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Abstract

Modified Fourier series have recently been introduced as an adjustment of Fourier series for the
approximation of nonperiodic functions defined on d-variate cubes. Such approximations offer a number
of advantages, including uniform convergence.

In this paper we extend Eckhoff’s method to the convergence acceleration of multivariate modified
Fourier expansions. By suitable augmentation of the approximation basis we are able to increase the
convergence rate to an arbitrary algebraic order. Moreover, we demonstrate how numerical stability can
be greatly improved by the use of appropriate auxiliary functions.

In the univariate setting it is known that Eckhoff’s method exhibits an auto-correction phenomenon.
We extend this result to the multivariate case. Finally, we demonstrate how a dramatic reduction in the
number of approximation coefficients can be achieved by using a hyperbolic cross index set.

Introduction

The modified Fourier basis was introduced in [16, 17] as an adjustment of the Fourier basis for the ap-
proximation of smooth, nonperiodic functions defined on Ω̄, where Ω is the d-variate cube (−1, 1)d. In the
univariate case, the Fourier sine function is replaced by sin(n− 1

2 )πx, yielding the basis

{cos nπx, n ∈ N} ∪{ sin(n− 1
2 )πx, n ∈ N+}.

The multivariate basis is obtained by Cartesian products. The advantage of this basis is that the modified
Fourier expansion of a sufficiently smooth function f converges uniformly on Ω̄. In particular, there is no
Gibbs’ phenomenon near the boundary, [1, 16, 28].

Unfortunately the convergence rate of the modified Fourier approximation remains relatively slow. If N
is a truncation parameter, the uniform error is O

(
N−1

)
on Ω̄ and O

(
N−2

)
inside compact subsets of Ω,

[1, 16, 28]. Much like the Fourier case, this is due to ‘jumps’ in certain derivatives of the function at the
endpoints x = ±1 (in the univariate case), [28]. In the multivariate case similar analogues hold, though the
jump conditions (otherwise referred to as derivative conditions) are more complicated to express, [1, 15].

In the univariate Fourier setting, provided the values of these jumps are known, there is a effective
tool to accelerate convergence, namely the polynomial subtraction device, [19, 21]. This idea was first
considered by Krylov, [20], and has been widely studied since then (see [5, 18, 23] and references therein).
Polynomial subtraction is readily adapted to modified Fourier expansions, [16] and to the multivariate case,
[15, 24, 25, 27].

Unfortunately, such jump values are unknown in general. In typical applications only the modified Fourier
coefficients of a given function may be known, and, even if arbitrary pointwise values of the function can be
calculated, approximation via finite differences is not recommended for this purpose, [23].

As noted in [10], the previous lack of robust methods for the approximation of jump values is the central
reason why the polynomial subtraction technique has not been extensively utilized (see also [23, p.101]).
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In this paper, to circumvent the aforementioned problem, we use Eckhoff’s method for this task, [8, 9, 10].
This approach is based on the observation that the modified Fourier coefficients themselves contain sufficient
information to reconstruct the jump values. This idea was previously considered in [22] (see [8] for further
references).

Eckhoff’s method was originally presented for the univariate, Fourier case. Analysis for the rate of
convergence was carried out in [4]. The the extension to bivariate functions was developed, without analysis,
in [24, 25, 27]. The aim of this paper is to extend Eckhoff’s method to the modified Fourier approximation
of a function defined on the d-variate cube, and to provide analysis therein. The central result we prove
demonstrates that approximating the jumps in this manner (as opposed to using their exact values) does
not deteriorate the convergence rate.

In fact, using approximate jump values offers at least one significant advantage. It was observed in [26] and
proved in the univariate, Fourier case in [29] that Eckhoff’s method exhibits an auto-correction phenomenon
inside the domain. In other words, the convergence rate of the approximation based on approximate jump
values is much faster in compact subsets of Ω than the corresponding approximation based on the exact
values. We provide an extension of this result to the multivariate, modified Fourier case.

Polynomial subtraction and Eckhoff’s method both rely on the construction of a smooth function to
interpolate the jump values. In standard implementations [4, 10, 19, 21] such a function is constructed from
a certain set of polynomials (the possibility of using other functions was suggested in [10]). Though this is the
most convenient choice, it leads to poor numerical stability. In Section 1 we introduce a set of trigonometric
functions that dramatically improve numerical stability.

