x| + 1) just

below.
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Worked Example:

Branch Cuts for Multiple Branch Points

What branch cuts would we require for the function

f(z) = log
z − 1

z + 1
?

It is clear that there are branch points at ±1, but we have a non-trivial choice of branch

cuts. Define z − 1 = r1e
iθ1 and z + 1 = r2e

iθ2 , as shown in the following diagram.

The most straightforward choice is to take two branch cuts, one emanating from each

branch point to infinity. In the case shown, we choose 0 ≤ θ1 < 2π and −π < θ2 ≤ π,

and the consequent single-valued definition of f(z) is

f(z) = log(z − 1) − log(z + 1)

= (log r1 + iθ1) − (log r2 + iθ2)

= log(r1/r2) + i(θ1 − θ2).

The two cuts make it impossible for z to “wind around” either of the two branch points,

so we have obtained a single-valued function which is analytic except along the branch

cuts.

The second possible choice is to take only one branch cut, between −1 and 1, as

shown. This time, we choose both 0 ≤ θ1 < 2π and 0 ≤ θ2 < 2π (note that this seems at
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odds with the location of the branch cut, but this is not a problem as we will explain).

The definition of f(z) is as before, but with these different ranges for θ1 and θ2.

If z were to cross the branch cut, from above to below say, then θ1 would be unchanged

(at π) but θ2 would “jump” from 0 to 2π. This is, of course, not allowed, as we may not

cross branch cuts. So z cannot wind round just one of the branch points.

But it is now possible for z to wind around both of the branch points together.

Consider a curve C which does so. Starting from the point of C on the positive real axis

(where θ1 = θ2 = 0) and moving anti-clockwise, both θ1 and θ2 increase. When we have

made one complete revolution and returned to the positive real axis, having encircled

both branch points exactly once, θ1 and θ2 both suddenly “jump” from 2π back to 0.

But this jump does not result in a jump in the value of θ1 − θ2; so f(z) is not affected,

and is indeed single-valued as claimed.

Exactly the same choice of branch cuts occurs for the function

g(z) = (z2 − 1)1/2.

With the appropriate definitions of θ1 and θ2, as above, the single-valued choice is

g(z) = (z − 1)1/2(z + 1)1/2 =
√
r1r2 e

i(θ1+θ2)/2.

This time the single branch cut works because, when both θ1 and θ2 jump by 2π, 1
2
(θ1+θ2)

jumps by 2π also; and e2πi = 1. The cut prevents either θ1 or θ2 jumping on its own.

This idea can be extended to higher numbers of branch points in the right circum-

stances.

Example: consider

Φ(x, y) = Im

(
2T0

π
log

z + a

z − a

)
+ 2T0 (4.27)

where z = x + iy, a is a real constant and we use the branch cuts shown below to make log analytic.
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Then

Φ =
2T0

π
(θ0 − θ1) + 2T0 (4.28)

where −π < θ0 ≤ π and 0 ≤ θ1 < 2π. On the circle |z| = a, what is Φ? Above the real axis, we know
that θ0 + (π − θ1) = π/2 (property of circles), so Φ = +T0. Below the real axis, (−θ0) + (θ1 − π) = π/2
(same property), so Φ = −T0. We also note that everywhere in the circle |z| < a, ∇2Φ = 0 as Φ is the
imaginary part of an analytic function.

Hence Φ is the steady-state temperature distribution in a cylinder heated on one side to +T0 and on the
other to −T0; we solved this problem using separation of variables in Chapter 2. To see the connection
between the solutions, write θ0 = tan−1

(
y/(x + a)

)
and θ1 = π + tan−1

(
y/(x − a)

)
; then construct the

Fourier Series for
2T0

π

(
tan−1 y

x + a
− tan−1 y

x − a

)
. (4.29)



Chapter 5

Contour Integration and Transform

Theory

5.1 Path Integrals

For an integral
∫ b

a
f(x) dx on the real line, there is only one way of

getting from a to b. For an integral
∫
f(z) dz between two complex

points a and b we need to specify which path or contour C we will

use. As an example, consider

I1 =

∫

C1

dz

z
and I2 =

∫

C2

dz

z
(5.1)

where in both cases we integrate from z = −1 to z = +1 round a

unit semicircle: C1 above, C2 below the real axis. Substitute z = eiθ,

dz = ieiθ dθ:

I1 =

∫ 0

π

ieiθ dθ

eiθ
= −iπ (5.2)

but

I2 =

∫ 2π

π

i dθ = +iπ. (5.3)

The result of a contour integration may depend on the contour.

To formally define the integral, divide C into small intervals,

separated at points zk (k = 0, . . . , N) on C, where z0 = a and

zN = b. Let δzk = zk+1 − zk and let ∆ = max
k=0,...,N−1

|δzk|. Then we

define ∫

C

f(z) dz = lim
∆→0

N−1∑

n=0

f(zk) δzk (5.4)

where, as ∆ → 0, N → ∞. Note that if C lies along the real axis

then this definition is exactly the normal definition of a real integral.

90
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Elementary properties

If C1 is a contour from w1 to w2 in C, and C2 a contour from w2

to w3, and C is the combined contour from w1 to w3 following first

C1 then C2, we have that
∫

C
f(z) dz =

∫
C1
f(z) dz +

∫
C2
f(z) dz.

(Obvious from definition; compare with the equivalent result on the

real line,
∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.)

If C+ is a contour from w1 to w2, and C− is exactly the same con-

tour traversed backwards, then clearly
∫

C+ f(z) dz = −
∫

C−
f(z) dz.

(Cf.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.)

Integration by substitution and by parts work in C also.

If C has length L, then

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ ≤ Lmax
C

|f(z)| (5.5)

because at each point on C, |f(z)| ≤ max
C

|f(z)|.

Closed contours

If C is a closed curve, then it doesn’t matter where

we start from on C:
∮
C f(z) dz means the same

thing in any case. (Notation:
∮

denotes an integral

round a closed curve.) Note that if we traverse C

in a negative sense (clockwise) we get negative the

result we would have obtained had we traversed it

in a positive sense (anticlockwise).

