Chapter 1

Variational Methods

1.1 Stationary Values of Functions

Recall Taylor’s Theorem for a function f(x) in three dimensions with a displacement
o0x = (dx, 0y, 02):

of o + —— of oy + o7 0z + higher order terms (1.1)
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In the limit |0x| — 0 we write

df = Vf.dx. (1.2)

This result is true in any number n of dimensions.

At an extremum (a maximum or minimum) f must be stationary, i.e. the first variation

df must vanish for all possible directions of dx. This can only happen if Vf = 0 there.

Note that if we try to find the extrema of f by solving Vf = 0, we may also find other
stationary points of f which are neither maxima nor minima, for instance saddle points.
(This is the same difficulty as in one dimension, where a stationary point may be a point

of inflection rather than a maximum or minimum.)

If we need to find the extrema of f in a bounded region — for instance,
within a two-dimensional unit square — then not only must we solve
Vf = 0 but we must also compare the resulting values of f with those
on the boundary of the square. It is quite possible for the maximum
value to occur on the boundary without that point being a stationary
one.




Example: Consider the Gaussian ‘bump’:

Constrained stationary values

Suppose that we wish to find the extrema of f(x) subject to a
constraint of the form g(x) = ¢, where ¢ is some constant. In
this case, the first variation d f must still vanish, but now not
all possible directions for dx are allowed: only those which lie
in the surface defined by ¢g(x) = ¢. Hence, since df = Vf.dx,

the vector Vf must lie perpendicular to the surface.

But recall that the normal to a surface of the form g(x) = ¢ is in the direction Vg.

Hence Vf must be parallel to Vg, i.e., Vf = AV g for some scalar \.

This gives us the method of Lagrange’s undetermined multiplier: solve the n equations

V(f—Xg)=0

for x together with the single constraint equation

g(x) =c.

(1.3)

(1.4)

The resulting values of x give the stationary points of f subject to the constraint. Note

that while solving the total of n+1 equations it is usually possible to eliminate A without

ever finding its value; hence the description “undetermined”.



Worked Example 1: Constrained Maximization

A cuboid is inscribed in an ellipsoid with semi-axes

a, b and c. What is its maximum volume?

We must find values of z, y and z which max-
imize the cuboid’s volume f(x,y,z) = 8zyz sub-

ject to the constraint
72 2 2

_ Y &
9@,y 2) = 5+ 5+ 5 =1
which ensures that the vertices of the cuboid lie on the surface of the ellipse. We introduce
an undetermined multiplier A and consider the three components of the equation V(f —

Ag) = 0:

2\
8yz——f = 0,
a
2y
82—? = 0,
2\
8:17y——2z = 0
c

Multiplying these equations by x, y and z respectively, we see that

72 y? 2
8xyz=2)\¥ :2)\ﬁ :2)\§.
Hence either A =0, or
2?2 2 2

a2 B2 2
The first possibility would imply that the volume 8zyz is zero, which is clearly a minimum

rather than the maximum which we seek, so we exclude this from now on. Remembering

the constraint

2 2 2
T Y z
e ta!
we conclude that
2 2 2

ie., (z,y,2) = %(a, b, c¢). The required maximum volume is therefore 8abc/3v/3.

Note that we can also, if we wish, deduce that A = 4abc/+/3, but this is of no practical

relevance.




1.2 Functionals

Let y(z) be a function of x in some interval a < x < b, and consider the definite

integral
F= / (5@} + ¢/ (@)y"(2)) da. (16)

F'is clearly independent of x; instead it depends only on the function y(z). F is a simple

example of a functional, and to show the dependence on y we normally denote it F'[y].

We can also think of functionals as an extension of the concept of a function of many
variables — e.g. g(x1, 2, ...,2,), a function of n variables — to a function of an infinite
number of variables, because F' depends on every single value that y takes in the range
a<x<b.

We shall be concerned in this chapter with functionals of the form

Fly] =/ f(z,y,y') de (1.7)

where f depends only on x and the value of y and its first derivative at x. However,
the theory can be extended to more general functionals (for example, with functions
f(x,y, vy, y",y",...) which depend on higher derivatives, or double integrals with two

independent variables x; and x5 instead of just x).

1.3 Variational Principles

Functionals are useful because many laws of physics and of physical chemistry can be

recast as statements that some functional F'y] is minimised.

For example, a heavy chain suspended between two fixed points hangs in equilibrium
in such a way that its total gravitational potential energy (which can be expressed as a
functional) is minimised. A mechanical system of heavy elastic strings minimises the total
potential energy, both elastic and gravitational. Similar principles apply when electric
fields and charged particles are present (we include the electrostatic potential energy)

and when chemical reactions take place (we include the chemical potential energy).

Two fundamental examples of such wvariational principles are due to Fermat and

Hamilton.



Fermat’s Principle

Consider a light ray passing through a medium of variable refractive index p(r). The
path it takes between two fixed points A and B is such as to minimise the optical path

length

/;mma (1.8)

A

where dl is the length of a path element.

Strictly speaking, Fermat’s principle only applies in the geometrical optics approrimation; i.e., when the
wavelength of the light is small compared with the physical dimensions of the optical system, so that light
may be regarded as rays. This is true for a telescope, but not for Young’s slits: when the geometrical
optics approximation fails to hold, diffraction occurs.

Hamilton’s Principle of Least Action

Consider a mechanical system with kinetic energy 7" and potential energy V' which is in
some given configuration at time #; and some other configuration at time ¢,. Define the

Lagrangian of the system by

L=T-V, (1.9)




and define the action to be

to
y:/ 2t (1.10)
t1

(a functional which depends on the way the system moves). Hamilton’s principle states

that the actual motion of the system is such as to minimise the action.



1.4 The Calculus of Variations

How do we find the function y(x) which minimises, or more generally makes stationary,

our archetypal functional
b
= / f(z,y,y") du, (1.11)
with fixed values of y at the end-points (viz. fixed y(a) and y(b))?

We consider changing y to some “nearby” function y(z) + dy(x), and calculate the
corresponding change 0F in F' (to first order in dy). Then F is stationary when 0F = 0

for all possible small variations dy.

Note that a more “natural” notation would be to write dF rather than 0 F, since we will consider only the
first-order change and ignore terms which are second order in §y. However, the notation ¢ is traditional
in this context.

Now

OF = Fly + dy] — Fy]

b b
=/ f(x,y+5y,y’+(5y)’)dx—/ f,y,y) de

b b
= [t G o} [ s
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since dy = 0 at © = a, b (because y(x) is fixed there). It is clear that 6 = 0 for all

possible small variations dy(x) if and only if

d (of\ of
o <a_y') =5 (1.12)

This is Fuler’s equation.



Notation

Example: if f(z,y,y) = z(y? — y*) then

or _

3y —2xy, = 2xy’, (1.13)

Note however that d/dz and 0/0x mean very different things: 0/0x means “keep
y and y’ constant” whereas d/dz is a so-called “full derivative”, so that y and ' are

differentiated with respect to x as well.

Continuing with the above example (1.13),
g (of
g (5) oy, (1.14)
but 4/ q
= <8—§’) = E(Qxy’) =2y’ + 2zy". (1.15)

Hence Euler’s equation for this example is

2y + 2zy" = —2xy (1.16)
or .

y”+;y’+y=0 (1.17)
(Bessel’s equation of order 0).

Several Dependent Variables

Suppose, instead of just one dependent variable y(z), we have n dependent variables

y1(x), yo(z), ..., yu(z), so that our functional is

b
Flyi, -, Yn) :/ F@y, e Yns Yy y) da? (1.18)



In this case, Euler’s equation applies to each y;(z) independently, so that

d ory _os

fori=1,...,n.

The proof is very similar to before:

b
_ [ s . OF of o O sy
o= [ {5 ot 4 g h st Shomy ot Sy o

:/:i{—@% af((?yl)}dx

-2 {5 (5) e

using the same manipulations (Taylor expansion and integration by parts). It is now clear that we can
only have § F' = 0 for all possible variations of all the y;(z) if Euler’s equation applies simultaneously to
each and every one of the y;.

1.5 A First Integral

In some cases, it is possible to find a first integral (i.e., a constant of motion) of Euler’s
equation. Consider

df _of o0f ,0f

e M e Yy 1.20
dx 0x+y8y+y Yy’ (1.20)

(calculating & f(z,y(z),y/(z)) using the chain rule). Using Euler’s equation,

df of _ ,d (9f\ . ,0f
dx_8x+y <8y’)+ oy’

_g—i-i ’a_f
 Or  dx yay’

so that

d Of\ _9f
€ (f_y 8_1/) -9 (1.21)

Now, if f has no explicit z-dependence, so that 0f/Jr = 0, we immediately
deduce that

f- y’g—j = constant. (1.22)




If there are n dependent variables y;(z), ..., y,(x), then the first integral above is

easily generalised to
"0
/- ;21 Y. a—yf; = constant (1.23)

if f has no explicit z-dependence.

1.6 Applications of Euler’s Equation

Geodesics

A geodesic is the shortest path on a given surface between two specified points A and
B. We will illustrate the use of Euler’s equation with a trivial example: geodesics on the

Euclidean plane.

The total length of a path from (z1,y1) to (z2,y2) along the path y(z) is given by

B B
:/ dl:/ Vda? + dy?
A A

/ ,/H da:—/ VIt y? de.

Note that we assume that y(x) is single-valued, i.e., the path does not curve back on
itself.

We wish to minimise L over all possible paths y(z) with the end-points held fixed, so
that y(x1) = y1 and y(zs) = ys for all paths. This is precisely our archetypal variational

fl,y,y) = V1+y?, (1.24)

problem with



and hence
aof _
dy

The Euler equation is therefore

of

AN ST

0, (1.25)

d y/ 0 . y/

Bl B _J
dz \ \/1+y? V1t+y?
So y? = k*/(1 — k?). Tt is clear that k # +1, so ¥ is a constant, m say. Hence the
solutions of Euler’s equation are the functions

a constant. (1.26)

y=mz+c (1.27)

(where m and ¢ are constants) — i.e., straight lines! To find the particular values of m

and ¢ required in this case we now substitute in the boundary conditions y(z1) = 1,

y(x2) = yo.

It is important to note two similarities with the technique of minimising a function f(x) by solving
Vf=0.

Firstly, we have not shown that this straight line does indeed produce a minimum of L: we have shown
only that L is stationary for this choice, so it might be a maximum or even some kind of “point of
inflection”. It is usually easy to confirm that we have the correct solution by inspection — in this case it
is obviously a minimum. (There is no equivalent of the one-dimensional test f”(x) > 0 for functionals,
or at least not one which is simple enough to be of any use.)

Secondly, assuming that we have indeed found a minimum, we have shown only that it is a local minimum,
not a global one. That is, we have shown only that “nearby” paths have greater length. Once again,
however, we usually confirm that we have the correct solution by inspection. Compare this difficulty
with the equivalent problem for functions, illustrated by the graph below.




Worked Example 2: Geodesics on the Surface of a Sphere

Recall that in orthogonal curvilinear coordinates (q1, go, ¢3),
dr = h;dg, eq + hydga ea + hz dgs es.
In spherical polar coordinates,
dr=dre, +rdfeg+rsinfdpey.

Without loss of generality, we may take the sphere to be of
unit radius: the length of a path from A to B is then

L = [ ]dr]

_ ff V/d62 + sin20d¢p?  [since dr = 0]

)7 \/1+sin?0 g2 do

where the path is described by the function ¢(#). Using Euler’s equation,
d 0 0
<a¢/\/1+sm Hgb’?) = a—¢\/1+sin2«9¢’2 =0

sin’ 0 ¢/

V1 +sin? 6 ¢2

so that

is a constant, c say. Hence

c
¢ =
sin 64/sin” @ — ¢2

and the problem reduces to integrating this with respect to 6.

Substitute u = cot € so that du = — cosec? 0 df. Then
— [ __—_—=cdu
¢ - f vV 1—c2 cosec? 0

f _—cdu
\/ 1—c2(1+u?)

= \/% where a =
= cos™(u/a) + ¢
where ¢q is a constant of integration. Hence the geodesic path is given by
cot 0 = acos(¢p — ¢p)

and the arbitrary constants a and ¢g must be found using the end-points. This is a great

circle path.




The Brachistochrone

A bead slides down a frictionless wire, starting from rest at a point A. What shape must

the wire have for the bead to reach some lower point B in the shortest time? (A similar

device was used in some early clock mechanisms.)

Using conservation of energy, %mzﬂ = mgy, i.e., v = v/2gy. Also dl = v dt, so
dx? + dy? 1 1+ y?
ar = VT Y g (1.28)
V2gy V29 VY

The time taken to reach B is therefore

Wk f/
and we wish to minimise this, subject to y(0) = 0, y(xg) = yg. We note that the

integrand has no explicit x-dependence, so we use the first integral

1 12 1 + 12
const. Y
Yy 5‘y

1+y? Y
NN
B 1

Hence y(1 +4'?) = ¢, say, a constant, so that

/2

(1.29)

=, /C — Sy =dr. (1.30)
Substitute y = csin®#; then
. 2 0
dz = 2¢ L2 sin 6 cos 8 df
1 —sin“6
= 2csin? 6 do

= ¢(1 — cos 26) d6.



Using the initial condition that when y =0 (i.e., # = 0), z = 0, we obtain
z = c(f — Lsin26),
y = csin® 6

which is an inverted cycloid. The constant ¢ is found by applying the other condition,

Yy =yp when z = xp.

Note that strictly speaking we should have said that y' = +4/(c — y)/y above. Taking the negative root
instead of the positive one would have lead to

z = —c(f — §sin26),
y = csin’ 0,

which is exactly the same curve but parameterised in the opposite direction.

Light and Sound

Consider light rays travelling through a medium with refractive index inversely propor-

tional to y/z where z is the height. By Fermat’s principle, we must minimise
dl
ve

This is exactly the same variational problem as for the Brachistochrone, so we conclude

(1.31)

that light rays will follow the path of a cycloid.



1.7 Hamilton’s Principle in Mechanical Problems

Hamilton’s principle can be used to solve many complicated problems in rigid-body me-
chanics. Consider a mechanical system whose configuration can be described by a number

of so-called generalised coordinates q1,qs, ..., q,. Examples:

e A particle with position vector r = (1, 29, 3) moving through
space. Here we can simply let ¢ = z1, ¢ = x5 and g3 = z3:

there are three generalised coordinates.

e A pendulum swinging in a vertical plane: here there is only

one generalised coordinate, ¢; = #, the angle to the vertical.

e A rigid body (say a top) spinning on its axis on a smooth plane.
This requires five generalised coordinates: two to describe the
position of the point of contact on the plane, one for the angle
of the axis to the vertical, one for the rotation of the axis
about the vertical, and one for the rotation of the top about

its own axis.

The Lagrangian . =T — V is a function of ¢, ¢1,...,q, and ¢, ..., G, SO

S = /.Z(t,ql(t),...,qn(t),q'l(t),...,q'n(t)) dt. (1.33)



This is a functional with n dependent variables ¢;(t), so we can use Euler’s equation (with

t playing the role of z, and ¢;(t) playing the role of y;(x)) for each of the ¢; independently:

d [0Z 0L
dt <8(i¢) O, (1.34)

for each 7. In this context these equations are known as the Euler-Lagrange equations.

In the case when . has no explicit time-dependence, the first integral (from §1.5)

gives us that

Z — Z Gi % = constant. (1.35)

It is frequently the case that T is a homogeneous quadratic in the ¢;, i.e., it is of the form

Zzam QI>"'aQH qzq] (136)

=1 j5=1
where the coefficients a;; do not depend on any of the “generalised velocities” ¢; or on ¢,
and V also does not depend on the velocities or time so that V' =V (q,...,q,). Then it

can be shown that
R i (T-V)=2T=—(T+YV), 1.37

i.e., the total energy £ =T + V is conserved when there is no explicit time-dependence.
This fails however when the external forces vary with time or when the potential is

velocity-dependent, e.g., for motion in a magnetic field.

A Particle in a Conservative Force Field



Two Interacting Particles

Consider a Lagrangian
&L = gt * + fmolta]* = V(r1 —ra), (1.40)

where the only force is a conservative one between two particles with masses m; and mso

at ry; and ry respectively, and depends only on their (vector) separation.

We could use the six Cartesian coordinates of the particles as generalised coordinates;
but instead define
r =r; — Iy, (1.41)

the relative position vector, and

My + Mol

R % ;

(1.42)

the position vector of the centre of mass, where M = m; 4+ ms is the total mass. Now

21 -
\1‘«|2+%R.f

it ] = () ) -

and similarly

2 le .

%\fﬁ—ﬁR.f.

Let r = (x1, 22, 23), R = (X1, Xs, X3), and use these as generalised coordinates. Then

12 = |RJ* +

maime

£ = MIRF

" = V(r)

myme

= IM(XT+ X5+ X3) +
The Euler-Lagrange equation for X; is therefore

%(MXi) =0, (1.43)

i.e., R = 0 (the centre of mass moves with constant velocity); and for z; is

d mi1msy . 8V
= )= —=, 1.44
ie., ut = —VV where p is the reduced mass myms/(my + ms) (the relative position

vector behaves like a particle of mass ).