Standard multivariate approximations using Fourier series involve O
(
Nd

)
terms. However, it turns out

that this figure can be significantly reduced to O
(
N(log N)d−1

)
by using a so-called hyperbolic cross index

set, [3, 33]. The use of such an index set does not deteriorate the convergence rate, aside from possibly a
logarithmic factor, [33]. In the modified Fourier case this has been studied in [1, 15]. In the final part of
this paper we demonstrate how to incorporate such an index set into Eckhoff’s technique. With the aid of
numerical examples, we highlight the advantage of this combined approach: using only relatively few terms
we are able to produce highly accurate approximations of multivariate functions.

There are numerous devices for convergence acceleration of (univariate) Fourier expansions, including
filters [32], Gegenbauer reconstruction [12, 13] and Fourier continuation methods [7] to name but a few.
Without doubt, certain methods are more suitable for different applications. However, there are a number
of advantages to Eckhoff’s approach which warrant detailing. First, as we demonstrate in this paper, the
combination of the multivariate version of this technique and hyperbolic cross index sets facilitates the
construction of highly accurate approximations comprising only a small number of terms. Second, Eckhoff’s
method can be incorporated in spectral approximations of boundary value problems (see [10] and references
therein for hyperbolic problems and [1, 2] for applications of modified Fourier expansions to second order
boundary value problems).

Furthermore, Eckhoff’s technique is not restricted to Cartesian product domains. In theory it can be
developed for any domain on which suitable orthogonal expansions are known. For example, the modified
Fourier basis is known explicitly on the equilateral and right isosceles triangles, [30]. The construction
of accurate representation of functions on such domains is typically difficult, and Eckhoff’s method may
provide an attractive alternative to methods based on orthogonal polynomials. This is an area for future
investigation.

The remainder of this paper is organized as follows. In Section 1 we develop and analyse the univariate
version of Eckhoff’s method for modified Fourier expansions. We then demonstrate how superior numerical
results can be obtained by using a particular subtraction basis. Section 2 is devoted to the development
and analysis of Eckhoff’s method for functions defined on d-variate cubes. In Section 3 we extend the result
of [29] concerning the existence of an auto-correction phenomenon to the multivariate form of Eckhoff’s
method. Finally, in Section 4 we demonstrate, without analysis, how a significant reduction in the number
of approximation coefficients can be achieved. Numerical examples are provided.

The main results of this paper, namely the proof of convergence in the multivariate case, the existence
of the multivariate auto-correction phenomenon and the use of a particular subtraction basis to improve
numerical stability, can be readily adapted to the Fourier setting (with a little care, such results can also
be applied to general Fourier-like expansions). However, due to the faster convergence rate, we consider
modified Fourier approximations throughout.
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1 The univariate version of Eckhoff ’s method

1.1 Definitions and basic properties

Given a function f ∈ L2(−1, 1) and truncation parameter N ≥ 2 we define the truncated modified Fourier
expansion of f by

FN [f ](x) =
1
2
f̂ [0]
0 +

N−1∑

n=1

{
f̂ [0]

n cos nπx + f̂ [1]
n sin(n− 1

2 )πx
}

=
1∑

i=0

N−1∑

n=0

f̂ [i]
n φ[i]

n (x), x ∈ [−1, 1].

Here φ[0]
0 (x) = 1√

2
, φ[1]

0 (x) = 0 and φ[0]
n (x) = cos nπx, φ[1]

n (x) = sin(n− 1
2 )πx otherwise, and

f̂ [i]
n =

∫ 1

−1
f(x)φ[i]

n (x) dx, i ∈ {0, 1}, n ∈ N, (1.1)

is the nth modified Fourier cosine (i = 0) or sine (i = 1) coefficient of f . As demonstrated in [16, 28] this
series converges uniformly to f on [−1, 1] under some mild regularity assumptions (see also Section 1.2).
Indeed, the coefficients f̂ [i]

n are O
(
n−2

)
for large n (in comparison to O

(
n−1

)
in the Fourier case).