5.2 Cauchy’s Theorem

A simply-connected domain is a region R of the complex plane with-

out any holes; formally, it is a region in which any closed curve en-

circles only points which are also in R. By a simple closed curve we

mean one which is continuous, of finite length and does not intersect

itself.
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Cauchy’s Theorem states simply that if f(z) is analytic in a simply-connected domain

R, then for any simple closed curve C in R,

∮

C

f(z) dz = 0. (5.6)

The proof is simple and follows from the Cauchy–Riemann equations and the Divergence

Theorem in 2D:
∮

C

f(z) dz =

∮

C

(u+ iv)(dx+ i dy)

=

∮

C

(u dx− v dy) + i

∮

C

(v dx+ u dy)

=

∫∫

S

(
−∂v
∂x

− ∂u

∂y

)
dxdy + i

∫∫

S

(
∂u

∂x
− ∂v

∂y

)
dxdy,

by applying the Divergence Theorem, where S is the region enclosed by C. But the

Cauchy–Riemann equations show that both brackets vanish, since f is analytic through-

out S. The result follows.

This result is, of course, not true if C encircles a singularity (we

could not then use the Cauchy–Riemann equations throughout S).

Changing the Contour

Suppose that C1 and C2 are two contours from a to b and that

there are no singularities of f on or between the contours. Let

C be the contour consisting of C1 followed by the reverse of

C2. C is a simple closed contour, so

∮

C

f(z) dz = 0 (5.7)

(no singularities are enclosed). Hence

∫

C1

f(z) dz −
∫

C2

f(z) dz = 0, (5.8)

i.e. ∫

C1

f(z) dz =

∫

C2

f(z) dz. (5.9)

So if we have one contour, we can move it around so long as

we don’t cross any singularities as we move it.
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If f has no singularities anywhere, then
∫ b

a
f(z) dz does not depend at all on the path

chosen.

The same idea of “moving the contour” applies to closed

contours; if C1 and C2 are closed contours as shown, then

∮

C1

f(z) dz =

∮

C2

f(z) dz (5.10)

so long as there are no singularities between C1 and C2. We

prove this by considering the closed contour C shown: clearly

0 =

∮

C

f(z) dz =

∮

C1

f(z) dz −
∮

C2

f(z) dz (5.11)

(the two integrals along the “joins” shown cancel).

5.3 The Integral of f ′(z)

For a real function f(x),
∫ b

a
f ′(x) dx = f(b) − f(a). This result extends immediately to

complex functions, so long as both f and f ′ are analytic in some simply-connected region

R and the integration contour C lies entirely in R. Then

∫ b

a

f ′(z) dz = f(b) − f(a) (5.12)

for any complex points a, b in R.

Note that the specified conditions ensure that the integral on

the LHS is independent of exactly which path in R is used from a

to b, using the results of §5.2.

Examples:

(i)
∫ i

0
z dz = 1

2
(i2 − 02) = −1

2
. (f and f ′ are analytic in the whole of C, so the LHS is

path-independent.)

(ii)
∫

C
ez dz, where C is the semicircular contour joining −1 to +1 along |z| = 1 above

the real axis, is equal to e− e−1.

(iii)
∫ −1+i

1+i
z−1 dz via a straight contour. Note that z−1 is not analytic everywhere, so we

do need to specify the contour; but we can define a simply-connected region R, given
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by Im z > 1
2

say, in which it is analytic, and C lies entirely in R. Let f(z) = log z

with the standard branch cut, so that f(z) is also analytic in R; then
∫ −1+i

1+i

z−1 dz = log(−1 + i) − log(1 + i)

= log
√

2 + 3
4
πi− (log

√
2 + 1

4
πi)

= 1
2
πi.

(iv) Now consider
∫
−1+i

1+i z−1 dz via the contour shown. Define R as in the diagram; we cannot now
choose the standard branch cut for log z (since C would cross it), so we choose a cut along the
positive imaginary axis, and define log reiθ = log r + iθ where − 3π

2 < θ ≤ π
2 . Then

∫

C

z−1 dz = log(−1 + i) − log(1 + i)

= log
√

2 + (− 5
4π)i − (log

√
2 + 1

4πi)

= − 3
2πi.

5.4 The Calculus of Residues

The Contour Integral of a Laurent Expansion

Consider a single term an(z−z0)n of an expansion, integrated

round a closed curve C which encircles z0 in a positive sense

(i.e., anticlockwise) once. For n ≥ 0, we can use Cauchy’s

Theorem to obtain immediately
∮

C

an(z − z0)
n dz = 0. (5.13)

For n < 0, first change the contour C to Cε, a circle of radius

ε about z0, using the ideas of §5.2. On Cε, z = z0 + εeiθ and

so
∮

C

an(z − z0)
n dz =

∫ 2π

0

anε
neinθ iεeiθ dθ

= ianε
n+1

∫ 2π

0

ei(n+1)θ dθ

=




ianε

n+1

[
ei(n+1)θ

i(n + 1)

]2π

0

n 6= −1

ianε
n+1(2π) n = −1



NST IB Mathematical Methods II 95

=





0 n 6= −1

2πia−1 n = −1

We deduce that for a function f(z) with a singularity at z0, and a contour C encircling

the singularity in a positive sense,
∮

C

f(z) dz =
∞∑

n=−∞

∮

C

an(z − z0)
n dz = 2πia−1 = 2πi res

z=z0

f(z). (5.14)

We can also obtain the result as follows, using the method of §5.3:

∮

C

an(z − z0)
n dz =





an

n + 1

[
(z − z0)

n+1
]
C

n 6= −1

an

[
log(z − z0)

]
C

n = −1

=

{
0 n 6= −1 (because (z − z0)

n+1 is single-valued)

2πia−1 n = −1 (because θ changes by 2π)

The Residue Theorem

Suppose that f(z) is analytic in a simply-connected region

R except for a finite number of poles at z1, z2, . . . , zn; and

that a simple closed curve C encircles the poles anticlockwise.