Note that the kinetic energy 7' is a homogeneous quadratic in the X; and #;; that V
does not depend on the X; and i;; and that % has no explicit t-dependence. We can
deduce immediately that the total energy E =T + V is conserved.



1.8 The Calculus of Variations with Constraint

In §1.1 we studied constrained variation of functions of several variables. The exten-
sion of this method to functionals (i.e., functions of an infinite number of variables) is
straightforward: to find the stationary values of a functional F'y] subject to G[y] = ¢, we
instead find the stationary values of F[y] — AG[y], i.e., find the function y which solves
d(F — AG) =0, and then eliminate A using G[y| = c.

Worked Example 3: The Catenary

Consider a uniform chain of length L, with mass per unit
length p, hanging under gravity between the points (—1,1)
and (1,1). It adopts a form of minimum potential energy,

that is it minimises

1 1
/ pgydlocF[y]E/ yv/1+y?de
-1 -1

subject to the prescribed length,

1
L = Gly] E/ V1+y?dae.
-1

This is equivalent to minimising F' — AG, i.e., to solving

1
5/ (y —A)V1+y?de=0.
—1

The integrand has no explicit x-dependence, so we use the first integral

!

o 12 ol Yy
c =@y—-MNv1ity y'(y )‘)W

y—A

Vit

where c¢ is a constant, whence
cdy
VTR

Making the substitution y = A 4 ¢ cosh 6 we obtain

x = ccosh™ <y — )\) + x9

c

Tr =

where x( is an arbitrary constant of integration. Hence the solution is

Yy = A+ ccosh (a:—xo)’

C



which is a catenary.

We have three unknown constants, to be found using the equation for y at each of the
two end-points, together with the constraint equation. We immediately obtain o = 0 by

symmetry (or by solving the end-point equations for zg). Now 3" = sinh(x/c) and hence

V14 y? = cosh(z/c); so
L = f_llcosh%dx
= QCsinh%.

This equation must, in general, be solved numerically for ¢ given L; then A can be found
using the end-point at (1, 1),
1
1 =X+ ccosh-.
c

This completes the solution.




1.9 The Variational Principle for Sturm—Liouville

Equations

We will now show how variational calculus can be used in the solution of second order
linear ordinary differential equations of fairly general type. Under appropriate conditions,
any second order ODE can be written as a Sturm-Liouville problem with weight function

w. We shall show in this section that the following three problems are equivalent:

(i) Find the eigenvalues A and eigenfunctions y(z) which solve the Sturm-Liouville

problem

d

- (p(2)y) + qlx)y = w(z)y (1.45)

in a < x < b, where neither p nor w vanish in the interval.

(ii) Find the functions y(x) for which

Fly = / (py"? + qv*) da (1.46)

is stationary subject to G[y] = 1 where

G[y]:/ wy? d. (1.47)

The eigenvalues of the equivalent Sturm-Liouville problem in (i) are then given by
the values of F[y].

(iii) Find the functions y(z) for which

Ay = £ (1.43)

Gly]

is stationary; the eigenvalues of the equivalent Sturm-Liouville problem are then

given by the values of Alyl.

Hence Sturm-Liouville problems can be reformulated as variational problems.

Note the similarity between (iii) and the stationary property of the eigenvalues of a symmetric matrix
(recall that it is possible to find the eigenvalues of a symmetric matrix A by finding the stationary values
of a’Aa/a’a over all possible vectors a). The two facts are in fact closely related.

To show that (ii) is equivalent to (i), consider

b
0(F — \G) = (5/ (py? + qy* — Mwy?) da. (1.49)



Using Euler’s equation, F' — AG is stationary when

d
@(219@/) = 2qy — 2wy, (1.50)
ie.,
d,
—@(py )+ qu = dwy, (1.51)

which is the required Sturm-Liouville problem: note that the Lagrange multiplier of the

variational problem is the same as the eigenvalue of the Sturm—Liouville problem.

Furthermore, multiplying the Sturm—Liouville equation by y and integrating, we ob-

tain

b d . b
/ (—ya(py )+ qy?) do = )\/ wy? dz = MGy = A (1.52)

using the constraint. Hence

b
o d ! 2
A —/a (—ya(py)ﬂtqy ) da

b
= [—ypy'l’ + / (py”? + qy®) dz

b
= / (py”* + qy*) dz = Fly),

using “appropriate” boundary conditions. This proves that the stationary values of F[y]

give the eigenvalues.

There are two ways of showing that (ii) is equivalent to (iii).

The first, informal way is to note that multiplying y by some constant « say does not in fact change the
value of Afy]. This implies that when finding the stationary values of A we can choose to normalise y so
that G[y] = 1, in which case A is just equal to F[y]. So finding the stationary values of A is equivalent
to finding the stationary values of F' subject to G = 1.




In the usual case that p(x), ¢(x) and w(z) are all positive, we have that Afy] > 0.
Hence all the eigenvalues must be non-negative, and there must be a smallest eigenvalue
Ao; A takes the value \g when y = o, the corresponding eigenfunction. But what is the
absolute minimum value of A over all functions y(z)? If it were some value p < Ao, then
i would be a stationary (minimum) value of A and would therefore be an eigenvalue,
contradicting the statement that Ag is the smallest eigenvalue. Hence Afy] > Ao for any

function y(z).

As an example, consider the simple harmonic oscillator
—y 2ty =My (1.54)

subject to y — 0 as |z| — oo. This is an important example as it is a good model for
many physical oscillating systems. For instance, the Schrodinger equation for a diatomic
molecule has approximately this form, where X is proportional to the quantum mechanical
energy level F; we would like to know the ground state energy, i.e., the eigenfunction

with the lowest eigenvalue \.
Here p(x) =1, q(x) = 2? and w(z) = 1, so

00 /2 .T2 2 dx
Alyl = f_m(}/oo 22 d?i:) : (1.55)

We can solve this Sturm—Liouville problem exactly: the lowest eigenvalue turns out to

be A\g = 1 with corresponding eigenfunction yy = exp(—%xz). But suppose instead that
we didn’t know this; we can use the above facts about A to try to guess at the value of

Ao. Let us use a trial function
Ytrial = eXp(—%Oé$2), (156)

where « is a positive constant (in order to satisfy the boundary conditions). Then

(0 +1) [7 z?exp(—az?) dz
[ exp(—aa?) dx

A [ytrial] = (1 . 57)



We recall that [*° exp(—az?)dz = \/7/a and [7_z?exp(—az?)dz = \/7/a® (by
integration by parts). Hence Alyiia] = (0 +1)/2a.

We know that Alyial, for any «, cannot be less than )Ag. The smallest value of
(a? +1)/2a is 1, when o = 1; we conclude that Ay < 1, which gives us an upper bound

on the lowest eigenvalue.

In fact this method has given us the exact eigenvalue and eigenfunction; but that is

an accident caused by the fact that this is a particularly simple example!

The Rayleigh—Ritz Method

The Rayleigh—Ritz method is a systematic way of estimating the eigenvalues, and in
particular the lowest eigenvalue, of a Sturm—Liouville problem. The first step is to re-
formulate the problem as the variational principle that Aly|, the Rayleigh quotient, is
stationary. Secondly, using whatever clues are available (for example, symmetry consid-
erations or general theorems such as “the ground state wavefunction has no nodes”) we
make an “educated guess” yiai(z) at the true eigenfunction yo(z) with lowest eigenvalue
Ao- It is preferable for i, to contain a number of adjustable parameters (e.g., o in the
example above).

We can now find Alyyia], which will depend on these adjustable parameters. We
calculate the minimum value A,;, of A with respect to all the adjustable parameters; we
can then state that the lowest eigenvalue \g < A;,. If the trial function was a reasonable

guess then A, should actually be a good approximation to A.

Note that if the trial function happens to include the exact solution gy, as a special



case of the adjustable parameters, then the Rayleigh—Ritz method will find both 1, and

Ao ezxactly. This is what happened in the example above.

An alternative to calculating Alyiyia] and minimising it with respect to the adjustable
parameters is to calculate F[yiia] and G[yiial], and to minimise F' subject to G = 1.

These procedures are equivalent, as we showed at the start of this section.

Worked Example 4: The Rayleigh—Ritz Method

The oscillations of a drum (e.g., a timpani, or more generally any circular membrane

under tension and fixed at its boundary) obey Bessel’s equation of order zero,
1
v+ oy Ay =0,
in 0 <z < 1, with boundary conditions that y should be non-singular at x = 0 and that
y(1) = 0. Here A = w?/c* where w is the frequency of oscillation of the drum and c is
the wave speed. (This equation may be derived by converting the two-dimensional wave

equation on the surface of the drum into plane polar coordinates and assuming a radially

symmetric solution with a fixed frequency w of oscillation.)

A drum can oscillate at many different frequencies, corresponding to the different
eigenvalues of this Sturm-Liouville problem; but the fundamental (i.e., lowest) frequency
is of the greatest interest since this is the one a listener will hear. (When a drum is struck,
all of the possible frequencies are produced to varying extents, but the harmonics, i.e., the
higher frequencies, usually decay rapidly leaving only the fundamental.) It is therefore
natural to use the Rayleigh—Ritz method to estimate the lowest eigenvalue of Bessel’s

equation (and thereby estimate the fundamental frequency).

Before we can proceed, we must put the equation into standard Sturm—Liouville

self-adjoint form. By inspection we see that the appropriate equation is

d dy \
—— |(z— ) = \y.
dr \ dz J
The equivalent variational problem is therefore that Fy| = fol 2y dz is stationary sub-
ject to Gy = fol xy?dz = 1. We shall use a trial solution of the form

Yirial = @ + br? + ezt

(chosen because we anticipate that the lowest eigenvalue corresponds to a solution which
is even in ). This trial solution trivially satisfies the boundary condition at z = 0, and

satisfies the condition at x =1 so long as a + b+ ¢ = 0.

We now calculate

1
Fyrial] = / vyt de = fol x(2bx + 4ex?)? da
0

= b + Sbe + 2¢2



and
' 1
GYtrial] = / Yo A = [, #(a+b2* 4 ca')* dz
0
= 1a® + sab + §(b* + 2ac) + tbe + 55¢2

_ 112 . 5 4 2

= Eb + Ebc + 1—50 s
using a = —b — c.

We must either minimise F'/G — which turns out to be rather messy algebraically —
or minimise F’ subject to G = 1. We choose the latter; hence we minimise F' — A\G with

respect to both b and ¢. So

9 1 8 5
0= %(F —AG) =(2- g)\)b—l— (g — A (1)
and
0= %(F —\G) = (% — 15—2)\)b+ (4 - 1—85)\)0. (2)

Eliminating b and ¢ from these equations, and rearranging, we find that
3A% — 128\ + 640 = 0,
which has two solutions

A= —(64++2176) = 5.7841... or 36.8825....

Wl =

We recall that the eigenvalues of the Sturm—Liouville equation are given by the values
of the Lagrange multiplier A\. Therefore the lowest eigenvalue of this problem is approxi-
mately 5.7841 (and certainly no larger). We could find the corresponding values of b and
¢ (and hence a) by substituting this value of A into either equation (1) or (2) (both give
the same result); note that we find only the ratio a : b : ¢ because the normalisation of

Ytrial 18 NOL important.

In fact, the true value of the lowest eigenvalue is 5.7832..., so the Rayleigh—Ritz

method has produced an extremely good estimate.

Higher eigenvalues

Once we have found a good approximation g1 t0 3o, we can proceed to find approximations to the
higher eigenvalues A1, A, . ... Just as Ag is the absolute minimum of A[y| over all possible functions ¥, so
A1 is the absolute minimum of A[y] over functions which are constrained to be orthogonal to yo. (Recall
that y; is orthogonal to yo in the sense that f: wyoyr dx = 0.) Hence, to estimate A\; we proceed as
before but choose our new trial function ¥y {ia) in such a way that it is orthogonal to our previous best
approximation Yo trial-

This process can be continued to higher and higher eigenvalues but of course becomes less and less
accurate.




Chapter 2

Poisson’s Equation

2.1 Physical Origins

Poisson’s equation,

V20 = o(x), (2.1)

arises in many varied physical situations. Here o(x) is the “source term”, and is often zero,
either everywhere or everywhere bar some specific region (maybe only specific points).

In this case, Laplace’s equation,

V20 =0, (2.2)

results.

The Diffusion Equation

Consider some quantity ®(x) which diffuses. (This might be say the concentration of
some (dilute) chemical solute, as a function of position x, or the temperature 7" in some
heat conducting medium, which behaves in an entirely analogous way.) There is a cor-
responding flur, F, of ® — that is, the amount crossing an (imaginary) unit area per
unit time. Experimentally, it is known that, in the case of a solute, the flux is given by
F = —kV® where £k is the diffusivity; in the case of temperature, the flux of heat is given
by F = —kVT where k is the coefficient of heat conductivity. (Note that the minus sign

occurs because the flux is directed towards regions of lower concentration.)

The governing equation for this diffusion process is

%—(f = kV?® (2.3)
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where k is referred to, generically, as the diffusion constant. If we are interested in
the steady-state distribution of solute or of temperature, then 0®/0t = 0 and Laplace’s
equation, V2® = 0, follows.

When there are sources S(x) of solute (for example, where solute is piped in or where
the solute is generated by a chemical reaction), or of heat (e.g., an exothermic reaction),

the steady-state diffusion is governed by Poisson’s equation in the form

Stx)

2
o= —
v k

(2.4)

The diffusion equation for a solute can be derived as follows. Let ®(x) be the concentration of solute at
the point x, and F(x) = —kV® be the corresponding flux. (We assume here that there is no advection
of ® by the underlying medium.)

Let V be a fixed volume of space enclosed by an (imaginary) surface S. In a small time 6t, the quantity

of solute leaving V' is given by
// Fét.ndS. (2.5)
s

Uv//édvfét:—/s/l?.nds& (2.6)

Dividing by dt and taking the limit as 6t — 0,

%/V//cbdvz—/S/F.ndsz/s/kvq>.nd5, (2.7)

and hence by the Divergence Theorem,

// %—de:///V.(kvcb)dV. (2.8)
v Vv

As this is true for any fixed volume V', we must have

0o

Hence

— =V.(kV® 2.9
=V (kV®) (29)
everywhere. Assuming that k is constant, we obtain the diffusion equation
0P
— =kV30. (2.10)

ot



If there are also sources (or sinks) of solute, then an additional source term results:

0P
— =kV?® + S(x) (2.11)
ot
where S(x) is the quantity of solute (per unit volume and time) being added to the solution at the
location x. Poisson’s equation for steady-state diffusion with sources, as given above, follows immediately.

The heat diffusion equation is derived similarly. Let T'(x) be the temperature field in some substance
(not necessarily a solid), and H(x) the corresponding heat field. We have the relation H = pcT’ where
p is the density of the material and c its specific heat. The corresponding heat flux is —kV7T. A similar
argument to the above applies again, resulting in

%—i[ = kV?T 4 S(x) (2.12)

where S represents possible sources of heat. Hence

oT

YT kV2T + (pe) 1 S(x) (2.13)
where k = k/pc is the coefficient of thermal diffusivity. The equation for steady-state heat diffusion with
sources is as before.

Electrostatics

The laws of electrostatics are
V.E=)p/e VxE=0
V.B=0 V x B = ppd (2.13)

where p and J are the electric charge and current fields respectively. Since V x E = 0,
there is an electric potential ® such that E = —V®; hence V. E = p/¢y gives Poisson’s
equation

V20 = —p/eo. (2.14)

In a region where there are no charges or currents, p and J vanish. Hence we obtain
Laplace’s equation
V20 = 0. (2.15)

Also V x B = 0 so there exists a magnetostatic potential ¢ such that B = —puoV; and
V) = 0.