Provided f ∈ H2k(−1, 1), k ∈ N, simple integration by parts of the right hand side of (1.1) yields

f̂ [i]
n =

k−1∑

r=0

(−1)n+i

(µ[i]
n )r+1

A[i]
r [f ] +

(−1)k

(µ[i]
n )k

f̂ (2k)
[i]

n , i ∈ {0, 1}, n ∈ N+, (1.2)

where µ[0]
n = n2π2, µ[1]

n = (n− 1
2 )2π2 and

(−1)rA[i]
r [f ] = f (2r+1)(1) + (−1)i+1f (2r+1)(−1), i ∈ {0, 1}, r ∈ N. (1.3)

The values A[i]
r [f ] are the requisite jump values for modified Fourier expansions. We say that a function f

satisfies the first k derivative conditions if the first k such values vanish:

f (2r+1)(1) + (−1)i+1f (2r+1)(−1) = 0, i ∈ {0, 1}, r = 0, ..., k − 1.

Equivalently, the first k odd derivatives of f vanish at the endpoints x = ±1. In this case the coefficients
f̂ [i]

n = O
(
n−2k−2

)
and faster convergence of the approximation FN [f ] is observed (see Section 1.2).

1.2 Polynomial subtraction

If the first k such jump values are non-zero we seek to interpolate them with a function gk. Since the function
f − gk satisfies the first k derivative conditions, the new approximation FN [f − gk]+ gk converges at a faster
rate to f . This is the principle of the polynomial subtraction process, [19, 21].

To find a suitable function gk we first introduce (smooth) subtraction functions p[i]
0 , ..., p[i]

k−1, where p[i]
r

is even (respectively odd) if i = 0 (i = 1), that satisfy the conditions

A[i]
r

[
p[i]

s

]
= (−1)r

{
(p[i]

s )(2r+1)(1) + (−1)i+1(p[i]
s )(2r+1)(−1)

}
= δr,s, r, s = 0, ..., k − 1, i ∈ {0, 1}. (1.4)

We say that p[i]
0 , ..., p[i]

k−1 are Cardinal functions for the first k derivative conditions. With this in hand, we
define gk as follows:

gk(x) =
1∑

i=0

k−1∑

r=0

A[i]
r [f ]p[i]

r (x), x ∈ [−1, 1]. (1.5)

Construction of appropriate Cardinal functions is commonly achieved by taking linear combinations of stan-
dard (smooth) functions q[i]

0 , ..., q[i]
k−1. Such functions must be chosen so that the interpolation problem

find a[i]
s :

k−1∑

s=0

a[i]
s

{
(q[i]

s )2r+1(1) + (−1)i+1(q[i]
s )2r+1(1)

}
= b[i]

r , i ∈ {0, 1}, r = 0, ..., k − 1, (1.6)
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has a unique solution for all choices b[i]
r ∈ R. We call {q[i]

r : i ∈ {0, 1}, r = 0, ..., k − 1} a subtraction basis.
Usually the Cardinal functions p[i]

r are specified to be polynomials of degree 2r + 1, [4, 10, 21], in which
case q[i]

r = x2(r+1)−i and we refer to p[i]
r as Cardinal polynomials. This explains the name ‘polynomial

subtraction’. However, as we shall demonstrate, a significant advantage is gained by allowing the more
general form (an idea which was suggested in [10]).

For later use we mention the following subtraction basis:

q[0]
r (x) = cos(r + 1

2 )πx, q[1]
r (x) = sin(r + 1)πx, r = 0, ..., k − 1. (1.7)

It is readily demonstrated that the interpolation problem (1.6) has a unique solution in this case. The
functions q[i]

r are dual to the modified Fourier basis functions in the sense that the derivative of φ[i]
n is

proportional to q[1−i]
n−1 . This property was exploited in [1, 2] to analyse modified Fourier expansions. In the

sequel, we demonstrate a practical use of this dual basis in Eckhoff’s method. As we shall observe, it offers
a significant numerical advantage over subtraction bases consisting of polynomials.