Then
∮

C

f(z) dz = 2πi
n∑

k=1

res
z=zk

f(z). (5.15)

(We have just proved this in the case of a single pole.)

Proof: Consider the curve Ĉ shown. Ĉ encircles no poles,

so ∮

bC

f(z) dz = 0 (5.16)

by Cauchy’s Theorem. But we can also work out the integral

round Ĉ by adding together several contributions: the large

outer curve (which is the same as C), the small circles around

each pole, and the contributions from the lines joining the outer curve to the inner circles.

For each k, the contribution from the small circle round zk is −2πi resz=zk
f(z) because

the small circle goes clockwise round zk. Also, the contribution from the line joining the

outer curve to the small circle cancels exactly with the contribution from the line going

back. Hence

0 =

∮

bC

f(z) dz =

∮

C

f(z) dz +
n∑

k=1

(
−2πi res

z=zk

f(z)
)

(5.17)

from which the result follows.
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5.5 Cauchy’s Formula for f(z)

Suppose that f(z) is analytic in a region R and that z0 lies in R. Then Cauchy’s formula

states that

f(z0) =
1

2πi

∮

C

f(z)

z − z0
dz (5.18)

where C is any closed contour in R encircling z0 once anticlockwise.

Proof: f(z)/(z − z0) is analytic except for a simple pole at z0, where it has residue

f(z0). Using the Residue Theorem,

∮

C

f(z)

z − z0
dz = 2πif(z0) (5.19)

as required.

Note: Cauchy’s formula says that if we know f on C then we

know it at all points within C. We can see that this must be so

by the uniqueness theorem of Chapter 2: u and v, the real and

imaginary parts of f , are harmonic, so if they are specified on C

(Dirichlet boundary conditions), then there is a unique solution

for u and v inside C.

Exercise: show that if instead f is analytic except for a singularity at z0, and has a

Laurent expansion
∑∞

m=−∞ am(z − z0)
m, then the coefficients of the expansion are given

by

an =
1

2πi

∮

C

f(z)

(z − z0)n+1
dz. (5.20)

If we differentiate Cauchy’s formula with respect to z0 (differentiating under the
∮

sign on the RHS), we see that

f ′(z0) =
1

2πi

∮

C

f(z)

(z − z0)2
dz. (5.21)

So f ′(z0) is known for all z0 inside C. Continuing this process,

f (n)(z0) =
n!

2πi

∮

C

f(z)

(z − z0)n+1
dz, (5.22)

and f (n)(z0) is known. So at any point where f is analytic, i.e. differentiable once, all its

derivatives exist; hence it is differentiable infinitely many times.
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5.6 Applications of the Residue Calculus

Suppose we wish to evaluate

I =

∫ ∞

0

dx

1 + x2
(5.23)

(which we can already do using trigonometric substitutions).

Consider ∮

C

dz

1 + z2
(5.24)

where C is the contour shown: from −R to R along the real axis (C0) then returning

to −R via a semicircle of radius R in the upper half-plane (CR). Now (1 + z2)−1 =

(z + i)−1(z − i)−1, so the only singularity enclosed by C is a simple pole at z = i, where

the residue is limz→i(z + i)−1 = 1/2i. Hence
∫

C0

dz

1 + z2
+

∫

CR

dz

1 + z2
=

∮

C

dz

1 + z2
= 2πi

1

2i
= π. (5.25)

Now ∫

C0

dz

1 + z2
=

∫ R

−R

dx

1 + x2
→ 2I as R → ∞. (5.26)

Consider
∫

CR
dz/(1 + z2): the integrand (1 + z2)−1 is of order R−2 on the semicircle, but

the length of the contour is πR. Hence
∣∣∣∣
∫

CR

dz

1 + z2

∣∣∣∣ ≤ πR× O(R−2) = O(R−1) → 0 as R → ∞. (5.27)

Combining all these results and taking the limit as R → ∞,

2I + 0 = π, (5.28)

i.e. I = π/2.

This example is not in itself impressive. But the power of the method is clear when

we see how easily it adapts to other such integrals (for which it would not be easy, or

would be impossible, to use substitutions). Examples:



NST IB Mathematical Methods II 98

(i) We wish to calculate

I =

∫ ∞

0

dx

(x2 + a2)2
(5.29)

where a > 0 is a real constant. We consider
∮

C
dz/(z2 + a2)2; most of the above

analysis is unchanged. The poles now occur at z = ±ia, and they both have order

2; only the pole at +ia is enclosed by C. The residue there is

lim
z→ia

d

dz

1

(z + ia)2
= lim

z→ia

−2

(z + ia)3
=

−2

−8ia3
= −1

4
ia−3. (5.30)

The integral round the semicircle still vanishes as R → ∞, since now

∣∣∣∣
∫

CR

dz

(z2 + a2)2

∣∣∣∣ ≤ πR× O(R−4) = O(R−3). (5.31)

Therefore

2I = 2πi(−1
4
ia−3) = π/2a3, (5.32)

i.e., I = π/4a3.

(ii) For I =
∫∞
0

dx/(1 + x4), the (simple) poles are at eπi/4, e3πi/4, e−πi/4 and e−3πi/4.

Only the first two poles are enclosed. The residue at eπi/4 is

lim
z→eπi/4

z − eπi/4

1 + z4
= lim

z→eπi/4

1

4z3
= 1

4
e−3πi/4 = −1

4
eπi/4 (5.33)

using L’Hôpital’s Rule, and at e3πi/4 it is (similarly) 1
4
e−πi/4. Hence

2I = 2πi(−1
4
eπi/4 + 1

4
e−πi/4) = 2πi(−1

4
)(2i sin π

4
) = π sin π

4
, (5.34)

i.e., I = π/2
√

2.