Gravitation



é/F.ndS:—éleMv
— —{/V@.ndS:—@rG/V//p(x)dV
= ///V.(V(I))dV:47rG///p(x)dV

This is true for all volumes V', so we must have

V20 = V. (V) = 47Gp. (2.16)

Other applications

2.2 Separation of Variables for Laplace’s Equation

Plane Polar Coordinates

We shall solve Laplace’s equation V2® = 0 in plane polar coordinates (r, ) where the
equation becomes

2
1g(a<1>) Lo (2.17)

ror \"or ) T2 o

Consider solutions of the form ®(r,0) = R(r)©(f) where each function R, © is a function

Lo ( 5"1)) _9®) d ( dR) (2.18)

r Or TE r dr TE

of one variable only. Then




and
1 9°¢ R(r)d*e

72962 12 dg2’ (2.19)
Hence after rearrangement,

r d [ dR e

ra (%)% 2:20)

The LHS is a function of r only, and the RHS of ¢ only; hence both must be constant, A
say. Then

0" =-\6

A+ Bo A=0
— @:
Acos VA0 + BsinvVA0 A#0

To obtain a sensible physical solution, replacing 6 by 6 + 27 should give the same value
of V& (see later). This is true only if ©'(6 + 27) = ©'(0) V6; i.e., either A =0 or

cos2mVA =1 and sin27VA =0 (2.21)

which implies 2mv/A = 2n7 for some integer n. (Note that the possibility that A\ < 0 is

ruled out at this stage.) Hence
A+ Bo n=>0

0= (2.22)
Acosnb + Bsinnf n #0

Hence, we obtain possible solutions to (2.17) as

(C+Dlnr)(A+ B0) n=>0
O =RO = (2.24)
(Cr™ 4+ Dr~™)(Acosnf + Bsinnf) n #0



We note that the combination #1lnr does not satisfy the requirement above for 27-
periodicity of V&, and so we exclude it. Equation (2.17) is linear and so we may form
a superposition of the above solutions; in fact the general solution is an arbitrary linear

combination of all the possible solutions obtained above, that is

O = Ay + By + Cylnr + Z(Anr” + Cpr™ ™) cosnb + Z(Bnr” + D,r ") sinnf

n=1 n=1

(2.25)
where we have relabelled all the arbitrary constants, e.g., AC' has become A,, and BD
has become D,,. We can make this expression more compact by defining A_,, = C), and
B_, = D, for n > 0; then

b = Ay + Byl + Colnr + Z r" (A, cosnf + B, sinnf). (2.26)

n#0

Although this is more compact, the first expression is often easier to use.

Notes:

(ii) A common mistake made during separation of variables is to retain too many arbi-

trary constants; e.g. to write
Z Cnr"(Ay cosnb + By, sinnf). (2.27)

For each n, this looks like 3 arbitrary constants (A,, B,, C,); but of course there
are really only two arbitrary quantities (C, A,, and C,,B,,, which we have relabelled
as A, and B, above).



(iii) The above derivation also applies to 3D cylindrical polar coordinates in the case

when @ is independent of z.

Worked Example 5: Steady-State Temperature Distribution in a Cylinder

An infinitely long cylinder of radius a is heated on its bound-
ary as shown. The steady-state temperature T'(r, ) (note no

dependence on z) satisfies
VT =0 inr<a

subject to
+Ty 0<60< T,
—Ty m<6<2m.

T(a,0) =

The general solution for plane polar coordinates applies; we choose to use it in its second
form as given in the lecture notes. We require that the temperature be finite at » = 0
for a physically realistic solution: so Cy = 0, and also, for all negative n, A, = B, =0
(since they are the coefficients of 7™ {Z‘I’S} nf). Finally, T" must be periodic in 6 (i.e., not

multi-valued), so By = 0. Hence
T(r,0) = Ag+ Z r"(A,, cosnf + B, sinnb).
n=1
On r = a this gives

T(a,0) = Ay + Z(Ana” cosnf + B,a" sinnd).

n=1

This is a standard Fourier series, so we may calculate the Fourier coefficients using the
standard formulae:

1 2m
Ay = — T(a,0)dd =0

2m Jo
1 21

Apa” = —/ T(a,f)cosnfdd =0
T Jo
1 21

Bpa" = —/ T(a,0)sinnd do
T Jo

™ s

I e
= — Thsinnf df — — Ty sinnf df
0 i

ATy /nmt n odd,

0 n even.



Hence the final solution for all » and 0 is

47T, o
= — —— sinnd.
nam

T

n odd

Spherical Polar Coordinates: Axisymmetric Case

In spherical polars (7,0, ¢), in the case when we know ® to
be axisymmetric (i.e., independent of ¢, so that 9®/d¢p = 0),

Laplace’s equation becomes

10 [ ,00 1 9 /(. , 09
o ( E) * Zend 90 (Sm@%) =0 (229)

Seek solutions of the form ®(r,8) = R(r)©(#). Then

1 2 1
E(TR> ~ Osinf

(©'sin )’ (2.29)
and both sides must be constant, A say. So

(©'sinf) = —\Osin .

Let ¢ = cosf, and use the chain rule to replace d/df by d/d¢:

d d¢ d . d
= = —sinf —.

d6 ~ de d¢ d¢
So

—sin@i (— sin? @> = —\Osinf

¢ ¢

d ,.dO B

(2.30)

(2.31)



Returning to (2.21),
(r*R") = AR
—  r*R'+2rR —n(n+1)R=0,

to which the solution is
R=Ar"+Br .. (2.33)

The general solution to Laplace’s equation in the axisymmetric case is therefore (absorb-
ing the constant C' into A and B)

O(r,0) = i(Anr" + B, " 1) P,(cos ). (2.34)

n=0

Non-axisymmetric Case

A similar analysis when ® may depend on ¢ shows that the general solution is
b(r,0,¢) = Z Z (Apn™™ + B ") P™ (cos §)e™? (2.35)
n=0 m=—n
where P)"(({) are the associated Legendre functions which satisfy the associated Legendre equation

d ,.dO
d—<<(1—C )d_g“

when m and n are integers, n > 0, —n < m <n.

) n (n(n +1)+ 1_—m<2> 0 =0) (236)

Worked Example 6: Diffusion of a Solute past a Solid Sphere

Consider fluid at rest surrounding a fixed solid
sphere of radius a at the origin. The fluid
contains a solute which diffuses through the
fluid, and we are interested in the steady state.
At large distances from the sphere (where the
sphere has negligible effect) we assume that
there is a constant flux of solute parallel to the
z-axis of magnitude F' (possibly due, for ex-
ample, to an externally imposed concentration

gradient).

The flux is —kV® where ® is the concentration. There can be no flux across r = a,

so &,..V® =0 on r = a, or equivalently %—‘f(a, 0) = 0 for all 6.



Far from the sphere, we must have Vo ~ —%éz, ie., &~ —%z; so we require that as
F

r— 00, &~ —Lrcosf = —LrP(cosh).

We use the general axisymmetric solution, and must choose the arbitrary constants
to ensure the correct behaviour as r — oo. This can only occur if A; = —% and A, =0
for all n > 2. Thus

F o0
b =A)— ErPl(cos 0) + Z B,r " 'P,(cos ).

n=0
On r = a, we must have
0P F o0

for all . Using the orthogonality of Legendre polynomials (multiply by P,,(cosf), sub-
stitute ¢ = cos#, and integrate from ¢ = —1 to 1), or by inspection, we find that By = 0,
B; = —Fa?/2k and B,, = 0 for all n > 2. So the solution is

F 3
(I):AO—E <r+%) cosf,
T

and Ay remains an arbitrary constant (it measures, in some sense, the average of the

concentrations far up and downstream).

Note that the boundary conditions involved only Pj(cos#) and no other P,; and so
does the solution. This is usual: boundary conditions can often be expressed in terms of
just a few P,, and only those terms need be retained from the general solution. For this

purpose it is useful to know the following:

1 = PFy(cosh)
cos) = Py(cosh)

2 1
cos’ = ng(cos 0) + gPo(cos 0)

2.3 Uniqueness Theorem for Poisson’s Equation

Consider Poisson’s equation
V20 = o(x) (2.37)
in a volume V' with surface S, subject to so-called Dirichlet boundary conditions ®(x) =

f(x) on S, where f is a given function defined on the boundary.



Suppose that there are actually two (or more) solutions ®;(x) and ®9(x). Let ¥ =
®; — §,. Then
VU =V20, — V@ =0—0=0 inV (2.38)
subject to
UV=f—-f=0 on S. (2.39)
One solution of this problem for ¥ is clearly ¥ = 0; is it unique? Consider
V.(UVU)=VU.VU+UV. (VD)
= |VU|> + UV2Y

= |V

// |V\IJ\2dV:///V.(\I/V\I/)dV
://\IIV\I/.ndS

=0

Hence

because ¥ = 0 on S. But |[V¥|? > 0 everywhere; its integral can only be zero if |V |
is zero everywhere, i.e., V¥ = 0, which implies that ¥ is constant throughout V. But
U =0on S, so ¥ = 0 throughout V. Thus &; = &5, which demonstrates that our
problem has a unique solution, as expected.

A similar theorem holds when instead of Dirichlet boundary conditions we have Neu-
mann boundary conditions: that is to say instead of ® being specified (by the function
f) on the boundary S, 0®/0n is specified on S, where we use the notation

o
5, =n.Ve. (2.40)




2.4 Minimum and Maximum Properties of Laplace’s
Equation
Suppose that ® satisfies V2® = 0 in a volume V with surface S. Then both the minimum

and maximum values of ® occur somewhere on S (and possibly also somewhere inside

V).

This is not a formal proof since it is actually possible for a maximum to have

ro_ oo

ox2 ~ 0y2 922 0, (2.41)

a case we haven’t considered: compare with the possibility in 1D that a maximum could have d?y/dx? =
0. However, the theorem can still be shown to hold.

Example: in the worked example of the steady-state temperature distribution in a

cylinder, we can deduce that |T'| < T in r < a.



2.5 Green’s Function

The Delta Function in 3D

In 1D, §(x — x¢) is a function which is zero everywhere except at x = o, and is infinite

there in such a way that
b
/ d(r —xp)dx =1 (2.42)

whenever zy € (a,b). As a consequence, ff f(x)d(z — zo)dx = f(x). We extend the
definition to 3D via
d(x —%0) =0(x — 20)0(y — y0)d(2z — 20) (2.43)

where xq = (¢, Yo, 20). Then

/ / / F)5(x — x0) AV = F(xo) (2.44)

whenever xo € V' (and the integral is 0 otherwise).

Green’s Function

Suppose that we wish to solve Poisson’s equation in a volume V with surface S on which
Dirichlet boundary conditions are imposed. The Green’s function G(x;x) associated
with this problem is a function of two variables: x, the position vector, and xg, a fixed

location. It is defined as the solution to

V2G(x;%0) = 6(x — Xo) in V,
(2.45)
G =0 on S.

(Physically, we can think of G as the “potential” from a point source at xo with the

boundary held at zero potential.)

It is possible to prove that G is symmetric, i.e., G(x;X¢) = G(xg;x). This can be useful as a check that
G has been correctly calculated. Physically, this corresponds to the remarkable fact that the potential
at x due to a source at x is the same as the potential at xg due to a source at x, regardless of the shape
of S.

When V' is all space (i.e., the limit of a sphere whose radius tends to co), Green’s

function is known as the fundamental solution.



The Fundamental Solution in 3D

Consider first xg = 0. Then VG = §(x) and G — 0 as |x| — oco. The problem is
spherically symmetric about the origin, so we expect G to be a function of r alone. Try
G = g(r). By the definition of §(x), if Vi is the sphere of radius R with surface Sg,

1:///5(x)dv :///V.(VG)dV

SR
, 1
—— g (R) = m fOI’ all R
, 1
= g'(r)= )
1

where A is a constant. As r — 0o, G — 0, so A = 0. Hence the solution is —1/4|x|.

Shifting the origin to a non-zero x,, we see that in general the fundamental solution
in 3D is

1

Glxixg) = ————.
(i %o) 47|x — x|

(2.46)

Example: an electron located at xq is an electrostatic point source, so the charge

distribution in space is p(x) = —e d(x — X¢). Hence the electrostatic potential obeys
V20 = (e/eq) §(x — %) (2.47)

using a result from §2.1. The solution ® is therefore just a factor e/ey times the funda-
mental solution, i.e., —e/4mweg|x — xg|. This is the standard formula for the potential due

to an electron.



The Fundamental Solution in 2D

As before, G = g(r) (where r is now the plane polar radius). Applying the Divergence

Theorem in 2D to a circle of radius R,

1://6(x)dv ://V.(VG)dV

r<R r<R
= j{ VG .ndl = j{g’(r)dl
r=R r=R
= 27R¢'(R)
, 1
- g(r)= Y-

1
— g(r) = - In7 + constant.

(Note that ¢'(r) — 0 as r — oo, but g(r) — oo, whatever the constant.)

Shifting the origin, we see that the fundamental solution in 2D is

1
G(x;%x0) = g In |x — x| + constant. (2.48)

Example: consider an infinitely long charged wire in three dimensions lying along the
z-axis, with a charge density of i per unit length. What is the electric potential ® around

the wire?

We assume the wire to be mathematically perfect, i.e., of infinitesimal width. Then
the electric charge distribution, in 3D, is p = pd(x)d(y). (Check that this gives the
correct result for the amount of charge in a unit length of the wire.) But it is clear
that this problem is fundamentally two-dimensional, with p = pd(x) where x = (z,y);
and the potential satisfies V2® = —pud(x)/ep. Hence the potential is (up to an arbi-
trary additional constant) just given by an appropriate multiple of the two-dimensional
fundamental solution, namely

(I>:—2'u ln|x\:—2Lln\/x2+y2=—2Lln7“ (2.49)

TEQ TEQ €Y

[A9eeh]

where r is the perpendicular distance to the wire (i.e., the “r” of cylindrical polar coor-

dinates rather than of spherical polars).



2.6 The Method of Images

Example: A 3D half-space x > 0

Suppose that the domain D is the half-space of R3 with > 0. The

Green’s function obeys
V3G = 6(x — %) VxeD,
G=0 on x =0,
G—0 as x| — 0o, x € D.

Consider the solution in all space for the point source at x = xq to-
gether with another (imaginary) source of strength —1 at the “image
point” X = x; as shown:
1 —1
Am|x —xo|  4mx — x4

® = (2.50)

and
V20 = §(x — x0) — 6(x — x1) (2.51)

by superposition of the two fundamental solutions. This certainly satisfies the require-
ment V2@ = §(x — xg) for all x € D, because §(x —x;) = 0 Vx € D. It also satisfies

® — 0 as |x| — oo; and on z = 0, |x —xo| = [x —x;| so that & = 0. Hence by uniqueness,

Glxixp) = B = —— ( ! ! ) | (2.52)

A \|x —xo| |x—x]



Example: A 2D quarter-plane =z > 0,y > 0

In this case, we need to find G such that
VG =6(x—x%9) VxeD (2.53)

with G = 0 on both x = 0 and y = 0. We find that we need & image sources as shown:
x; and x, with strength —1, and x3 with strength +1. Then

1 1 1 1

G=—lnlx—x9| — —In|x — x| — — In|x — x| + — In |x — x3| + constant
2m 2w 2m 2w
1 |x—x0||x — x3]

-+ constant.

T or |x — x1| |x — x|

Clearly V2G = §(x — xp) in D (all the other delta-functions are zero there); on z = 0,
|x —xo| = |x—x3| and |x —x3| = |x—x3|, so choosing the constant to be zero ensures that

G = 0; similarly on y = 0. By uniqueness, then, this is the required Green’s function.



Example: Heat flow from a source in a 3D half-space with a wall at constant

temperature

Suppose that the ambient temperature is Ty and that
a wall at x = 0 is held at that temperature, with a

heat source of strength @) at xy. Then

QG(X; Xo), (2.54)

T="1T,— f

where G is the Green’s function for the 3D half-space
r > 0. (Why? Because we need to solve V2T =
—%5(){ — X) here.)

What is the total heat flux across the wall S? It is

//( EVT).ndS = k// dydz——Q/ / —Gxxo

which we can evaluate with some effort (see the worked example in the next section for

dydz (2.55)

=0

an example of this sort of evaluation).

Alternatively, we can use the Divergence Theorem on the surface consisting of the

wall plus the hemisphere at co. Since VT tends to zero on the hemisphere,

//(—WT)-ndSZ —// V. (kVT)dV
= —k// VAT dV
ok fff ()

:QJ

so the total heat radiated across the wall is Q).

Example: A point charge near an earthed boundary plate

Here
O = —G(x;%0) (2.56)

€0

where G is the Green’s function for the 3D half-space x > 0.



Now the surface charge density induced on the plate is u = ¢oE, (standard result from electrostatics,
where FE, is the z-component of E). The normal force (per unit area) on the plate, towards the charge,

1S
oB\? e [0G\?
1 —leE2=1¢ (L) = & (&
Q/J,Ew 260EI 260 < 3x) 260 (83}) s (257)

and we calculate 0G/0z as in the worked example in the next section. We can integrate this over the
whole plate (with considerable effort) to obtain the total force:

o2 [0 [oo 22 2
—/ / 0 sdydz =+ = ——. (2.58)
2€0 J 00 J 00 A2 (xF + (y — y0)2 + (2 — 20)2) 16meoxy

The force on the charge from the plate is equal and opposite, i.e., €2 /4meq(2z0)? towards the wall. Note
that we could also have found this directly by considering the force on the charge due to the image
charge, ignoring the plate!

Worked Example 7: Heat Source near an Insulated Wall

Hold a heat source of strength @ at xo = (o, Yo, 20)

near an insulated plane wall, i.e., one through which

no heat can pass, at + = 0. We must then have

no component of heat flux through the wall; i.e., n.(—kVT) =
0 on the wall. Therefore we must solve

VQT:—%(S(X—XO) inx >0

subject to
orT

— =0 onx = 0.

on

This is a problem with Neumann (rather than Dirichlet) boundary conditions.