(iii) For I =
∫∞

0 x2dx/(1 + x4), the poles are as in (ii) but with

residues +1
4e

−πi/4 and −1
4e
πi/4 respectively (check for your-

self). So the value of the integral is unchanged.
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(iv) For I =
∫∞
0

dx/(1 + x4) again, an alternative to the method used in example (ii)

above (and similarly in example (iii) above) is to use a contour which is just a

quarter-circle, as shown.

Let C consist of the real axis from 0 to R (C0); the arc of circle from R to iR (C1);

and the imaginary axis from iR to 0 (C2). Now
∫

C0
dz/(1 + z4) → I as R → ∞;

and, along C2, we substitute z = iy to obtain
∫

C2

dz

1 + z4
=

∫ 0

R

i dy

1 + (iy)4
= −i

∫ R

0

dy

1 + y4
→ −iI as R → ∞. (5.35)

The integral along C1 vanishes as R → ∞, using the same argument as for CR

above, but this time we only enclose one pole, which makes the calculation easier.

Hence

I − iI = 2πi(−1
4
eπi/4) = −1

2
πe3πi/4 =⇒ I = π/2

√
2

as before.

Worked Example: Contour Integration - Integrals of

Trigonometric Functions

We wish to evaluate

I =

∫ 2π

0

dθ

a + cos θ

where a > 1 (so that the integrand is always finite). Substitute z = eiθ, so that dz = iz dθ

and cos θ = 1
2
(z+ z−1). As θ increases from 0 to 2π, z moves round the circle C of radius

1 in the complex plane. Hence

I =

∮

C

(iz)−1 dz

a+ 1
2
(z + z−1)

= −2i

∮

C

dz

z2 + 2az + 1
.

The integrand has poles at

z± = −a±
√
a2 − 1,

both on the real axis. Note that z+ is inside the unit circle

(check that a−1 <
√
a2 − 1 < a, so −1 < z+ < 0) whereas

z− is outside it. The integrand is equal to

1

(z − z+)(z − z−)
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so the residue at z = z+ is 1/(z+ − z−) = 1
/
2
√
a2 − 1. Hence

I = −2i

(
2πi

2
√
a2 − 1

)
=

2π√
a2 − 1

.

Worked Example: Contour Integration -

Integration Round a Branch Cut

We wish to evaluate

I =

∫ ∞

0

xα

1 +
√

2x+ x2
dx

where −1 < α < 1 so that the integral converges. We will need a branch cut for zα; we

take this along the positive real axis and define

zα = rαeiαθ

where z = reiθ and 0 ≤ θ < 2π.

Consider ∮

C

zα

1 +
√

2 z + z2
dz

where the keyhole contour C consists of a large circle CR

of radius R, a small circle Cǫ of radius ǫ (to avoid the

singularity of zα at z = 0) and two lines just above and

below the branch cut, as shown.

The contribution from CR is O(Rα−2) × 2πR = O(Rα−1) → 0 as R → ∞.

The contribution from Cǫ is (substituting z = ǫeiθ on Cǫ)

∫ 0

2π

ǫαeiαθ

1 +
√

2 ǫeiθ + ǫ2e2iθ
iǫeiθ dθ = O(ǫα+1) → 0

as ǫ→ 0.

The contribution from just above the branch cut is

∫ R

ǫ

xα

1 +
√

2 x+ x2
dx→ I
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as ǫ→ 0 and R → ∞. The contribution from just below the branch cut is

∫ ǫ

R

xαe2απi

1 +
√

2x+ x2
dx→ −e2απiI

as ǫ→ 0 and R → ∞.

Hence ∮

C

zα

1 +
√

2 z + z2
dz → (1 − e2απi)I

as ǫ→ 0 and R → ∞.

But the integrand is equal to

zα

(z − e3πi/4)(z − e5πi/4)

(by finding the roots of the quadratic), so the poles inside C are at e3πi/4 with residue

e3απi/4/(
√

2 i) and at e5πi/4 with residue e5απi/4/(−
√

2 i). Hence, taking the limits ǫ → 0

and R→ ∞,

(1 − e2απi)I = 2πi

(
e3απi/4

√
2 i

+
e5απi/4

−
√

2 i

)
,

i.e.,

eαπi(e−απi − eαπi)I =
√

2πeαπi(e−απi/4 − eαπi/4).

We conclude that

I =
√

2π
sin(απ/4)

sin(απ)
.

Jordan’s Lemma

For many applications (in particular, ones involving Fourier

transforms) we need to show that

∫

CR

f(z)eiλz dz → 0 (5.36)

as R → ∞, where λ > 0 is some real constant and f is

an analytic function (except possibly for a finite number of

poles). Jordan’s Lemma states that this is true so long as

f(z) → 0 as |z| → ∞. For λ < 0, the same conclusion holds

for the semicircular contour C ′
R in the lower half-plane.
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Note that this result is obvious if f(z) = O(|z|−2) as |z| → ∞ – i.e., if f(z) = O(R−2)

on CR – by the following argument. First note that eiλz = eiλ(x+iy) = e−λyeiλx, and y ≥ 0

on CR, so |eiλz| = e−λy ≤ 1 on CR. Hence

∣∣∣∣
∫

CR

f(z)eiλz dz

∣∣∣∣ ≤ πRmax
CR

|f(z)|

= πR× O(R−2) → 0 as R → ∞.

Jordan’s Lemma simply extends the result from functions satisfying f(z) = O(|z|−2) to

any function satisfying f(z) → 0 as |z| → ∞. Examples:

∫

CR

e2iz

z
dz → 0 as R → ∞;

∫

C′

R

e−iz

z2
dz → 0 as R → ∞. (5.37)

The proof of Jordan’s Lemma stems from the fact that for 0 ≤ θ ≤ π/2,
sin θ ≥ 2θ/π. Now

∣∣∣∣
∫

CR

f(z)eiλz dz

∣∣∣∣ ≤ max
CR

|f(z)|
∫ π

0

|eiλz | |Reiθ| dθ

= R max |f(z)|
∫ π

0

e−λR sin θ dθ

[using y = R sin θ]

= 2R max |f(z)|
∫ π/2

0

e−λR sin θ dθ

≤ 2R max |f(z)|
∫ π/2

0

e−2λRθ/π dθ

=
π

λ
(1 − e−λR)max |f(z)|

→ 0 as R → ∞.

A similar proof holds on C′

R for λ < 0.
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Worked Example: Contour Integration - Inverse Fourier Transforms

Consider the real function

f(x) =





0 x < 0

e−ax x > 0

where a > 0 is a real constant. The Fourier Transform of f(x) is

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx

=

∫ ∞

0

e−ax−ikx dx

= − 1

a + ik

[
e−ax−ikx

]∞
0

=
1

a + ik
. (5.38)

We shall verify the Inverse Fourier Transform by evalu-

ating
1

2π

∫ ∞

−∞
f̃(k)eikx dk.

In the complex k-plane, let C0 be the contour from −R to

R on the real axis, CR be the semicircle of radius R in the

upper half plane and C ′
R be the semicircle of radius R in the

lower half plane. Let C be C0 followed by CR (this is known

as closing in the upper half plane), and let C ′ be C0 followed

by C ′
R (closing in the lower half plane).

Now f̃(k) has only one pole, at k = ia, which is simple, so

∮

C

f̃(k)eikx dk = 2πi res
k=ia

eikx

i(k − ia)
= 2πe−ax,

whereas ∮

C′

f̃(k)eikx dk = 0.

(Note that C ′ is traversed in a negative sense, so if there had been any poles within C ′

we would have had to introduce a minus sign.)

Now, if x > 0, we can apply Jordan’s Lemma (with λ = x) to CR to show that
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∫
CR
f̃(k)eikx dk → 0 as R→ ∞, since f̃(k) = O(1/k) as |k| → ∞. Hence for x > 0,

1

2π

∫ ∞

−∞
f̃(k)eikx dk =

1

2π
lim

R→∞

∫

C0

f̃(k)eikx dk

=
1

2π
lim

R→∞

(∮

C

f̃(k)eikx dk −
∫

CR

f̃(k)eikx dk

)

= e−ax. (5.39)

For x < 0 we close in the lower half plane instead, and the same analysis applies to

C ′:

1

2π

∫ ∞

−∞
f̃(k)eikx dk =

1

2π
lim

R→∞

(∮

C′

f̃(k)eikx dk −
∫

C′

R

f̃(k)eikx dk

)

= 0. (5.40)

Hence, combining the above results, we obtain

1

2π

∫ ∞

−∞
f̃(k)eikx dk =





0 x < 0

e−ax x > 0

as expected.

Note that by taking real and imaginary parts of this equality we can deduce the values

of particular real integrals. The imaginary part gives

1

2π

∫ ∞

−∞

a sin kx− k cos kx

a2 + k2
dk = 0,

which is obvious anyway as the integrand is an odd function of k. But the real part gives

1

2π

∫ ∞

−∞

a cos kx+ k sin kx

a2 + k2
dk =





0 x < 0

e−ax x > 0

and in particular ∫ ∞

−∞

a cos θ + θ sin θ

a2 + θ2
dθ = 2πe−a.
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Worked Example: Contour Integration - Singular Point on the Real Axis

We wish to evaluate ∫ ∞

−∞

sin x

x
dx.

This integrand is well-behaved at the origin, so the integral is non-singular. But the

obvious approach via contour integration using

1

2i

∫ ∞

−∞

eiz − e−iz

z
dz

runs into trouble because we cannot apply Jordan’s Lemma to the integrand. To get round

this we might try to split it into two separate integrals, to each of which Jordan’s Lemma

does apply, but then we find that our contour passes through a pole of the integrand.

Instead, we write

∫ ∞

−∞

sin x

x
dx = lim

ǫ→0
R→∞

(∫ −ǫ

−R

sin x

x
dx+

∫ R

ǫ

sin x

x
dx

)

= Im lim
ǫ→0

R→∞

(∫ −ǫ

−R

eiz

z
dz +

∫ R

ǫ

eiz

z
dz

)
. (5.41)

Let C be the contour from −R to −ǫ, then round a semi-

circle Cǫ of radius ǫ, then from ǫ to R, and returning via a

semicircle CR of radius R. Then C encloses no poles of eiz/z,

so

∫ −ǫ

−R

eiz

z
dz +

∫ R

ǫ

eiz

z
dz = −

∫

Cǫ

eiz

z
dz −

∫

CR

eiz

z
dz.

Jordan’s Lemma tells us that the integral round CR vanishes as R → ∞. On Cǫ, z = ǫeiθ

and eiz = 1 +O(ǫ); so

∫

Cǫ

eiz

z
dz =

∫ 0

π

1 +O(ǫ)

ǫeiθ
iǫeiθ dθ = −iπ +O(ǫ).

Hence, taking the limit as ǫ→ 0 and R → ∞,

∫ ∞

−∞

sin x

x
dx = Im(iπ) = π.

A similar method works for ∫ ∞

−∞

sin2 x

x2
dx;
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write sin2 x = 1
2
Re(1 − e2ix), and then

∫ ∞

−∞

sin2 x

x2
dx =

1

2
Re lim

ǫ→0
R→∞

(∫ −ǫ

−R

1 − e2iz

z2
dz +

∫ R

ǫ

1 − e2iz

z2
dz

)

=
1

2
Re lim

ǫ→0
R→∞

(
−
∫

Cǫ

1 − e2iz

z2
dz −

∫

CR

1 − e2iz

z2
dz

)
. (5.42)

The integral round CR can be shown to vanish as R → ∞ by standard techniques

(Jordan’s Lemma is not, however, applicable), and the integral round Cǫ can be evaluated

as before (expanding e2iz to slightly higher order in ǫ than before), giving

∫

Cǫ

1 − e2iz

z2
dz = −2π +O(ǫ).