We use the method of images. Introduce an image source of strength +Q) at x; =
(—0, Y0, 20)- (Note that for Dirichlet boundary conditions we would have used —@ for
the strength of the image.) Because VT is radial from each source, the total V1" (from
the two sources combined) must have zero component perpendicular to the wall. Hence

we have 0T'/On = 0 as required. Therefore (by uniqueness) the solution is

o) 1 1
T = .
Ak | |x — X0 i |x — x|




Example: Images in a sphere

What is the Green’s function for the domain 7 < @ in 3D7 We need
V3G = 6(x — %) inr <a,

G=0 onr =a.

The image point turns out to be at the inverse point

a2

= 2.59
(so that a/|x;1| = |xo|/a) with strength —a/|xo|, so Green’s function is
1 1 a/|xol
Clxx) = L (= , 2.60
(x; %o) 47 ( |x — x| * |x — xq| (2:60)

(Check this by first showing that |x — x;]? = (x — x1) . (x — x1) = (a®/|x%0/*)|x — %0l|?

when |x| = a.)

Note that the same result holds if we consider the domain » > «a instead.

Example: Images in a circle



2.7 The Integral Solution of Poisson’s Equation

The most important application of Green’s function is that it can be used to find the

solution of Poisson’s equation with an arbitrary source distribution.

Green’s Identity

For any smooth functions ® and ¥, Green’s Identity is

/V//(év%p —UV2P)dV = {/(@W — UV®).ndS (2.61)

where V' is a volume with surface S. Prove this by applying the Divergence Theorem to
the vector field F = ®V¥ — UV®, and using V. (®VY) = VP . VU + OV3U.

// <c1>g—: - xpg—i) ds. (2.62)

S

The RHS is also written



The Integral Solution

Consider the general problem of Poisson’s equation with Dirichlet boundary conditions:
V=0 inV,
d=f on S.

Apply Green’s Identity, taking U to be the Green’s function G(x;xg) for the problem:

/V//@WG — GV?®)dV = {/(@VG — GV®).ndS

— ///@6}( xg)dV = // GUdV+//f—dS
— (IJ(XO):/V//U(X) (%: % dV+//f —dS (2.55)

This is the Integral Solution of Poisson’s equation.

Notes:

(i) We can also use the integral solution to solve Laplace’s equation with Dirichlet

boundary conditions, by taking o(x) = 0.

(ii) A similar result (but with technical differences) can be derived for Neumann bound-

ary conditions, in which case G is defined differently (see §2.5).



This latter result is easy to understand in many physical situations. For instance,

consider an arbitrary electrostatic charge distribution p(x). Then
V20 = —p/eg in R3,
d—0 as |x| — oc.

(We assume here that the charge distribution decays rapidly far from the origin.) Us-
ing the integral solution of Poisson’s equation, with V = R3, and setting G to be the

fundamental solution in 3D,

B(xo) = é// % % (2.64)

We can interpret this physically as the superposition of many infinitesimal charge elements
p(x)dV. Each of these is effectively a point charge, and the potential at xq from such
a point charge (using the standard formula for the electrostatic potential due to a point
charge) is just p(x)dV/4mep|x — xo|. Summing over all such infinitesimal elements gives
the above result.

Worked Example 8: Electrostatics -

Using the Integral Solution of Poisson’s Equation

Consider a wire of length 2L carrying a charge density p per unit length, lying along the
z-axis from z = —L to +L. What is the electric potential ®?

The charge distribution is p(x) = ud(x)d(y) for —L < z < L (and zero for |z| > L).
We shall use the integral solution of Poisson’s equation in the whole of space to obtain
the potential at a point (xg, %o, 20). We need Green’s function, which is simply the

fundamental solution here.
) IS g av
R

L
— M
o f—L 4men|(0,0,2)—xo| dz

_ _K fL dz
4meg J—L z8+y3+(z—ZO)2

L
M S I 0
= sinh
imeo [ \ x3+yg} ~L

M : -1 L—=z : -1 L+zo
= sinh + sinh .
dmeo { V3 Vrd+ud

This is true for arbitrary locations xg, so replacing xo by x we obtain

L
+sinh ! t }

O(z,y,2) =

P Jginh! Lo:
dmeg /22 + 2



In particular, the potential at a point in the (z,y)-plane is given by

sinh ™ (L/v/22 + y?).

P(z,y,0) =

TE€Q

Note, for completeness, that for very large L, i.e., in the limit as L. — oo, it is possible

to check (using sinh™' 2 ~ Inz as  — oo) that

L N/ y? + constant,
2meq

which verifies an earlier result we obtained for the two-dimensional field around an in-

finitely long wire.

Worked Example 9: Solution of Laplace’s Equation in a 3D Half-Space

We wish to solve V2® = 0 in the half-space z > 0 of R?, with ® = f(y, 2) on the boundary
xz=0.

We use the integral solution of Poisson’s equation (with
o = 0) in the half-space, with S being the plane x = 0
strictly speaking, together with the hemisphere at 0o):

B(xy) — ///Va(x) (x: % dV+//f —dS
= //fy G(x;%0) dy dz
0

(because 2 = —Z on S). To calculate this we need to

evaluate

oG
81‘ =0

R, .
 0r | 4Amlx —xo|  4mlx — x4

Li{_ 1
Am 0x | \/(x — 20)? + (y — o) + (2 — 20)?

; ! }
V(@4 x0)? + (Y — 40)* + (2 — 2)?

=0

1 T — Xg

47r{ (=20 + (=90l + =20/}

_ T+ X }
{(@ +20)2 + (y — y0)* + (2 — 20)2}3/2
Com{ad 4 (Y — w)? + (2 — 20)° P/

=0




Therefore

_mo [ fly, =) s
o) = 5 /_m /_m 1 (w0 + (- w2y VO

or alternatively (swapping x and Xg),

e [ 7 (30, 20)
0} = — dyy dzg.
(@.y.2) = 5 /_oo/_oo (24 (7 — o) + (- — o2 o0

This is the solution for:

(i) Steady-state temperature distribution with a wall heated to a specified temperature
distribution;
(ii) Steady-state concentration of solute with a wall kept at given concentration;

(iii) Electrostatic potential with a conducting wall held at given potential.




Chapter 3

Cartesian Tensors

3.1 [Revision| Suffix Notation and the Summation

Convention

We will for the moment consider vectors in 3D, though the notation we shall introduce

applies (mostly) just as well to n dimensions. For a general vector
x = (21, X2, T3) (3.1)

we shall henceforth refer to z;, the i component of x. The index 7 may take any of the
values 1, 2 or 3, and we refer to “the vector x;” to mean “the vector whose components
are (1,9, x3)”. Similarly we write [x]; = x;, and similarly [x + y]; = z; + y;. Note that
the expression y; = x; implies that y = x; the statement in suffix notation is implicitly

true for all three possible values of i (separately).

We will use the summation convention whereby if a particular suffix (e.g., 7) appears
twice in a single term of an expression then it is implicitly summed. For example, in

summation notation we simply write

Xy = TilYi-

Rules of summation convention

Summation convention does not allow any one suffix to appear more than twice within a
single term; so x;y;2; is meaningless. Care should be taken to avoid this. (For example,

the vector relation y = (a.b)x must be written y; = a;b;x;, rather than y; = a;b;x;.)

In any given term, then, there are two possible types of suffix: one that appears

precisely once, e.g., ¢ in a;b;x;, which is known as a free suffiz; and one that appears
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precisely twice, e.g., j in a;bjz;, which is known as a dummy suffiz. It is an important
precept of summation convention that the free suffixes must match precisely in every
term (though dummy suffixes can be anything you like so long as they do not clash with

the free suffixes). So in the equation
CijjZk =T+ aiaiykbjbj (32)

every term has a free suffix k£, and all other suffixes are dummy ones. In vector notation,
this equation reads
(a.b)z =x + |a]*|b|%y.

There need not be any free suffixes at all, as in the equation a;z; = (z; + y;)a; (which
reads a.z = (x+y) . a in vector notation). Replacing two free suffixes (e.g. 7, j in ¢;)

by a single dummy suffix (¢;;) is known as contraction.

Note that (1) the order of variables written in suffix notation is unimportant; the final
term of equation (3.2) could equally well have been written b;yxa;b;a;; and (2) the role

of the dummy suffix is analogous to that of the dummy variable in an integration.
More examples:

(i) y = Ax is written y; = [AX]; = a;;7;.

(ii) C = AB (where A and B are 3 x 3 matrices) is written ¢;; = [AB];; = ai,by;-
(iii) A matrix C has trace Tr C' = ¢;;, so the trace of AB becomes Tr(AB) = a;by;.

[Not all expressions written in suffix notation can be recast in vector or matrix no-
tation. For example, a;;, = z;y;2% is a valid equation in suffix notation (each term has
three free suffixes, i, j and k), but there is no vector equivalent.]

The Kronecker delta and the alternating tensor:

The Kronecker delta is defined by

1 i=y
0=
0 @77

and the alternating tensor (also called Levi-Civita or permutation tensor) is defined by

1 if (4,4, k) is a cyclic permutation of (1,2, 3)
€k = —1 if (4,4, k) is an anti-cyclic permutation of (1,2, 3)

0 if any of i, 7, k are equal

If I is the n x n identity matrix then [/];; = d;;, and z; = d;;z; for any vector z;
(because x = Ix; or because the Kronecker delta just “selects” entries: e.g., dajx is

equal to aj;).



Using the alternating tensor the expression z = x X y can be written z; = [x X y|; =
€10 Yk Similarly the determinant of a 3 x 3 matrix A = (a;;) is given by €;;,a1;a2;a3%.

This can be written in several other ways; for example,
det A = €;1a1,a2;a3;, = €;i1,01A2:A3)
= —€jkA2{A1;A3k-
This proves that swapping two rows of a matrix changes the sign of the determinant.

The relation €;x€xm = 0i0;m — 0im0j; holds, and simplifies the proof of many vector
identities, such as the vector triple product a x (b x ¢) = (a.c)b — (a.b)c:

[a x (b x c)]; = €;ra;[b x clj
= €Ki CLimbiCm
= (00 jm — Oimdj1)a;biCm
= ajbic; — a;bjc;
=(a.c)b; — (a.b)g

=[(a.c)b—(a.b)c];.

3.2 What is a Vector?

For example, suppose that {e;, es, es} is a right-handed
orthogonal set of unit vectors, and that a vector v has com-
ponents v; relative to axes along those vectors. That is to
say,

V = vi€; + V2€s + U3e3 = vj€;. (3.3)
What are the components of v with respect to axes which
have been rotated to align with a different set of unit vectors
{e},€),e,}? Let

!/ /N !/ !/



/ ;o
Now €; . €; = 0;j, s0

V. e =uje). e = vy = v (3.5)
but also
V. e; =v,€; . e; = Ujlij (36)
where we define the matrix L = (I;;) by
lij = e; - €. (37)
Then
U; = lijvj (38)

(or, in matrix notation, v/ = Lv where v’ is the column vector with components v). L

is called the rotation matriz.

This looks like, but is not quite the same as, rotating the vector v round to a different vector v/ using a
transformation matrix L. In the present case, v and v’ are the same vector, just measured with respect
to different axes. The transformation matrix corresponding to the rotation {e1,es, ez} — {e}, e}, e5} is
not L (in fact it is L™1).

Now consider the reverse of this argument. Exactly the same discussion would lead

to
(3.9)

where
lij =€;. e;- (310)

(we swap primed and unprimed quantities throughout the argument). We note that

Zij = l;; from their definitions; hence

L=1L" (3.11)
and so
v=ILv =L"V. (3.12)
We can deduce that
v=L"Lv, (3.13)

and furthermore, this is true for all vectors v. We conclude that
L'L =1, (3.14)

ie.,

L' =171 (3.15)

(Hence LLT = I also.) L is therefore an orthogonal matrix. In suffix notation, the
equation LTL = I reads
lkilkj = 0ij, (3.16)



and LLT = I reads
both of these identities will be useful.

Another way of seeing that LLT = I (or, equivalently, LTL = I) is to consider the
components of L directly:

83.61 83.82 63.63

= e [measured with respect to frame 1].

Alternatively, the i*® column consists of the components of e; with respect to the second
frame.

3.3 Tensors

Tensors are a generalisation of vectors. We think informally of a tensor as something
which, like a vector, can be measured component-wise in any Cartesian frame; and which

also has a physical significance independent of the frame, like a vector.

Physical Motivation



More generally, in suffix notation we have
Jz’ = UijEj (319)

where o is the conductivity tensor.

What happens if we measure J and E with respect to a different set of axes? We

would expect the matrix o to change too: let its new components be o;;. Then

J = ang]’-. (3.20)
But J and E are vectors, so

J=1;;J; (3.21)
and

from the results regarding the transformation of vectors in §3.2. Hence

UZ/-J-E],- =J
= lipJp
= lipope By
= lipapquqE;'

— (O—Z{j — lipquO'pq)Ejl- =0.
This is true for all vectors E’, and hence the bracket must be identically zero; hence

0i; = lipljq0pq- This tells us how o transforms.



Compare this argument with the corresponding argument for the case Ax = 0 where A is a matrix; if it
is true for all x then A must be zero, though this is not the case if it is only true for some x’s.

o is a second rank tensor, because it has two suffixes (0;;).

Definition: In general, a tensor of rank n is a mathematical object with n suffixes,

Tjk..., which obeys the transformation law

T!

ijk...

= lipqulkr e qur... (323)

where L is the rotation matrix between frames.

Note: for second rank tensors such as o, the transformation law
7—;,,] = lipljqTpq (3.24)

can be rewritten in matrix notation as 7" = LT LT — check this yourself!

Examples of Tensors

(i) Any vector v (e.g., velocity) is a tensor of rank 1, because v} = l;,v,.

(iii) The inertia tensor. Consider a mass m which is part of a rigid body, at a location
x within the body. If the body is rotating with angular velocity w then the mass’s

velocity is v = w X x, and its angular momentum is therefore
mx x v=mx X (wx x) =m(|x|*w - (w.x)x). (3.25)

Changing from a single mass m to a continuous mass distribution with density
p(x), so that an infinitesimal mass element is p(x) dV', we see that the total angular

momentum of a rigid body V is given by

h— / / / p(x) ([x[Pw — (w . x)x) AV, (3.26)



or, in suffix notation,

h, = /// p(x)(xpapw; — wjz;x;) dV
1%

= /// p(x)(zprrds; — x2;)w; AV
1%

ijWj

where

I = / / / (%) (pi; — i) AV (3.27)

is the inertia tensor of the rigid body. Note that the tensor I does not depend on
w, only on properties of the body itself; so it may be calculated once and for all
for any given body. To see that it is indeed a tensor, note that both h and w are

vectors, and apply arguments previously used for the conductivity tensor.

(v) The Kronecker delta itself. We have defined §;; without reference to frame; i.e., its
components are by definition the same in all frames (d;; = d;;). Surprisingly, then,

we can show that it is a tensor:
lipqu(qu = lipljp = 52‘]‘ - 52;’ (3-28)

(from §3.2), which is exactly the right transformation law. We can also show that

€5 is a tensor of rank 3.



(vi) Stress and strain tensors. In an elastic body, stresses (forces) result from displace-
ments of small volume elements within the body. Let this displacement at a location

x be u; then the strain tensor is defined to be

The stress tensor p;; is defined as the j™ component of the forces within the body
acting on an imaginary plane perpendicular to the i'" axis. Hooke’s law for simple
isotropic media says that stress o< strain. We can now generalise this to the tensor

formulation

Dij = Kijrien (3.30)

where k;;i is a fourth rank tensor, which expresses the linear (but possibly aniso-

tropic) relationship between p and e.

3.4 Properties of Tensors

Linear Combination of Tensors

If A;; and B;; are second rank tensors, and «, [ are scalars, then T;; = aA;; + BB;; is a

tensor.

Proof:
T;; = aAj; + BB
= aliplijqgApg + BlipliqBpg
= lipliq(Apy + BByq)
= lipljqTpq
as required.

This result clearly extends to tensors of rank n.



Contraction (also known as the Inner Product)

If T;; is a tensor then T}; is a scalar. Proof:
Tz‘,z‘ = lipliquq = 5qupq = Tpp = Tis, (3-31)
so T;; has the same value in all frames as required.

We can extend this result: if T}ji imn... is a tensor of rank N then Sii_ mn... = Tijk. imn...
is a tensor of rank N — 2. Proof:

/ 7

- lz’pqulkr cee lialm,@ln'y cee qur...a,@'\/...
= (liplia)qulkr cee lmﬁln'y cee qur...aﬁ'y..,
= Opaljglir - - lmplny - - - Tpgr...apy...

= lLiglir - - lnglny - - Sqr.. ...

Outer Product

If a and b are vectors then the outer product 7T;; defined by T;; = a;b; is a tensor of rank
two. Proof:
TZIJ - a;b; = lipapljqbg = lipljqapby = lipljqT}q (3.32)

as required.