Hence ∫ ∞

−∞

sin2 x

x2
dx = π

as well!

An alternative approach for both examples is to note that,

for instance, (sin z)/z has a removable singularity at the ori-

gin. Having removed the singularity, we have an analytic

integrand, and therefore the original contour along the real

axis can be moved to one which does not pass through the

origin. It is now possible to write sin z = (eiz −e−iz)/2i, split

the integrand in two, and apply Jordan’s Lemma to each part

separately.
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Worked Example: Contour Integration - Using the Residue at Infinity

We wish to evaluate

I =

∫ 1

−1

√
1 − x2 dx.

Consider (z2 − 1)
1/2 with a branch cut from −1 to 1

(as explained in a worked example in Chapter 4). For

z = x on the real axis, just above the cut we have

(z2 − 1)
1/2 = i

√
1 − x2

(θ1 = π and θ2 = 0 in the notation of the branch cut

example), whereas just below

(z2 − 1)
1/2 = −i

√
1 − x2

(θ1 = π, θ2 = 2π).

Let C be the closed contour running along the x-axis from +1 to −1 above the cut

and back again to +1 below it; at each end C runs round a circle of radius ǫ to avoid the

branch point. For small ǫ the integrals round the small circles are negligible (check); so

∮

C

(z2 − 1)
1/2 dz =

∫ −1

1

i
√

1 − x2 dx+

∫ 1

−1

(
−i

√
1 − x2

)
dx

= −2iI. (5.43)

We can deform the contour of integration from C to CR, the circle of radius R, as there

are no singularities between C and CR. Hence

I =
1

2
i

∮

CR

(z2 − 1)
1/2 dz. (1)

Let ζ = 1/z, and let C1/R be the circle of radius 1/R traversed clockwise, so that C1/R

is the image of CR under the transformation z 7→ ζ . Then dz = −ζ−2 dζ , so making the

substitution,

I =
1

2
i

∮

C1/R

(ζ−2 − 1)
1/2(−ζ−2) dζ.

Now

−ζ−2(ζ−2 − 1)
1/2 = −ζ−3(1 − ζ2)

1/2 = −ζ−3(1 − 1

2
ζ2 + · · · ),

so the integrand has a singularity at ζ = 0 with residue 1
2
. Therefore (introducing a

minus sign because the contour C1/R is traversed in a negative sense),

I = −1

2
i× 2πi× 1

2
=
π

2
.
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Note that we could also have argued as follows: (z2 − 1)
1/2 has residue −1

2
at infinity

(using the definition of the residue at infinity and the above working); since CR “encircles

infinity”, from (1) we immediately obtain I = 1
2
i× 2πi× (−1

2
) = π/2 as before. Compar-

ison of the two techniques reveals the reason for the unintuitive definition of the residue

at infinity.

5.7 Laplace Transforms

The Fourier transform is a powerful technique for solving differential equations and for

investigating many physical problems, but not all functions have a Fourier transform:

the integral defining the transform does not converge unless the function tends to zero at

infinity.

To get around this restriction, we can use another kind of trans-

form known as the Laplace transform. The price we pay is a

different restriction: it is only defined for functions which are zero

for t < 0 (by convention). From now on, we shall make this as-

sumption, so that if we refer to the function f(t) = et for instance,

we really mean the function f(t) =





0 t < 0,

et t ≥ 0.

The Laplace transform of a function f(t) is defined by

f̄(p) =

∫ ∞

0

f(t)e−pt dt (5.44)

where p may be complex. The notation L [f ] or L [f(t)] is also used for f̄(p); and the

symbol s is often used instead of p. Many functions – for instance, t and et – which do not

have Fourier transforms do have Laplace transforms; however, there are still exceptions

(e.g., et2). Laplace transforms are particularly useful in initial value problems, where we

are given the state of a system at t = 0 and desire to find its state for t > 0.

Examples:

(i) L [1] =

∫ ∞

0

e−pt dt =
1

p
.
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(ii) L [t] =

∫ ∞

0

te−pt dt =

[
−1

p
te−pt

]∞

0

+
1

p

∫ ∞

0

e−pt dt =
1

p2
.

(iii) L [eλt] =

∫ ∞

0

e(λ−p)t dt =
1

p− λ
.

(iv) L [sin t] = L

[
1

2i
(eit − e−it)

]
=

1

2i

(
1

p− i
− 1

p+ i

)
=

1

p2 + 1
.

Note that, strictly speaking, in example (iii), the integral only converges for Re p > Re λ (otherwise the
integrand, e(λ−p)t, diverges as t → ∞). However, once we have calculated the integral for Re p > Reλ we
can consider f̄(p) to exist everywhere in the complex p-plane (except for singularities such as at p = λ
in this example). This process of extending a complex function which is initially only defined in some
part of the complex plane to the whole of the plane is known as analytic continuation.

It is useful to have a “library” of Laplace transforms to hand; some common ones are

listed below.

f(t) f̄(p) f(t) f̄(p)

1
1

p
tn

n!

pn+1

eλt 1

p− λ
tneλt n!

(p− λ)n+1

sinωt
ω

p2 + ω2
cosωt

p

p2 + ω2

sinhλt
λ

p2 − λ2
coshλt

p

p2 − λ2

eλt sinωt
ω

(p− λ)2 + ω2
eλt cosωt

p− λ

(p− λ)2 + ω2

δ(t) 1 δ(t− t0) e−pt0

Elementary Properties of the Laplace Transform

(i) Linearity: L [αf(t) + βg(t)] = αf̄(p) + βḡ(p).

(ii) Change of scale: using the substitution t′ = λt,

L [f(λt)] =

∫ ∞

0

f(λt)e−pt dt =
1

λ

∫ ∞

0

f(t′)e−(p/λ)t′ dt′ =
1

λ
f̄
(p
λ

)
. (5.45)

(iii) Shifting theorem: L [eλtf(t)] = f̄(p− λ). (Easy to check.)
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(iv) Derivative of a Laplace transform:

L [tf(t)] = − d

dp
f̄(p). (5.46)

Proof:

f̄(p) =

∫ ∞

0

f(t)e−pt dt =⇒ d

dp
f̄(p) = −

∫ ∞

0

tf(t)e−pt dt.