Similarly (left as an exercise for the reader) we can show that if A;;, . is a tensor of
rank M and By, is a tensor of rank N, then T}k imn.. = Aijk.. Bimn... is a tensor of
rank M + N.

Example: if a and b are vectors then a . b is a scalar. Proof: T}; = a;b;, being an
outer product of two vectors, is a tensor of rank two. Then T}; = a;b;, being a contraction
of a tensor, is a scalar, as required. Note that |a|*> = a.a and |b|? are also scalars; hence
a.b/|a| |b| = cos @ is a scalar, so that the angle between vectors is unaffected by a change

of frame.

3.5 Symmetric and Anti-Symmetric Tensors

A tensor Tjj. . is said to be symmetric in a pair of indices (say ¢, j) if

Lijk... = Tjik... (3.33)



or anti-symmetric in 4, j if
Tijk... = —Tji... (3.34)

Suppose that S;; is a symmetric tensor and A;; an anti-symmetric tensor. Then
Siinj =0. Proof:

SijAij = —SiAji = =S5 Ay
= —S;;Aij (swapping dummy i and j)
— QSZ]A” = 0,

as required. Try to work out also how to see this “by inspection”, by considering appro-

priate pairs of components.

Example: for any vector a, a x a = 0 because
[a X a]l- = €ijkQ;Q) (335)

and ¢ is anti-symmetric in j, k whilst a;a; is symmetric.

The properties of symmetry and anti-symmetry are invariant under a change of frame:
that is, they are truly tensor properties. For example, suppose that 7Tj; is symmetric.
Then

Tz,] = lipljqTpq
= lipljqTop
= quliqup = Tg{ia

so that T7; is also symmetric.



(Alternative, and simpler, proof for second rank tensors:
T =LTL" = 7T =T =LT"LY = LTLY =T’ (3.36)

using TT =T.)

Decomposition into Symmetric and Anti-Symmetric Parts

Any second rank tensor Tj; can be uniquely expressed as the sum of a symmetric and an

anti-symmetric tensor; for

where

Si=35T +Tp), Ay =3(Ty; —Ty) (3.38)

are symmetric and anti-symmetric respectively. Exercise: prove that S and A are tensors.

Furthermore, any anti-symmetric tensor A;; can be expressed in terms of a vector w

(sometimes known as the dual vector) such that

Aij = €ijkWk- (3-39)

Proof: define w by
= %EklmAlm- (3.40)

Wk

Then
€ijkWk = %eijkeklmAlm
= 5(0u0jm — Gimj1) Aim
= 3(Aij — Aji) = Ay

as required. w is a tensor as it is a contraction of two tensors.



This definition of w actually corresponds to setting

0 w3 —W9
A=|-ws 0 w |- (3.41)
) —Ww1 0

Worked Example: Decomposition of Second Rank Tensors

Consider an elastic body subjected to a simple shear, so that the displacement u at a
location x = (x,y, 2) is given by
u=(7y,0,0)

for some constant y. Consider the differential of the displacement, Ou,;/0z;, which is

given by the matrix

0 v O
0 0 O (3.42)
0 0 0
We can decompose this tensor into symmetric and anti-symmetric parts,
o 0 %7 0 0 %'y 0
“=1iy 0 0|l+]|-iy 0 O (3.43)
8xj 2 2 ’
0 0 O 0 0 O

in which the symmetric part is just the strain tensor e;;. The anti-symmetric part can

also be written in the form e;;,w; where w = (0,0, %7)

This decomposition corresponds to writing

1

1 1 1

The first term is a stretch at 45° to the (x,y)-axes, while the second is a rotation. In
fact, any vector field u which has zero divergence can be decomposed using this method

into a suitable stretch and a solid-body rotation.




Example: suppose that two symmetric second rank tensors R;; and 5;; are linearly
related. Then there must be a relationship between them of the form R;; = ¢Sk It
is clear that c;jp; must be symmetric in ¢, j (for otherwise, R;; would not be). It is not
necessarily the case that it must also be symmetric in k, [, but without loss of generality

we may assume that it is, by the following argument. Decompose c;jx; into a part cl(.;fzd

Sl)cl which is anti-symmetric. Then

which is symmetric in k, [ and a part ¢
Rii=c® S+ Sy = s 3.44
ij = CijkiPkl T CijpPkl = CpjpOkl (3.44)

because the second term is the contraction of an anti-symmetric tensor with a symmetric

one, which we showed was zero above. Hence we can ignore any anti-symmetric part of

Cijkl-
3.6 Diagonalization of Symmetric Second Rank

Tensors

Suppose T;; is a symmetric second rank tensor. We shall show that there exists a frame

such that, if we transform 7" to that frame, it has components given by

A0 0
T'=(0 X 0]. (3.45)
0 0 As

Because T' is symmetric, we know that there are 3 real eigenvalues and that we can
find 3 corresponding eigenvectors which are orthogonal and of unit length. Let Ay, Ao,
A3 be the eigenvalues and €/, €}, €} be the eigenvectors (arranged as a right-handed set
of orthonormal vectors). Change frame to one in which the coordinate axes are aligned
with {e}, e}, e;}. What is T"7

Recall that L7 = (€] | €} | €} ); i.e., the three columns of L” are the vectors €/, €



and e} (measured relative to the first frame). Hence in matrix notation,
TL" =T(e€)|€)|e})

= ( )\18,1 } )\26/2 } )\36:/3 )

So
T
_a
T =LTL" = e’ el | ey | Azel
e’
3
A 00
- 0 )\2 0
0 0 X
because, for example, the top LHS entry is given by €] . A\1€], and the top RHS entry is
e . \ses.
A 00
There is another way of seeing that 7= [ 0 A2 0 |. The equation T'e]| = \;€] is true in any frame
0 0 A3

(because T is a tensor, €] a vector and A; a scalar). In particular it is true in the frame with {€], e}, e4}
as coordinate axes. But, measured in this frame, € is just (1,0,0)7, and T has components 7"; so

A1

1
T|o|=1|o0 (3.46)
0 0

which shows that the first column of 77 is (A1,0,0)”. Similarly for the other columns.

Note: the three principal values are invariants of 7'. That is, whatever frame we start
from, when we diagonalize T" we will obtain the same values of A\. The eigenvalues are

properties of the tensor, not of the coordinate system.

3.7 Isotropic Tensors

An isotropic tensor is one whose components are the same in all frames, i.e.,

e =T (3.47)

ijk...

We can classify isotropic tensors up to rank four as follows:

Rank 0: All scalars are isotropic, since the tensor transformation law states that 7/ =T

for tensors of rank zero.



Rank 1: There are no non-zero isotropic vectors.

Rank 2: The most general isotropic second rank tensor is | A\d;;

as proved below.

Rank 3: The most general isotropic third rank tensor is | Ae;jj.

Rank 4: The most general isotropic fourth rank tensor is
A0ijOky + 110305, + V010 i,

where A, u, v are scalars.

Isotropic Second Rank Tensors

Consider a general tensor 7' of rank two, with components 7;;
with respect to some set of axes {eq, ey, e3}. Suppose that T is
isotropic. Its components should then be unaltered by a rota-

tion of 90° about the 3-axis, i.e., with respect to new axes
e = ey, e, = —ey, e; = e3. (3.50)

The matrix of this rotation is

where A is any scalar,

(3.48)

(3.51)



Using the matrix formulation of the transformation law for tensors, we see that

T, T, Tl 0 10\ [Ty T T\ [0 =1 0
T2/1 T2,2 T2/3 — —]_ 0 0 T21 T22 T23 1 0 0
T Thy Tis 0 0 1) \Ty Ty T35/ \O 0 1

T =Ty Tas
= —T12 T11 —T13
139 —T3  Tag

But, because T is isotropic, T}; = Tj;. Hence, comparing matrix entries, we have:
Ty = Tao;
T3 =15 = —T1i3 so that T3 =15 = 0;
T3 =139 = T3 so that T3 =13, = 0.

Similarly, considering a rotation of 90° about the 2-axis, we find that 77, = T33 and that
Tio = T30 =0, Tyy = To3 = 0. Therefore all off-diagonal elements of T" are zero, and all

diagonal elements are equal, say A\. Thus

(3.52)

~
Il
o o >
)
> o o

or in suffix notation, T;; = \J;;.

In summary, we have shown that any isotropic second rank tensor must be equal to

Ao;; for some scalar A.

Worked Example: Evaluation of an Isotropic Integral

T :/ // xixje_T2dV
All space

There are no special directions involved either in the domain of integration or in the

We wish to calculate

for each value of 7 and j.

integrand; so 7" must be isotropic. Hence T;; = AJ;; for some A. To calculate ), consider



T;; = \o;; = 3A\. But we know that

Ty = ///xixie_’"QdV (3.53)
_ /R / / N\ (3.54)

2w pm OO
= / / / r2e™""r? sin 0 drdfde (3.55)
0 0 0

= 47r/ rledr (3.56)
0
3

Hence we conclude that 1
/// ,I'Z‘,Tje_TQdV = §7T\/7_T(SZJ
R?)

Such calculations are often of use when a physical situation has symmetry which can be

exploited; for example, consider calculating the inertia tensor of a sphere.

3.8 Tensor Differential Operators



We are interested here in calculating the derivatives of tensor fields; we start with

scalars and vectors.

Recall that grad, div, and curl can be written using suffix notation:

0P
Grad: V|, = o
. oFy, 0F, O0F; OF;
D : . F = =
v v 8$1 * 8$2 + 81’3 8$Z
oF,
Curl: [V X F]z = Eijkﬁ—xj

There is another useful notation: if u, v are vectors then we define the vector

0 0 0
(11 . V)V = <UI6—$1 + U2a—$2 + Uga—xg) V.

In suffix notation,

aﬂi
[(u . V)V]Z = ujﬁ—x]
Laplace’s equation V2® = 0 becomes
0P
=0
in suffix notation. Similarly,
O?F;
sz i = ‘
[ ] axjaa?j

(note that we only use Cartesian coordinates here).

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

Worked Example: Proving Vector Differential Identities

To prove that V. (®Pu) = u.VP®+ ® V.u where @ is a scalar field and u is a vector field:

0
V.(®u) = o (Puy)
auz-
613-

= u.V®+dV.u

(3.64)

(3.65)

(3.66)



To prove that Vx (uxv) = (V.v)ju— (V.u)v+ (v.V)u— (u.V)v where u and v
are vector fields:

Vx(uxv); = €ijk 5~ ERim Ul

J

19)
= (5il5jm —0; 5jl)a—xj(ulvm)

0 0
= a—%(“z‘%‘) - %(ujvi)

J

8Uj 8UZ 8Uj c%i
Za.Tj ]&Ej Za.Tj ]033]-

= [(V.v)u+ (v.V)u—(V.u)v - (u.V)vl].

We sometimes find it useful to use the differential operator 0; defined by

0
0 = e (3.67)
Then

It turns out that 0; is in fact a tensor of rank one. We know that x; = [;;2} (from
x = LTx') so that

Oz, 0 O,
6333- = %(lkﬂ;) = lkja—; = lgjou = lij- (3.69)

(This looks obvious but has to be proved very carefully!) Now let 7' be some quantity

(perhaps a scalar or a tensor of some rank). Then

or 0T Oxy 0T Oxy  OT Oxs

T 0w T 0m 07, 0wy 07, 0wy OF
- Ox; O
or
This is true for any quantity 7', so
a: = lijaja (370)

i.e., 0; transforms like a vector, and is hence a tensor of rank one.



This result allows us to prove that V®, V. F and V x F are scalars or vectors (as

appropriate). For example, to show that if F is a vector field then V x F is a vector field:
[V x FJ; = €;,0;F}.

= lipqulkrepqujsaslktFt

= Lip(Liglys) (Lirlpe ) €pgrOs Iy
= 1y0ysSrtepan s

= lLip€pgrOg F,

= Lip[V X FJp,

as required.

Alternatively, we can just state that V x F is a contraction of the tensor outer product T5;xim = €101 Fm
(because [V x F|; = T}k )-







Chapter 4

Complex Analysis

4.1 Complex Differentiation

Recall the definition of differentiation for a real function f(x):

o) — i £ 0D~ F)

55—0 Sx (1)

In this definition, it is important that the limit is the same whichever
direction we approach from. Consider |z| at © = 0 for example; if we
approach from the right (dz — 07) then the limit is +1, whereas if
we approach from the left (§z — 07) the limit is —1. Because these

limits are different, we say that |z| is not differentiable at = = 0.

Now extend the definition to complex functions f(z):

£(2) = lim flz+02) = f(2)

52—0 5z (42)

Again, the limit must be the same whichever direction we approach

from; but now there is an infinity of possible directions.

Note: the property of analyticity is in fact a surprisingly strong one! For example,

two consequences include:

73



(i) If a function is analytic then it is differentiable infinitely many times. (Cf. the
existence of real functions which can be differentiated N times but no more, for any
given N.)

(ii) If a function is analytic and bounded in the whole complex plane, then it is constant.
(Liouville’s Theorem.)

The Cauchy—Riemann Equations

Let f(z) be a differentiable complex-valued function of complex variable z. Separate f

and z into real and imaginary parts:

f(2) = u(r,y) +iv(z,y) (4.3)

where z = x + iy and u, v are real functions. Suppose that f is differentiable at z. We
can take dz in any direction; first take it to be real, 6z = dx. Then

L f(e+ 1) = f(2)

F(z) = 5lgc—>0 ox
. u(r 4z, y) +w(x + ox,y) —u(z,y) —iv(x,y)
= lim
52—0 ox

u(z + oz, y) — u(z,y) v(x 4 dx,y) — v(z,y)

+ 4 lim

Sx—0 ox dx—0 ox
ou o
- Ox ox

Now take dz to be pure imaginary, 6z = idy. Then
[z +idy) — f(z)

f'(z) = lim

Sy—0 10y
_u(w,y 4 0y) +iv(w,y 4 oy) — ulx,y) —iv(z,y)
= lim -
5y—0 10y
o o
Oy oy

The two values for f’(z) are the same since f is differentiable, so

ou ,c%_c% Ou

%—H%_@y Zay

R TR TR TR
or Oy’ oy Oz

— the Cauchy—Riemann equations. It is also possible to show that if the Cauchy—Riemann
equations hold at a point z, then f is differentiable there (subject to certain technical

conditions on the continuity of the partial derivatives).



If we know the real part u of an analytic function, the Cauchy—Riemann equations
allow us to find the imaginary part v (up to a constant), and vice versa. For example, if

u(z,y) = 2% — y* then
v Ou

8_y — o = or —> v =2xy + g(x) (4.4)
for some function g(x); so
0 0
—2y = gu_ _9v —2y—4¢'(xr) = J(x)=0 = ¢=const.=q,say. (4.5)
y ox
Hence
f(2) = 2® — 9 + 2wy +ia = (v +iy)* + ia = 2% +ia. (4.6)

Examples of Analytic Functions

(ii) f(2) = 2™ (n a positive integer) is analytic in C. Here we write z = r(cos 6 +isin 6)
and by de Moivre’s theorem, 2™ = r"(cosnf + isinn#). Hence u = r™cosnf and
v = r"sinnf: we can check the Cauchy-Riemann equations (using r = \/x2 + y2,

0 = tan~!(y/x)). The derivative is nz""!, as expected.

(iii) f(z) =e* = €% = e*(cosy + isiny). So

0 0 0 0 0
a—z =e"cosy = a—y(ex siny) = a—z; a—z = —¢e"siny = —%. (4.7)
The derivative is
Ju  Ov
/ _ i -z — o7
f(z)—ax+z(9x e’ cosy +ie’siny = €*, (4.8)

again as expected.

(iv) f(z) =1/z: check that this is analytic with derivative —1/2? in any region R which

does not include the origin.

(v) More generally, any rational function — ie., f(z) = P(2)/Q(z) where P and @
are polynomials — is analytic except at points where Q(z) = 0. For instance,

f(z) = (2 —i)/(z + i) is analytic except at z = —i.



(vi) Many standard functions obey the usual rules for their derivatives; e.g.,

d . .

— sin z = cos z, — sinh z = cosh z,
dz dz

— Ccosz = —sin z, — cosh z = sinh z,
dz dz

1
di logz =~ (when log z is defined as later).
z z

The product, quotient and chain rules hold in exactly the same way as for real

functions.

Examples of Non-Analytic Functions

(iii) f(z) = |2|* = 22 + y*. The Cauchy-Riemann equations are only satisfied at the
origin, so f is only differentiable at z = 0. However, it is not analytic there because

there is no small region containing the origin within which f is differentiable.

(iv) f(z) = Z = x — iy (complex conjugate, also denoted z*). Here u = x, v = —y, so

Ou/0x =1+# —1 = 0v/0dy.

Harmonic Functions
Suppose f(z) = u + iv is analytic. Then
Pu_ 0 (on\ _ 0 (00
0x2  Ox \dx) Ox \dy
L0 () _ 0 () _ P
oy \ox) oy \ oy) = oy

Pu o _
ox2  oy?

i.e., u satisfies Laplace’s equation in two dimensions. Similarly, v does too. Such functions

Hence
0, (4.9)

u and v are said to be harmonic.



4.2 Zeros of Complex Functions

The zeros of f(z) are the points zyp where f(zy) = 0. A zero is of order n if

0=f"(20) = f"(20) =+ = f(”_l)(zo), but £ (z) # 0. (4.10)

A zero of order one (i.e., one where f'(zo) # 0) is called a simple zero. Examples:

(iv) f(2) = (z —w)Ng(z), where w is a complex constant, N a positive integer and g(z)

an analytic function satisfying g(w) # 0, has a zero of order N at z = w.

(v) Where are the zeros of f(z) = sinh 2? We know there is a simple zero at z = 0.

The others are where

e —e*?

Ozsinhz:T = F=eF = ¥ =1 < 2z=12nm,
(4.11)
where n is an integer. (Check that ¢*™ = 1 & z=0and y =2nnw.) So the
zeros are on the imaginary axis at ..., —2ni, —mi, 0, i, 27¢, 3me, ..., and they are
all simple.

Another way of defining the order of a zero is by the first non-zero power of (z — zj)
in its Taylor series. For example, consider the zero of sinh® z at z = mi. Now sinh z =
—sinh(z — 7i) = —sinh ¢ where ( = z — 7, and close to z = mi the Taylor series for
sinh 2 is therefore

—(C+ 3+ (4.12)
Hence the Taylor series for sinh® z at z = 7i is

~(CHEC P = =) = b =) (413)

The zero is therefore of order 3.

4.3 Laurent Expansions

Suppose that f(z) is analytic at zp. Then we can expand f in a Taylor Series about z:

F(2) = an(z — z)" (4.14)

n=0



for suitable complex constants a,,.

Example: e* has a Taylor Series about z = i given by

e” =ee” i =¢ Z (2= 0) , (4.15)

n!

n=0
so a, = ¢e'/nl.

Now consider an f(z) which is not analytic at zg, but for which (z—zj) f(2) is analytic.
(E.g., f(z) =€*/(z — 2).) Then, for suitable b,,

(2= 20)f(2) = Y balz = 20)"

bo

- f(Z):Z_ZO+b1+62(Z—Zo)+b3(z—20)2+"'
= Z an(z — z)"
n=—1

where a,, = b, 1. Generalising this, if (z — 29)" f(2) is analytic at zy then for suitable a,,

o0

f2)= > an(z—2)" (4.16)

n=—N

Formally, it is possible to show that if f(z) is analytic in an
annulus a < |z — zy| < b for some a, b (regardless of whether f is

analytic at zy itself) then f has a unique Laurent expansion

F(2) = an(z—z)" (4.17)

in the annulus.

Examples:

(i) f(z) = €*/z* = >°022 2" %/nl about zy = 0 has a, = 0 for n < —3 and @, =
1/(n+ 3)! for n > —3.



(i) f(z) = €*/(2*> — 1) about zy = 1 (where it has a singularity). Here we write

everything in terms of ( = z — 2y, so

€S e e*o _
f(2)2m2f6<(1+%0 !
= e CH )= 30 )
e
:i(1+%<+...)

€ 1 n 1 n
S 2\z—2 2 ’
Hence a_y = ¢/2, ag = e/4, etc.

(i) f(z) =exp(1l/z) about zy = 0 has

1 1
61/Z21+—+ + st (4.18)
z Lz z

(iv) This doesn’t seem to work for f(z) = 27> — why? We shall see later that it is

impossible to find an annulus around z, = 0 in which 2z~ "2 is analytic.

If f(2) is in fact analytic at z = zg, then its Laurent expansion about zy is just its
Taylor series.

4.4 Classification of Singularities

Essential Isolated Singularities

If there is no integer N such that a, = 0 for all n < —N — i.e., if however far n goes
towards —oo there are always some non-zero a,’s — then f is said to have an essential

1solated singularity. Examples:



(1)

(i)

exp(1l/z) has an essential isolated singularity at z = 0, because all the a,’s are

non-zero for n < 0 (we showed above that a, = 1/(—n)!).
sin(1/z) also has an essential isolated singularity at z = 0, because

—1)"H+D/2/(—p)l n negative and odd,
o JEne e e o)
0 n positive or even.

However negative n is, there are some non-zero a,,’s for still more negative n.

Near an essential isolated singularity of a function f(z), it can be shown that f takes all possible complex
values (bar at most one). For example, sin(1/z) takes all possible complex values near the origin; exp(1/z)
takes all except zero.

Poles

If a, = 0 for all n < —N (where N is some specific positive integer) but a_y # 0, then

f is said to have a pole of order N. (If N = 1, then we call this a simple pole.) This is

the most common, and the most important, of the three cases. Examples:

(1)
(i)

(i)
(iv)

1/(z — i) has a simple pole at z = 4.

(cosz)/z (which has Laurent expansion z~* — 4.z + 52° — - - - ) has a simple pole at
z=10.

1/(2* 4+ 1) has two simple poles, at z = =+i.

22/{(z — 3)3(z — i)?} has a pole of order 2 at z =i and a pole of order 3 at z = 3.

To show formally that, for instance, there is a pole of order 2 at z = 7, notice first
that 2?/(z — 3)? is analytic there so has a Taylor series
bo +bi(z —4) +bo(z — )2 +---. (4.20)
Hence
22 bo b

oG i op T (4.21)

If g(2) has a zero of order m at z = 2 then 1/¢g(z) has a pole of order m there (and

vice versa). Hence cot z has a simple pole at the origin, because tan z has a simple

zero there.

To prove this, note that g(z) = (2 — 29)"G(z) for some function G(z) satisfying
G(z0) # 0. The function 1/G(z) is analytic at z = 2y, so it has a Taylor series

co+c1(z — 20) + c2(z — 20)* + - - -. Hence
1/9(2) = coz — 20) ™ +c1(z — 20) ™ + oz — 2) "2 4o (4.22)

as required.



Removable Singularities

If a,, = 0 for all n < 0 (so that the Laurent expansion is just ap + a1(z — zp) + - - - ), then
f is said to have a removable singularity. By redefining f(z9) = ag we can remove the

singularity completely. Examples:

(i) (Somewhat contrived.)

0 2=0
f() = (4.23)

1 2#0
has a singularity at z = 0. Because the origin is not part of any annulus around
itself, so that f(z) = 1 everywhere in the annulus, the Laurent expansion has ay = 1
and all other a,, = 0, so f has a removable singularity; by redefining f(0) = 1 we

obtain an analytic function.

(ii) f(2) = (sinz)/z is not defined at z = 0, but by defining f(0) = 1 we obtain an
analytic function.

(iii) A rational function f(z) = P(z)/Q(z) (where P and () are polynomials) has a singu-
larity at any point zy where Q(z9) = 0; but if P(2) = 0 as well then the singularity
is removable by redefining f(z9) = P’(20)/Q'(20), assuming that @Q'(zo) # 0.

4.5 Residues

We shall see in Chapter 5 that it is important to be able to calculate the coefficient a_;
of the Laurent expansion of a function f(z) about a pole at zy. This coefficient is called
the residue of the pole, which we shall denote by res f(z).

zZ=z0

At a simple pole, the residue is given by a_; = lim, ., {(z — 20) f(2)}, because:

lim {(z — 2)f(z)} = lim {(z—zo)( a1 +a0+a1(z—zo)+..,)}

z2—20 z—20 Z— 20

= lim {Cl,_l +CLO(Z — Zo) + al(z — ZO)2 + . }

z—20

a_1q.



In general, at a pole of order N, the residue is given by the useful formula

dN—l

a1 = lim {(N ! g (2 - ZO)Nf(Z))} (4.24)

z—20

which can easily be proved by first writing down the Laurent expansion of f(z) and then

evaluating the right-hand side of the above formula.

Worked Example: Calculating Residues
Example: /23

By expanding e* as a Taylor series, we see that f(z) = €°/2® has a Laurent expansion

about z = 0 given by

1 1
-3 -2 -1
z "tz "+ 52 + g +---
Hence the residue is 3 (the coefficient of z27).

Alternatively, we note that f has a pole of order 3 at z = 0, so we can use the general

formula for the residue at a pole:
) 14, 1. a2 1
res /(%) ZLE%G@@ f@)} - 5%{@6 }: >

Example: ¢?/(2% — 1)

We have already calculated the Laurent expansion of g(z) = €*/(2* — 1) at z = 1:

e? e 1 +1+
221 2\z2—-1 2 ’

so the residue is e/2.

Alternatively, we use the formula for the residue at a simple pole:

T G O L
o) =i T syt

Example: 1/(z% — w®)

8 nmi/4

For any complex constant w, h(z) = (2% — w®)™! has 8 simple poles, at z = we

(n =0,1,...,7). The residue at z = w, say, could be evaluated by factorizing 2® — w®

into its eight linear factors, but is most easily calculated using L’Hopital’s Rule:

. Z— W . 1 -
res h(z) = lim —o— 5 = lim o= = 1/8w".

Example: 1/sinh7z



1/sinh 7z has a simple pole at z = ni for all integers n (because the zeros of sinh z are
at nmi and are simple). We could use the Taylor series for sinh 7z, or the general residue

formula: again using LL’Hopital’s Rule, the residue is

. z—m ) 1 1 1
lim — = lim = - = = (=1)"m.
z—nisinh 7wz  z—nimcoshmz  mcoshnmi  mcosnm

Example: 1/sinh®

We have seen that sinh® z has a zero of order 3 at z = i, with Taylor series
. 1.3 N N5
sinh”® z = —(z — i) —i(z—m) +oeee

Therefore

1/sinh®z = —(z—mi) 31+ =(z—mi)? )"

The residue is therefore %

4.6 The Point at Infinity

¢

In the complex plane, we can reach the “point at infinity” by going off in any direction.
Conceptually, we may use the Riemann Sphere, which is a sphere resting on the complex

plane with its “South Pole” at z = 0.



We can use all the concepts of §4.4 on the point at infinity by using the transformation
¢ =1/z. Let g(¢) = f(1/¢) and find the Laurent expansion of g at ( = 0. Any type of
singularity that g has at ¢ = 0 is also said to apply to f “at infinity”. Examples:

(i) f(2) = 2" has a pole of order n at oo (because ¢g(¢) = f(1/¢) = ¢~ which has a
pole of order n at ¢ = 0).

(ii) f(z) = €* has an essential singularity at oo.

The residue at infinity of f is, similarly, defined to be the residue of g(¢) at ¢ = 0;
so, for example, f(z) = 2z has a simple pole at oo (because g(¢) = 2/¢) with residue 2.

4.7 Multi-Valued Functions

Branch Points

Consider the three curves shown in the diagram. On C, we could choose € to be always

in the range (0, %), and then log z would be continuous and single-valued going round C}.

On Cy, we could choose 0 € (7, 37”) and log z would again be continuous and single-valued.

But for C3, which encircles the origin, there is no such choice; whatever we do, log z cannot

be made continuous around Cj (it must either “jump” somewhere or be multi-valued). A



branch point of a function — here, the origin — is a point which it is impossible to encircle
with a curve upon which the function is continuous and single-valued. The function is

said to have a branch point singularity at that point.

Examples:

(i) log(z — a) has a branch point at z = a.
(i) log(z* — 1) =log(z + 1) + log(z — 1) has two branch points, at +1.

(iii) 272 = /7 €?/? has a branch point at the origin. (Useful exercise: verify this.) The

same is true of 2* = r%? when « is any non-integer.

Branch Cuts

If we wish to make log z continuous and single-valued, therefore, we must stop any curve
from encircling the origin. We do this by introducing a branch cut from —oo on the real
axis to the origin. No curve is allowed to cross this cut. We can then decide to fix on
values of 6 lying in the range —m < 6 < 7 only, and we have defined a branch of log z
which is single-valued and continuous on any curve (which doesn’t cross the cut). This

branch is analytic everywhere (with < logz = 1/z) except on the negative real axis.

This cut is the canonical (i.e., “standard”) branch cut for logz, and the resulting

value of log z is called the principal value of the logarithm.

What are the values of log z just above and below the branch cut? Consider a point
on the negative real axis, z = x, x < 0. Just above the cut, at 2 = x +i0", § = +7, so

log z = log |z| + im. Just below it, at z = x 407, log z = log |z| — im.



Note that many different branch cuts are possible: any
cut which stops curves wrapping round the branch point will
do. In diagram (a), we could choose —37/2 < 6 < 7/2; the
exact choice is more difficult to write down in case (b), but

this is an equally valid cut.

Exactly the same choices of branch cut can be made for z¢
(when « is not an integer). Note that this implies that neither
log z nor z* have Laurent expansions about the origin: for
any annulus a < |z| < b would have to be crossed by a branch

cut, so the function would not be analytic in the annulus.

Multiple Branch Cuts

When there is more than one branch point, we may need more than one branch cut. For

f(2) = {z(2 — 1)} s there are two branch points, at 0 and 1.

We need two branch cuts; a possibility is shown in the diagram. Then no curve can

wrap round either 0 or 1. For any z, we write z = 79 where —7 < 6y, < 7 and

2 —1 =71 where 0 < 6, < 27. Then we define

{2(z = 1)}3 = rgr, @H0D/3,

This is continuous so long as we don’t cross either cut:

(4.26)

The value of f(z) just above the cut on the positive real axis at z = z is /z(z — 1)
(since 0y = 6, = 0 there); just below it is ¢/x(z — 1) e*™/3 (§y = 0, 6; = 27). For the cut

on the negative real axis we have ¢/|z[(|z] + 1) €*™/? just above and ¢/|x|(|z| + 1) just

below.



Worked Example:
Branch Cuts for Multiple Branch Points

What branch cuts would we require for the function

z—1
=1 ?
f(2) 08—

It is clear that there are branch points at +1, but we have a non-trivial choice of branch

cuts. Define z — 1 = r1e" and z + 1 = rye’®, as shown in the following diagram.

The most straightforward choice is to take two branch cuts, one emanating from each
branch point to infinity. In the case shown, we choose 0 < #; < 27 and —7 < 6y <,

and the consequent single-valued definition of f(z) is
f(z) = log(z—1)—log(z+1)
= (logr +i0;) — (logry + i6s)

= log(ri/ra) +i(6; — 65).

[43

The two cuts make it impossible for z to “wind around” either of the two branch points,
so we have obtained a single-valued function which is analytic except along the branch

cuts.

The second possible choice is to take only one branch cut, between —1 and 1, as
shown. This time, we choose both 0 < 0; < 27 and 0 < 65 < 27 (note that this seems at



odds with the location of the branch cut, but this is not a problem as we will explain).
The definition of f(z) is as before, but with these different ranges for 6, and 6.

If z were to cross the branch cut, from above to below say, then ¢; would be unchanged
(at m) but O would “jump” from 0 to 27. This is, of course, not allowed, as we may not

cross branch cuts. So z cannot wind round just one of the branch points.

But it is now possible for z to wind around both of the branch points together.
Consider a curve C' which does so. Starting from the point of C' on the positive real axis
(where 0, = #; = 0) and moving anti-clockwise, both #; and 6 increase. When we have
made one complete revolution and returned to the positive real axis, having encircled
both branch points exactly once, 8, and 6, both suddenly “jump” from 27 back to 0.
But this jump does not result in a jump in the value of 6; — 0y; so f(z) is not affected,

and is indeed single-valued as claimed.

Exactly the same choice of branch cuts occurs for the function
g(z) = (> =)'
With the appropriate definitions of 6, and 65, as above, the single-valued choice is

g(Z) = (Z - 1)1/2(Z + 1)1/2 =\ T2 €i(91+92)/2.

This time the single branch cut works because, when both #; and 6, jump by 27, %(«91 +05)

21

jumps by 27 also; and e*™ = 1. The cut prevents either #; or #5 jumping on its own.

This idea can be extended to higher numbers of branch points in the right circum-

stances.

Example: consider
zZ+a

Z—a

®(z,y) =Im (2—TO log ) + 2Ty (4.27)
T

where z = x + iy, a is a real constant and we use the branch cuts shown below to make log analytic.



Then o
P = 70(90 —61) + 2Ty (4.28)

where —7m < 6y < 7 and 0 < 0; < 27. On the circle |z| = a, what is ®? Above the real axis, we know
that 0y + (m — 61) = 7/2 (property of circles), so ® = +Tp. Below the real axis, (—6p) + (01 — 7) = 7/2
(same property), so ® = —Ty. We also note that everywhere in the circle |z| < a, V2® = 0 as ® is the
imaginary part of an analytic function.