By repeating this trick n times, we see that the Laplace transform of tnf(t) is

(−1)nf̄ (n)(p).

Examples:

L [t sin t] = − d

dp

1

p2 + 1
=

2p

(p2 + 1)2
; L [tn] = (−1)n dn

dpn

1

p
=

n!

pn+1
. (5.47)

(v) Laplace transform of a derivative:

L

[
df

dt

]
= pf̄(p) − f(0). (5.48)

Proof:
∫ ∞

0

df

dt
e−pt dt = [f(t)e−pt]∞0 + p

∫ ∞

0

f(t)e−pt dt = pf̄(p) − f(0).

We can deduce that

L

[
d2f

dt2

]
= pL

[
df

dt

]
− ḟ(0) = p2f̄(p) − pf(0) − ḟ(0)

and so on.

(vi) Asymptotic limits: pf̄(p) → f(0) as p → ∞, and pf̄(p) → limt→∞ f(t) as p → 0.

Proofs: from (v) above,

pf̄(p) = f(0) +

∫ ∞

0

df

dt
e−pt dt,

so as p → ∞ (and therefore e−pt → 0 for all t > 0), pf̄(p) → f(0). Similarly, as

p→ 0, e−pt → 1 so that

pf̄(p) → f(0) +

∫ ∞

0

df

dt
dt = f(0) + [f(t)]∞0 = lim

t→∞
f(t). (5.49)
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Solving Differential Equations using Laplace Transforms

The Laplace transform is particularly suited to the solution of

initial value problems. Example: solve

ÿ + 5ẏ + 6y = 0 (5.50)

for y(t) subject to y(0) = 1, ẏ(0) = −4. Taking Laplace trans-

forms, and using the results for the Laplace transform of a deriva-

tive, we see that

(p2ȳ(p) − p+ 4) + 5(pȳ(p) − 1) + 6ȳ(p) = 0, (5.51)

which we may solve for ȳ(p):

ȳ(p) =
p+ 1

p2 + 5p+ 6
=

p+ 1

(p+ 2)(p+ 3)
=

2

p+ 3
− 1

p+ 2
(5.52)

using partial fractions. We now need to invert ȳ(p) to find y(t); in general we must

use the inversion formula described below, but in many cases (such as this one) it is

possible to “spot” the answer using the “library” of transforms given above (and taking

advantage of the fact that inverse Laplace transforms are unique). Here, we know that

L [eλt] = 1/(p− λ); hence

y(t) = 2e−3t − e−2t. (5.53)

The Convolution Theorem for Laplace Transforms

The convolution of two functions f(t) and g(t) is

(f ∗ g)(t) =

∫ ∞

−∞
f(t− t′)g(t′) dt′. (5.54)

We are dealing here with functions which vanish for t < 0, so this reduces to

(f ∗ g)(t) =

∫ t

0

f(t− t′)g(t′) dt′ (5.55)

since g(t′) = 0 for t′ < 0 and f(t− t′) = 0 for t′ > t. The convolution theorem for Laplace

transforms then states that

L [f ∗ g] = f̄(p)ḡ(p). (5.56)
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Proof:

L [f ∗ g] =

∫ ∞

0

{∫ t

0

f(t− t′)g(t′) dt′
}
e−pt dt

=

∫ ∞

0

{∫ t

0

f(t− t′)g(t′)e−pt dt′
}

dt.

From the diagram, we see that we can change the order of integration in the (t, t′)-

plane, giving

L [f ∗ g] =

∫ ∞

0

{∫ ∞

t′
f(t− t′)g(t′)e−pt dt

}
dt′

=

∫ ∞

0

{∫ ∞

0

f(t′′)e−pt′′e−pt′ dt′′
}
g(t′) dt′

[substituting t′′ = t− t′]

=

∫ ∞

0

{f̄(p)e−pt′}g(t′) dt′

= f̄(p)

∫ ∞

0

g(t′)e−pt′ dt′

= f̄(p)ḡ(p)

as required.

The Inverse Laplace Transform

Inverting Laplace transforms is more difficult than inverting Fourier transforms because

it is always necessary to perform a contour integration. Given f̄(p), we can calculate f(t)

using the Bromwich inversion formula

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
f̄(p)ept dp. (5.57)
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Here γ is a real constant, and the Brom-

wich inversion contour Γ runs from γ − i∞
to γ + i∞ along a straight line. Γ must lie

to the right of all the singularities of f̄ (p).

Note that it is possible to derive the Bromwich inversion formula from the inverse Fourier transform by
substituting p = ik and noting that f̄(p) = f̃(−ip) where f̃(k) is the Fourier transform of f(t). The only
difference is in the detail of the inversion contour.

Suppose that f̄(p) has only poles, and no other singu-

larities; all these poles lie to the left of Γ. When t < 0,

consider the integral round the contour C shown consisting

of C0 followed by C ′
R. C encloses no poles, so

∮

C

f̄(p)ept dp = 0. (5.58)

Now on C ′
R, Re p ≥ γ, so Re(pt) ≤ γt (since t < 0) and hence

|ept| ≤ eγt. Therefore if f̄(p) = O(|p|−2) as |p| → ∞ – i.e., if

f̄(p) = O(R−2) on C ′
R – then

∣∣∣∣
∫

C′

R

f̄(p)ept dp

∣∣∣∣ ≤ πReγt × O(R−2) → 0 (5.59)

as R → ∞. In fact the same is true even if we only have f̄(p) → 0 as |p| → ∞, by a

slight modification of Jordan’s Lemma. So in either case,

∫

Γ

f̄(p)ept dp = lim
R→∞

∫

C0

f̄(p)ept dp

= lim
R→∞

(∮

C

f̄(p)ept dp−
∫

C′

R

f̄(p)ept dp

)

= 0 − 0 = 0,

and therefore for t < 0 the inversion formula gives

f(t) =
1

2πi

∫

Γ

f̄(p)ept dp = 0 (5.60)

(as it must do, since f(t) = 0 for t < 0 by our initial assumption).
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When t > 0, we close the contour to the left instead, and

once again we can show that
∫

CR

f̄(p)ept dp→ 0 (5.61)

as R → ∞, so long as f̄(p) → 0 as |p| → ∞. Hence in the

limit R → ∞ we obtain
∫

Γ

f̄(p)ept dp = 2πi

n∑

k=1

res
p=pk

(
f̄(p)ept

)
(5.62)

by the Residue Theorem, where p1, . . . , pn are the poles of f̄(p). We deduce that

f(t) =
n∑

k=1

res
p=pk

(
f̄(p)ept

)
(5.63)

for t > 0, so long as f̄(p) → 0 as |p| → ∞.

Examples:

(i) f̄(p) = 1/(p − 1). This has a pole at p = 1, so we must use

γ > 1. We have f̄ (p) → 0 as |p| → ∞, so Jordan’s Lemma

applies as above. For t < 0, therefore, f(t) = 0, and for t > 0,

f(t) = res
p=1

(
ept

p− 1

)
= et. (5.64)

This agrees with our earlier result for the Laplace transform of eλt when λ = 1.

(ii) f̄(p) = p−n. Here we need γ > 0, because there is a pole of order n at p = 0. For

t < 0, f(t) = 0 as usual. For t > 0,

f(t) = res
p=0

(
ept

pn

)
= lim

p→0

{
1

(n− 1)!

dn−1

dpn−1
ept

}

= lim
p→0

{
1

(n− 1)!
(tn−1ept)

}

=
tn−1

(n− 1)!
.
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(iii) What if f̄(p) 6→ 0 as |p| → ∞? Consider the example

f̄(p) =
e−p

p
; (5.65)

here, as p→ −∞ on the real axis, f̄(p) → ∞. We need to calculate

f(t) =
1

2πi

∫

Γ

e−p

p
ept dp, (5.66)

but Jordan’s Lemma does not immediately apply. Note, however, that e−pept =

ep(t−1) = ept′ where t′ = t− 1; so

f(t) =
1

2πi

∫

Γ

ept′

p
dp. (5.67)

Now we can use Jordan’s Lemma: when t′ < 0, close to the right, and when t′ > 0,

close to the left, picking up the residue from the pole at p = 0. Hence

f(t) =





0 t′ < 0,

1 t′ > 0

=





0 t < 1,

1 t > 1.

Worked Example: Solving Differential Equations using the

Laplace Transform and its Inverse

We shall solve

ẍ+ x = 2 sin t

for x(t), with initial conditions x(0) = 0, ẋ(0) = 2. Taking the Laplace transform with

respect to time,
(
p2x̄(p) − px(0) − ẋ(0)

)
+ x̄(p) =

2

p2 + 1
.
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Using the initial conditions, we obtain

p2x̄− 2 + x̄ =
2

p2 + 1

from which we deduce that

x̄ =
2p2 + 4

(p2 + 1)2
.

To invert this we write down the Bromwich inversion formula

x(t) =
1

2πi

∫ γ+i∞

γ−i∞

2p2 + 4

(p2 + 1)2
ept dp.

The integrand has poles of order two at p = ±i, so we must have γ > 0 in order that the

integration contour lies to the right of the singularities.

What are the residues at the poles? At p = i, the residue is

lim
p→i

d

dp

(
2p2 + 4

(p+ i)2
ept

)
= lim

p→i

((
p+ i

)(
4p+ (2p2 + 4)t

)
− 2(2p2 + 4)(p+ i)

(p+ i)3
ept

)

= −1

2
(t+ 3i)eit. (5.68)

Similarly, at p = −i the residue is −1
2
(t− 3i)e−it.

As |p| → ∞, x̄(p) = O(|p|−2) → 0; hence for t > 0 we close the integration contour to

the left, picking up the residues from the poles to obtain

x(t) = −1
2
(t+ 3i)eit − 1

2
(t− 3i)e−it

= −1
2

(
2t cos t+ 3i(2i sin t)

)

= 3 sin t− t cos t. (5.69)

What function f(t) has Laplace transform f̄(p) = p−
1/2? We need to find

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
p−

1/2ept dp. (5.70)

For t < 0 we can close the contour to the right as usual and obtain f(t) = 0. For t > 0,

however, the branch cut gets in the way.
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Use a contour as shown, with a small circle of radius ε round the origin and two large

quarter-circles of radius R. Substituting p = εeiθ on the small circle gives a contribution

of ∫ −π

π

ε−
1/2e−iθ/2eεeiθt iεeiθ dθ = O(ε

1/2) → 0 as ε → 0. (5.71)

Similarly, the integrals round the two large quarter-circles vanish as R → ∞, using the

method used to prove Jordan’s Lemma. Hence the required integral is equal to the sum

of the integrals on either side of the branch cut: i.e., for t > 0,

f(t) =
1

2πi

{
−
∫ 0

∞
r−

1/2e−iπ/2e−rt(−dr) −
∫ ∞

0

r−
1/2eiπ/2e−rt(−dr)

}

[substituting p = reiπ and p = re−iπ respectively]

=
1

2πi

{
2i

∫ ∞

0

r−
1/2e−rt dr

}

=
2

π

∫ ∞

0

e−s2t ds

[substituting r = s2]

=
1

π

√
π

t

=
1√
πt
.

So L [t−
1/2] =

√
π p−

1/2. This is a generalisation of the result that L [tn] = n!/pn+1 to

L [tα] = Γ(α + 1)/pα+1 where the Gamma function is defined by

Γ(α) =

∫ ∞

0

xα−1e−x dx (5.72)

and can easily be shown to be equal to (α− 1)! when α is a positive integer.