Hence ® is the steady-state temperature distribution in a cylinder heated on one side to +7y and on the
other to —Tj; we solved this problem using separation of variables in Chapter 2. To see the connection
between the solutions, write g = tan™!(y/(z + a)) and 6, = 7 + tan~'(y/(z — a)); then construct the

Fourier Series for o7
=0 <tan_1 Y tan~? Y ) . (4.29)
™ r+a r—a




Chapter 5

Contour Integration and Transform

Theory

5.1 Path Integrals

For an integral ff f(z) dz on the real line, there is only one way of
getting from a to b. For an integral | f(z)dz between two complex
points a and b we need to specify which path or contour C we will
use. As an example, consider

d dz

Il = and ]2 = (51)
o * Cy *
where in both cases we integrate from z = —1 to z = +1 round a
unit semicircle: C above, Cy below the real axis. Substitute z = e,
dz = ie'? db: o
1e" df
= [ = in 52
but
27
I = / id0 = tir. (5.3)

The result of a contour integration may depend on the contour.

To formally define the integral, divide C' into small intervals,
separated at points z; (kK = 0,...,N) on C, where z; = a and
zy = b. Let 6z, = zpp1 — 21, and let A = L max |02x]. Then we

define o
/C F(2)ds = EE}O; () 621 (5.4)

where, as A — 0, N — oo. Note that if C lies along the real axis

then this definition is exactly the normal definition of a real integral.

90



Elementary properties

If C7 is a contour from w; to we in C, and Cy a contour from w,
to ws, and C' is the combined contour from w; to ws following first
Cy then Oy, we have that [, f(2)dz = [, f(z)dz + [, f(z)d
(Obvious from definition; compare with the equivalent result on the

real line, [7 f(z)dz = fab f(x)dz + [ f(z)dz.)

If C* is a contour from w; to wsy, and C'~ is exactly the same con-
tour traversed backwards, then clearly [, f(z)dz = — [, f(2)dz.

b a
(CE [? fla)de = — [ f(a) da)
Integration by substitution and by parts work in C also.

If C' has length L, then

/Cf(z) dz

because at each point on C, |f(2)] < max |7 (2)].

< Lmax|f(2)] (5-5)

Closed contours

5.2 Cauchy’s Theorem

A simply-connected domain is a region R of the complex plane with-
out any holes; formally, it is a region in which any closed curve en-
circles only points which are also in R. By a simple closed curve we
mean one which is continuous, of finite length and does not intersect
itself.



Cauchy’s Theorem states simply that if f(z) is analytic in a simply-connected domain

R, then for any simple closed curve C' in R,

jif(z) dz =0.

(5.6)

The proof is simple and follows from the Cauchy—Riemann equations and the Divergence

Theorem in 2D:

fcf(z) dz:ji(uﬂv)(dxﬂdy)

:j{c(udx—vdy)Jri%(vderUdy)

C

ov  Ou , ou
S S

by applying the Divergence Theorem, where S is the region enclosed by C. But the

Cauchy-Riemann equations show that both brackets vanish, since f is analytic through-

out S. The result follows.

Changing the Contour

Suppose that C; and C5 are two contours from a to b and that
there are no singularities of f on or between the contours. Let
C be the contour consisting of C} followed by the reverse of

Cs. Cis a simple closed contour, so

]{ f(z)dz=0 (5.7)
C

(no singularities are enclosed). Hence

/c f(z)dz — ; f(z)dz =0, (5.8)

i.e.

; f(z)dz = ; f(z)dz. (5.9)

So if we have one contour, we can move it around so long as

we don’t cross any singularities as we move it.



If f has no singularities anywhere, then fab f(2) dz does not depend at all on the path

chosen.

The same idea of “moving the contour” applies to closed

contours; if C7 and C5 are closed contours as shown, then
f(z)dz= ¢ f(z)dz (5.10)
Cl 02

so long as there are no singularities between C and C5. We

prove this by considering the closed contour C' shown: clearly
0— jf fde= 4 f)de— ¢ f2)de (5.11)
C C1 Co

(the two integrals along the “joins” shown cancel).

5.3 The Integral of f'(2)

For a real function f(z), ff f'(x)dx = f(b) — f(a). This result extends immediately to
complex functions, so long as both f and f’ are analytic in some simply-connected region

R and the integration contour C' lies entirely in R. Then

| 1= - s (5.12)

for any complex points a, b in R.

Examples:

(i) [)2dz=1(2—0% = —L. (f and f’ are analytic in the whole of C, so the LHS is
path-independent.)

(ii) [, e*dz, where C' is the semicircular contour joining —1 to +1 along |z| = 1 above

the real axis, is equal to e — e~ 1.

(iii) 1::” 271 dz via a straight contour. Note that z~! is not analytic everywhere, so we

do need to specify the contour; but we can define a simply-connected region R, given



by Imz > % say, in which it ¢s analytic, and C' lies entirely in R. Let f(z) = log 2
with the standard branch cut, so that f(z) is also analytic in R; then

—14i
/ 27t dz = log(—1 + i) — log(1 + 1)
1

+i
= log V2 + 37— (log V2 + )

= =7,

1
2

(iv) Now consider ffliﬂ z~1dz via the contour shown. Define R as in the diagram; we cannot now
choose the standard branch cut for log z (since C' would cross it), so we choose a cut along the
positive imaginary axis, and define log e’ = logr + if where —37“ <0< 3. Then

/ 2z~ dz = log(—1+1) — log(1 + 1)
c

=logV2+ (—2m)i — (log V2 + i)

—_ _ 3.
= 27TZ.

5.4 The Calculus of Residues

The Contour Integral of a Laurent Expansion

Consider a single term a,,(z—2p)" of an expansion, integrated
round a closed curve C' which encircles 2 in a positive sense
(i.e., anticlockwise) once. For n > 0, we can use Cauchy’s

Theorem to obtain immediately

i{ an(z — 29)" dz = 0. (5.13)
c

For n < 0, first change the contour C' to C,, a circle of radius
e about 2y, using the ideas of §5.2. On C., z = z, + c€® and

SO

2m
j{ an(z — 29)"dz = / anc"e™ ice’® A
c 0

27
:ian€"+1/ ¢! +10 49
0

pi(n+1)0 2

m} n7

ia,e™ 1 (2m) n=-—1

ia,e"t! [



0 n# —1
2mia_y n=-—1

We deduce that for a function f(z) with a singularity at zp, and a contour C' encircling

the singularity in a positive sense,

}{f )dz = Z j{ (z — 20)" dz = 2mia_y = 2mi res f(z). (5.14)
n=—00 =

We can also obtain the result as follows, using the method of §5.3:

an
[(z=20)" "], n#-1
]{ an(z —20)"dz = n+1 “
¢ an[log(z — 20)] n=-—1
_Jo n# —1 (because (z — 29)"*! is single-valued)
| 2mia_; n=—1 (because # changes by 2n)

The Residue Theorem

Suppose that f(z) is analytic in a simply-connected region
R except for a finite number of poles at z1, zo, ..., 2,; and
that a simple closed curve C' encircles the poles anticlockwise.
Then

j{f( dz—2mz res f(z (5.15)
c z=2zp

(We have just proved this in the case of a single pole.)

Proof: Consider the curve C shown. C encircles no poles,
SO
}{ f(z)dz = 0 (5.16)
by Cauchy’s Theorem. Bcut we can also work out the integral
round C by adding together several contributions: the large
outer curve (which is the same as C'), the small circles around
each pole, and the contributions from the lines joining the outer curve to the inner circles.
For each k, the contribution from the small circle round zj, is —2mires,_,, f(z) because
the small circle goes clockwise round z;. Also, the contribution from the line joining the
outer curve to the small circle cancels exactly with the contribution from the line going

back. Hence

o_ff dz_ff dz+z —2mi res f(z)) (5.17)

2=z

from which the result follows.



5.5 Cauchy’s Formula for f(z)

Suppose that f(z) is analytic in a region R and that z, lies in R. Then Cauchy’s formula
states that

floo) = —— 4 LB 4, (5.18)

21t Jo 2 — 2o

where C' is any closed contour in R encircling 2z, once anticlockwise.
Proof: f(z)/(z — 2o) is analytic except for a simple pole at z, where it has residue

f(z0). Using the Residue Theorem,

) 4z = omif(z) (5.19)
c R — 20

as required.

Exercise: show that if instead f is analytic except for a singularity at zp, and has a

Laurent expansion Y °__ an,(z — )™, then the coefficients of the expansion are given

by

C2mi Jo (2 —z)ntt T

If we differentiate Cauchy’s formula with respect to zo (differentiating under the §
sign on the RHS), we see that

) = — jfc(f&dz. (5.21)

2mi z—2)?

So f'(zo) is known for all 2y inside C. Continuing this process,

) = e f LI &) 4. (5.22)

21t Jo (z — zo)ntt 7

and f(™(z) is known. So at any point where f is analytic, i.e. differentiable once, all its

derivatives exist; hence it is differentiable infinitely many times.



5.6 Applications of the Residue Calculus

Suppose we wish to evaluate

1:/000 dr (5.23)

1+ 22

(which we can already do using trigonometric substitutions).

Consider

dz
5.24
fc L (5.24)

where C' is the contour shown: from —R to R along the real axis (Cp) then returning
to —R via a semicircle of radius R in the upper half-plane (Cg). Now (1 + 2?)~! =
(z+14)"*(z — i)', so the only singularity enclosed by C'is a simple pole at z = i, where
the residue is lim,_;(z 4+ i)' = 1/2i. Hence

d d d 1
/7224_/ 722:%722:27(7;—_:7?, (5.25)
001+Z CR1+Z 01+Z 2Z
Now R
d d
/ “ :/ v — 2] as R — oo. (5.26)
co 1+ 22 g l+a?

Consider [, dz/(1+ 2%): the integrand (1 + 2?)~" is of order R~* on the semicircle, but
the length of the contour is mR. Hence

/ dz
Cr 1+ 22

<TRxOR*H=0(R') -0 asR— cc. (5.27)

This example is not in itself impressive. But the power of the method is clear when
we see how easily it adapts to other such integrals (for which it would not be easy, or

would be impossible, to use substitutions). Examples:



(i) We wish to calculate

- /0 h (L (5.29)

22 + a?)?
where a > 0 is a real constant. We consider §,dz/(z* + a®)%; most of the above
analysis is unchanged. The poles now occur at z = +ia, and they both have order
2; only the pole at +ia is enclosed by C'. The residue there is
d 1 -2 -2 3

- = 1i = = —Lig™3, 5.30
e dz (z +ia)? e (z +ia)3  —8ia® gta ( )

The integral round the semicircle still vanishes as R — o0, since now

dz
S e 4 = -3. 31
/CR(22+a2)2 < 7R x O(R%) = O(RY) (5.31)
Therefore
21 = 2mi(—%ia™®) = 7 /2d°, (5.32)
ie., I =m/4a>.

(ii) For I = [;~dz/(1 4 z*), the (simple) poles are at e™/4, ¢3™/4 =™/ and e~37/4,

Only the first two poles are enclosed. The residue at e™/* is

_ mif4 1 ) )
F-e T Y1 3mija 1 mij4
z—>1e12/4 1 + Z4 N 2—semi/4 423 N 46 N 46 (533)
using L'Hopital’s Rule, and at 3™/4 it is (similarly) te~™/4. Hence
21 = 2mi(—Le™/* 4 Le7™*) = 27i(—1)(2isin ) = wsin T, (5.34)

ie., I =m/2V2.



(iv) For I = [[°dxz/(1 + ) again, an alternative to the method used in example (ii)
above (and similarly in example (iii) above) is to use a contour which is just a

quarter-circle, as shown.

Let C' consist of the real axis from 0 to R (Cp); the arc of circle from R to iR (C});
and the imaginary axis from iR to 0 (C3). Now fCo dz/(1+2%) — I as R — oo;

and, along C5, we substitute z = iy to obtain

d 0 id R q
/724:/@794:_@'/ I  asR— . (5.35)
021+Z R1+(7’y> 0 ].+y

The integral along C) vanishes as R — o0, using the same argument as for Cr
above, but this time we only enclose one pole, which makes the calculation easier.
Hence

I —il =2mi(=1e™) = _lped™/t = T =7/2V2

as before.

Worked Example: Contour Integration - Integrals of

Trigonometric Functions

2
[:/ 49
o a-+cost

where a > 1 (so that the integrand is always finite). Substitute z = ¢, so that dz = iz df

We wish to evaluate

and cosf = $(z+2z7'). As 6 increases from 0 to 27, z moves round the circle C of radius
1 in the complex plane. Hence

7 f (iz)"'dz 2,% dz
= =21 ———.
ca+ti(z+2z71) c 22 +2az+1

The integrand has poles at
zy = —a*tvVa?—1,

both on the real axis. Note that z, is inside the unit circle
(check that a—1 < va? — 1 < a, so —1 < z; < 0) whereas
z_ is outside it. The integrand is equal to

1

(z = 2z0)(z = 2-)




so the residue at z =z is 1/(24 — z_) = 1/2v/a®> — 1. Hence

7 2,( 2mi ) or
2va? — 1 a?—1

Worked Example: Contour Integration -
Integration Round a Branch Cut

We wish to evaluate

[o¢] xa
1= / L S
o 14++V2x+ 22
where —1 < a < 1 so that the integral converges. We will need a branch cut for z%; we
take this along the positive real axis and define

SO — ,rozezoze

where z = re?? and 0 < 6 < 27.

Consider
ZO[

c14+vV224 22
where the keyhole contour C' consists of a large circle Cr

dz

of radius R, a small circle C, of radius € (to avoid the
singularity of 2z* at z = 0) and two lines just above and

below the branch cut, as shown.
The contribution from Cg is O(R*™?) x 2rR = O(R*™') — 0 as R — oo.

The contribution from C, is (substituting z = e on C,)

0 Eaeiae y »
/27r 1+ /2 eei? + e2e2if iee” df = O(e™) — 0

as € — 0.

The contribution from just above the branch cut is

R o
€ 1+\/§$+ZE2



as € — 0 and R — oo. The contribution from just below the branch cut is

€ 207
/ _re de — —e?*™]
R 14+V22x +22

as € — 0 and R — oo.

Hence

2% .
— = dz— (1=
j{ol—i-\/iz—i-z? ( )

as € — 0 and R — oo.

But the integrand is equal to

Za

(z — e3mi/)(z — ebmi/)

(by finding the roots of the quadratic), so the poles inside C' are at e

3mi/4

with residue

e3omi/4/(\/27) and at e”™/* with residue e*™/4/(—+/21i). Hence, taking the limits ¢ — 0

and R — o0,

(1 ) )] 5 (€3a7ri/4 €5a7ri/4)
— 20mINT — 9 + :
V2i o —V2i

ie.,

eomi(e—omi . eomi)l _ \/57'(60””'(6_0””;/4 . eomi/4)'

We conclude that ) A
I \/éﬁsm(owr/ )

sin(am)

Jordan’s Lemma

For many applications (in particular, ones involving Fourier

transforms) we need to show that

(2)e™*dz — 0 (5.36)
Cr

as R — oo, where A > 0 is some real constant and f is
an analytic function (except possibly for a finite number of
poles). Jordan’s Lemma states that this is true so long as
f(z) — 0 as |z| — oo. For A < 0, the same conclusion holds

for the semicircular contour C, in the lower half-plane.



Note that this result is obvious if f(2) = O(]z|72) as |z| — oo —i.e., if f(2) = O(R™?)
on Cg — by the following argument. First note that e* = ¢M#+W) = =MWz and 4 > ()

on Cg, so || = e < 1 on Ck. Hence

(2)e* dz
Cr

< mRmax|f(2)]

=TRxO(R?) —0 asR— oc.

Jordan’s Lemma simply extends the result from functions satisfying f(z) = O(|z|7%) to

any function satisfying f(z) — 0 as |z| — co. Examples:

62z'z e—iz
/ dz— 0 as R — oc; / 7 dz—0 as R— oo
Cr * o/

(5.37)

The proof of Jordan’s Lemma stems from the fact that for 0 < 6 < 7/2,
sin@ > 260/mw. Now

f(2)e™ dz
Cr

< max|f(z)|/ |ei>‘z| |Rei9|d6‘
Cr 0

= Rmax|f(z)|/ e AREsing qg
0
[using y = Rsind|

o '
— 2R max|f(2)| / ¢—ARsind 4y
0

o
< 2R max |f(2)| / c—2XFI/7 4
0

- §(1 — e M) max|f(z)|

— 0 as R — oo.

A similar proof holds on C; for A < 0.




Worked Example: Contour Integration - Inverse Fourier Transforms

Consider the real function
0 z <0

e ™ x>0

fz) =
where a > 0 is a real constant. The Fourier Transform of f(z) is

fy = [ e tas

— / e—ax—zkx dz
0

1 —ax—ikx]
Ca+ik [e }0
1

= — (5.38)

We shall verify the Inverse Fourier Transform by evalu-

ating
1 ® = ikx
o /_oo f(R)e™ dk.

In the complex k-plane, let Cy be the contour from —R to
R on the real axis, C'r be the semicircle of radius R in the
upper half plane and C} be the semicircle of radius R in the
lower half plane. Let C be Cj followed by Cg (this is known
as closing in the upper half plane), and let C" be Cj followed
by C}, (closing in the lower half plane).

Now f(k) has only one pole, at k = ia, which is simple, so

_ ] ik
}éf(k))elkm dk = 2mi kr:ez'sa Z(I:TQ) = 277'6—111,

whereas

f(k)e* dk = 0.
Cl

(Note that C” is traversed in a negative sense, so if there had been any poles within C’

we would have had to introduce a minus sign.)

Now, if © > 0, we can apply Jordan’s Lemma (with A\ = z) to Cr to show that



Je. f(k)e** dk — 0 as R — oo, since f(k) = O(1/k) as |k| — co. Hence for z > 0,

L[>~ 1 o
— ke dk = — i k)e** dk
5= | T s dim [ Fikge

_ Lo Iy ikx o ry ik

= %A%(Cf(k)e dk /CRf(k:)e dk;)

= e . (5.39)

For x < 0 we close in the lower half plane instead, and the same analysis applies to
C"

[~ 1 -~
— / f(B)e*dk = — lim (k)e™™ dk —
2m ) o el (o

Fk)eke dk)
= 0. (5.40)

Hence, combining the above results, we obtain

0 z <0

e ™ x>0

1 * < ikx o
o /_OO f(k)e™ dk =
as expected.

Note that by taking real and imaginary parts of this equality we can deduce the values
of particular real integrals. The imaginary part gives

1 > asinkxr — kcoskzx

21 | a? + k? 0

which is obvious anyway as the integrand is an odd function of k. But the real part gives

i macoskx+ksinkxdk_ 0 xr <0
27T CL2+I€2 N e—az JI>0

—00

and in particular

df = 2we™ .

/°° acosf + 0sinf
o a? + 02




Worked Example: Contour Integration - Singular Point on the Real Axis

o
sin
/ dx.
oo T

This integrand is well-behaved at the origin, so the integral is non-singular. But the

We wish to evaluate

obvious approach via contour integration using

—1z

1 [®e”*—e

e
— dZ

2t J_o z
runs into trouble because we cannot apply Jordan’s Lemma to the integrand. To get round
this we might try to split it into two separate integrals, to each of which Jordan’s Lemma

does apply, but then we find that our contour passes through a pole of the integrand.

Instead, we write

0o - e . R -
sin © sin sin
/ dr = lim ( / dx + / dx)
o T e—0 R T . x

R—o0
. —€ iz R ez
= Im lim </ —dz+/ —dz). (5.41)
FE AV

Let C be the contour from —R to —e, then round a semi-
circle C, of radius €, then from € to R, and returning via a

semicircle Cg of radius R. Then C' encloses no poles of €%/ z,

—€ iz R iz iz iz
€ € (& (&

/ —dz+/ S P —dz—/ e
—-R < € < Ce < Cr <

Jordan’s Lemma tells us that the integral round Cr vanishes as R — oco. On C,, z = e¢’
and e = 1+ O(e); so

SO

0

iz 0 1 )
 dr= / iﬁ(e) iee’ d§ = —im + Ofe).
c. ? - ee’

Hence, taking the limit as € — 0 and R — oo,

/ T 4w = Im(ir) = 7.
e

o

A similar method works for

® gin’x
5— da;
oo T



TRe(1 — €**), and then

00 .2 —€ iz R 2iz
sin” x 1 . 1—e 1—ce¢
/_OO p dex = QRe ll_I)I(l) (/_R o dz—l—/6 = dz)

R—o00

1 1— 2iz 1— 2z
= —Re lim —/ c dz—/ C ). (5.42)
2 e—0 22 on 22

R—o00

write sin®z =

The integral round Cxr can be shown to vanish as R — oo by standard techniques
(Jordan’s Lemma is not, however, applicable), and the integral round C, can be evaluated

as before (expanding €*# to slightly higher order in € than before), giving

1 — 2iz
/ € de=-27+ O(e).

22

® gin?x
5 de =7
T

— 00

Hence

as welll

An alternative approach for both examples is to note that,
for instance, (sin z)/z has a removable singularity at the ori-
gin. Having removed the singularity, we have an analytic
integrand, and therefore the original contour along the real
axis can be moved to one which does not pass through the
origin. It is now possible to write sin z = (e —e™%*) /2i, split
the integrand in two, and apply Jordan’s Lemma to each part

separately.




Worked Example: Contour Integration - Using the Residue at Infinity

We wish to evaluate
1
I :/ V1 —2%dx.
-1

Consider (22 — 1)”2 with a branch cut from —1 to 1
(as explained in a worked example in Chapter 4). For

z = x on the real axis, just above the cut we have
(22 —1)" =iV1 — a2

(A1 = m and # = 0 in the notation of the branch cut

example), whereas just below

(22— 1) = —iv/1 — 2?2
((91 =T, ‘92 = 27'(')

Let C be the closed contour running along the z-axis from +1 to —1 above the cut
and back again to +1 below it; at each end C runs round a circle of radius € to avoid the

branch point. For small € the integrals round the small circles are negligible (check); so

1

ﬁ(zQ—l)Vde = /1_1¢de+[ (—iv1—22) dx

1

= 2. (5.43)

We can deform the contour of integration from C' to Cg, the circle of radius R, as there

are no singularities between C' and C'g. Hence

1 1
I= —z’j{ (2> = 1)"dz. (1)
2 Je,,

Let ( = 1/z, and let Cy/g be the circle of radius 1/R traversed clockwise, so that Cy /g

is the image of Oz under the transformation z — ¢. Then dz = —(2d(, so making the
substitution,
I _ 1 _
I=3id (@0
Ci/r
Now .
A=) = = YR = =R O ),
so the integrand has a singularity at ( = 0 with residue % Therefore (introducing a

minus sign because the contour C g is traversed in a negative sense),

1 1
[=—ix2mix~=—
2 2



Note that we could also have argued as follows: (22 — 1)72 has residue —% at infinity
(using the definition of the residue at infinity and the above working); since Cr “encircles
infinity”, from (1) we immediately obtain I = i x 27i x (—3) = 7/2 as before. Compar-
ison of the two techniques reveals the reason for the unintuitive definition of the residue

at infinity.

5.7 Laplace Transforms

The Fourier transform is a powerful technique for solving differential equations and for
investigating many physical problems, but not all functions have a Fourier transform:
the integral defining the transform does not converge unless the function tends to zero at

infinity.

The Laplace transform of a function f(t) is defined by

) = / T ferar (5.44)

where p may be complex. The notation .Z[f] or Z[f(t)] is also used for f(p); and the
symbol s is often used instead of p. Many functions — for instance, ¢ and e* — which do not
have Fourier transforms do have Laplace transforms; however, there are still exceptions
(e.g., etQ). Laplace transforms are particularly useful in initial value problems, where we

are given the state of a system at ¢ = 0 and desire to find its state for ¢t > 0.

Examples:



> 1 1 [ 1
(i) Z[t] = /0 te Pt dt = {——te—l’ﬂ + = /0 e dl = —.

p o D p
20 1
i) Z[eM = / APl = ——
(ili) Zfe™] i 1
1 . , 1 1 1 1
iv) Lsint] = .2 | — (e — e )| = — - - .
(iv) Zlsint [2¢<6 ‘ )} 2i (p—i p+i) Pl

Note that, strictly speaking, in example (iii), the integral only converges for Rep > Re A (otherwise the
integrand, e P diverges as t — o0). However, once we have calculated the integral for Rep > Re \ we
can consider f(p) to exist everywhere in the complex p-plane (except for singularities such as at p = A
in this example). This process of extending a complex function which is initially only defined in some
part of the complex plane to the whole of the plane is known as analytic continuation.

It is useful to have a “library” of Laplace transforms to hand; some common ones are
listed below.

f(t) f(p) f(t) f()
1 !
1 - n -
p prt
1 n!
At n At
‘ p—A ‘ (p— A+t
sin wt d coswt i
p* +w? p* +w?

. A D
Slnh )\t m COSh )\t p2 — )\2
M o w M p—A

t -_— t
e sinw = VT o? e cosw =\ to?
d(t) 1 o(t —to) e Plo

Elementary Properties of the Laplace Transform

(i) Linearity: Zlof(t) + Bg(t)] = of (p) + 59 (p)-

(ii) Change of scale: using the substitution t’ = A,
o 1 [~ / 1~
ZLIf)] = / f(At)ePtdt = < / fthe WA qp = —f (3). (5.45)
0 Ao A

(iii) Shifting theorem: Z[e f(t)] = f(p — )). (Easy to check.)



(iv)

Derivative of a Laplace transform:

ZLf) =——f(p) (5.46)

Proof: - 1 .
f(p) = /0 fera = ) = - /O LB dt.

By repeating this trick n times, we see that the Laplace transform of " f(t) is

(=1)" ™ (p).

Examples:
d 1 2p d® 1 n!
Lltsint] = —— = ; Lt = (-1)"— - = . 5.47
sind dpp> +1  (p* +1)% =1 dpm p  prtt (5:47)
Laplace transform of a derivative:
df —
zhﬂ:m@—ﬂw (5.48)

Proof:
o'} d oo _
0 d—{e—f’t dt = [f(t)e P +p/0 ft)e ™™ dt = pf(p) — f(0).
We can deduce that
o af] . :
P [d—tf] e [d—ﬂ — £(0) = P F(p) — pf(0) — F(0)
and so on.
Asymptotic limits: pf(p) — f(0) as p — oo, and pf(p) — limy . f(t) as p — 0.

Proofs: from (v) above,

pf(p) =f(0)+/0 %e‘ptdt,

so as p — oo (and therefore e P — 0 for all ¢ > 0), pf(p) — f(0). Similarly, as
p— 0, e P — 1 so that

pF) = 5O+ [ Ghat= 0+ (FOF = fim £ (5.09)



Solving Differential Equations using Laplace Transforms

(P*y(p) —p+4) +5(py(p) — 1) + 65(p) = 0, (5.51)
which we may solve for 3(p):

p+1  p+l 2 1
pPP+5p+6 (p+2)(p+3) p+3 p+2

y(p) = (5.52)

using partial fractions. We now need to invert g(p) to find y(¢); in general we must
use the inversion formula described below, but in many cases (such as this one) it is
possible to “spot” the answer using the “library” of transforms given above (and taking

advantage of the fact that inverse Laplace transforms are unique). Here, we know that
ZLeM =1/(p— )\); hence
y(t) =273 — e, (5.53)

The Convolution Theorem for Laplace Transforms
The convolution of two functions f(¢) and g(t) is

(F )t / £t —1)g() dt (5.54)
We are dealing here with functions which vanish for ¢ < 0, so this reduces to

(f )t /ft—t (5.55)

since g(t') =0 fort’ < 0and f(t—t') =0 for ¢’ > t. The convolution theorem for Laplace
transforms then states that

ZIf =gl = f(p)g(p). (5.56)




Proof:

2lsea= [ [ re-ourarfera

_ /OOO {/Otf(t — yg(t)e ™ dt’} dr.

From the diagram, we see that we can change the order of integration in the (t,t')-

plane, giving

sl = [ [T O ar

= /0 h { /0 h f(t"e P e dt”} g(t") dt’

as required.

The Inverse Laplace Transform

/0 (e Yol dt

g(t')e‘pt/ dt’

Inverting Laplace transforms is more difficult than inverting Fourier transforms because

it is always necessary to perform a contour integration. Given f(p), we can calculate f(t)

using the Bromwich inversion formula

ft) =

1

271

/

Y4100

—100

f(p)e? dp.

(5.57)



Note that it is possible to derive the Bromwich inversion formula from the inverse Fourier transform by
substituting p = ik and noting that f(p) = f(—ip) where f(k) is the Fourier transform of f(¢). The only
difference is in the detail of the inversion contour.

Suppose that f(p) has only poles, and no other singu-
larities; all these poles lie to the left of I When ¢ < 0,
consider the integral round the contour C' shown consisting

of Cy followed by C}. C encloses no poles, so

}if(p)ept dp =0. (5.58)

Now on C%, Rep > 7, so Re(pt) < ~t (since t < 0) and hence
|ePt| < e, Therefore if f(p) = O(|p|=2) as |p| — oo — i.e., if
f(p) = O(R™%) on C4 — then

f(p)e dp' < mRe" x O(R™%) = 0 (5.59)
Cr

as R — oo. In fact the same is true even if we only have f(p) — 0 as |p| — oo, by a

slight modification of Jordan’s Lemma. So in either case,

R—o00

= i (§ Feran= [ foeran)

=0-0=0,

/ﬂwmwﬂm F(p)ert dp
T Co

and therefore for ¢t < 0 the inversion formula gives

1) = 5 [ Fo)eap =0 (5.60)

(as it must do, since f(t) =0 for t < 0 by our initial assumption).



When t > 0, we close the contour to the left instead, and
once again we can show that

i f(p)e?dp — 0 (5.61)

as R — oo, so long as f(p) — 0 as |p| — oo. Hence in the

limit R — oo we obtain

n

/Ff(p)ept dp = 27Tiz res (f(p)e?) (5.62)

P=pr
k=1

by the Residue Theorem, where py, ..., p, are the poles of f(p). We deduce that

n

f(t) = Z res (f(p)ept) (5.63)

P=Pk
k=1

for t > 0, so long as f(p) — 0 as |p| — oco.

Examples:

f(t):ﬁ( ! ):et. (5.64)

p—1

This agrees with our earlier result for the Laplace transform of e* when \ = 1.

(i) f(p) = p~™. Here we need v > 0, because there is a pole of order n at p = 0. For
t <0, f(t) =0 as usual. For ¢t > 0,

ept 1 dn—l
_ _ — 1i pt
10 =155 (5) = B




(iii) What if f(p) /4 0 as |p| — oo? Consider the example

fp) = —; (5.65)

here, as p — —oo on the real axis, f(p) — oo. We need to calculate

1 e
ft) = i) € dp, (5.66)

but Jordan’s Lemma does not immediately apply. Note, however, that e PePt =
ePt=1) = P where ¢/ =t — 1; so

1 et

f0) =5 [ e (5.67)

Now we can use Jordan’s Lemma: when ¢’ < 0, close to the right, and when ¢ > 0,

close to the left, picking up the residue from the pole at p = 0. Hence

0 t'<0,
f(t) =

1 ¢ >0

0 t<1,

1 t>1.

Worked Example: Solving Differential Equations using the

Laplace Transform and its Inverse

We shall solve

I+ x=2sint

for (), with initial conditions z(0) = 0, #(0) = 2. Taking the Laplace transform with

respect to time,

(72(0) = pr(0) = #(0)) +2(0) = 5~



Using the initial conditions, we obtain

2 _ _
P x—p2 1

from which we deduce that

2p° + 4
(p*+1)*
To invert this we write down the Bromwich inversion formula
B 1 /'y-i-ioo 2p2 + 4
B 2m Y—100 (p2 + 1)2

T =

x(t) et dp.

The integrand has poles of order two at p = +7, so we must have v > 0 in order that the

integration contour lies to the right of the singularities.

What are the residues at the poles? At p =i, the residue is

d (2p2 +4 ept) . ((p +3) (4p + (202 + 4)t) — 2(2p> + 4)(p +4) ept)

o dp \(p+ )2 (p+i)°

p—i

1 N it
= —§(t+3@)e : (5.68)
Similarly, at p = —i the residue is —3(t — 3i)e "

As |p| — oo, Z(p) = O(|p|™?) — 0; hence for ¢ > 0 we close the integration contour to

the left, picking up the residues from the poles to obtain

w(t) = —5(t+3i)e" — 3(t — 3i)e ™
= —1 (2t cost + 3i(2isint))
= 3sint — tcost. (5.69)

What function f(¢) has Laplace transform f(p) = p~"72? We need to find

1 y+i0co

f(t) —/ p~ et dp. (5.70)

210 S oo

For t < 0 we can close the contour to the right as usual and obtain f(¢) = 0. For ¢ > 0,

however, the branch cut gets in the way.



Use a contour as shown, with a small circle of radius € round the origin and two large
quarter-circles of radius R. Substituting p = e’ on the small circle gives a contribution
of .

/ e e /265 g 49 = O(e”?) -0 ase—0. (5.71)

Similarly, the integrals round the two large quarter-circles vanish as R — oo, using the
method used to prove Jordan’s Lemma. Hence the required integral is equal to the sum

of the integrals on either side of the branch cut: i.e., for t > 0,

1 0 . o0 .
ft) = — {—/ r e 2t (—dr) —/ 7’_1/26”/26_”(—dr)}
211 o 0

[substituting p = re™ and p = re™"™ respectively]

1 (o]
== {2@/ r~ et dr}
27 0
2 [o.¢]
= —/ et ds
T Jo

[substituting r = s?]
7r
t
1

N | =

9

So L[t~ = \/mp~72. This is a generalisation of the result that Z[t"] = n!/p"' to
ZLt*] =T(a +1)/p*™ where the Gamma function is defined by

MNa) = /000 2 e " dr (5.72)

and can easily be shown to be equal to (a — 1)! when « is a positive integer.