If gk is given by (1.5) we define

FN,k[f ](x) = FN [f − gk](x) + gk(x), x ∈ [−1, 1], (1.8)

as the kth polynomial subtraction approximation of f (for convenience we interpret FN,0[f ] as FN [f ]).
Suppose that ‖ ·‖∞ is the uniform norm on some domain Ω and that ‖ ·‖q is the Hq(Ω)-norm. Concerning

the error of polynomial subtraction we quote, without proof, the following two lemmas, found in [28] and [1]
respectively:

Lemma 1. Suppose that k ∈ N, f ∈ H2k+2(−1, 1) and that FN,k[f ] is given by (1.8) using exact jump
values. Then ‖f (q) − (FN,k[f ])(q)‖∞ is O

(
Nq−2k−1

)
for q = 0, ..., 2k. If, additionally, f ∈ H2k+3(−1, 1)

then convergence rate of (FN,k[f ])(q) to f (q) is O
(
Nq−2k−2

)
uniformly in compact subsets of (−1, 1).

Note that the final condition in this lemma, namely that f ∈ H2k+3(−1, 1), can be relaxed to the condition
that f ∈ C2k+2[−1, 1] and f (2k+2) has bounded variation, [28]. Concerning the error in the standard Sobolev
norms ‖ ·‖ q we have:

Lemma 2. Suppose that f ∈ H2k+2(−1, 1) and that FN,k[f ] is as in Lemma 1. Then ‖f − FN,k[f ]‖q is
O(Nq−2k− 3

2 ) for q = 0, ..., 2k + 1.

When k = 0 Lemma 1 also establishes the pointwise and uniform convergence rates of FN [f ] to f
described in the Introduction.

1.3 Eckhoff ’s method for approximation of jump values

Observe that, due to the definition of the Cardinal functions p[i]
r , we may re-write (1.2) as

f̂ [i]
n =

k−1∑

r=0

p̂r
[i]
n A[i]

r [f ] +O
(
n−2k−2

)
, (1.9)

where, for ease of notation, we write p̂r
[i]
n for the modified Fourier coefficient of p[i]

r corresponding to φ[i]
n .

Note that, by construction, the coefficient corresponding to φ[1−i]
n is zero. Due to uniform convergence of

FN [f ] to f , we have

f(x)− FN [f ](x) =
1∑

i=0

k−1∑

r=0

A[i]
r [f ]

(
p[i]

r (x)− FN [p[i]
r ](x)

)
+O

(
N−2k−1

)
, x ∈ [−1, 1].

Now suppose that the values A[i]
r [f ] are approximated by values Ā[i]

r [f ] and that gk is constructed as in (1.5)
using these approximate values. Then, using (1.8) and the above expression, we obtain

f(x)− FN,k[f ](x) =
1∑

i=0

k−1∑

r=0

(
A[i]

r [f ]− Ā[i]
r [f ]

) (
p[i]

r (x)− FN [p[i]
r ](x)

)
+O

(
N−2k−1

)
.
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Now consider, for example, the uniform error. Since ‖p[i]
r − FN [p[i]

r ]‖∞ = O
(
N−2r−1

)
, to obtain an

O
(
N−2k−1

)
uniform error using approximate jump values we require that

Ā[i]
r [f ] = A[i]

r [f ] +O
(
N2(r−k)

)
, r = 0, ..., k − 1, i ∈ {0, 1}. (1.10)

To do so we utilize Eckhoff’s method, [8, 9, 10], which we now describe.
Eckhoff’s method is based on (1.9). Suppose that N ≤ m(0) < ... < m(k − 1) ≤ aN , m(r) ∈ N are given

values and a ≥ 1 is constant. Then we define Ā[i]
r [f ] as the solution of the 2k × 2k linear system

k−1∑

s=0

p̂s
[i]
m(r)Ā

[i]
s [f ] = f̂ [i]

m(r), r = 0, ..., k − 1, i ∈ {0, 1}. (1.11)

These linear systems decouple into two k× k linear systems corresponding to i = 0 and i = 1, which can be
solved in parallel. We write V [i] for the k × k matrix with (r, s)th entry p̂s

[i]
m(r). Note that the choice of the

values m(r) is essentially arbitrary. However, particular choices lead to better numerical behaviour and the
auto-correction phenomenon, [29], as we shall see in the sequel.

Nonsingularity of these linear systems can be immediately guaranteed:

Theorem 1. For sufficiently large N the linear system (1.11) is nonsingular. In particular, if p[i]
0 , ..., p[i]

k−1
are Cardinal polynomials or arise from the subtraction basis (1.7), then (1.11) is non-singular for all N .

Proof. Since m(r) ≥ N , we have p̂s
[i]
m(r) = (−1)m(r)+i(µ[i]

m(r))
−s−1 + O

(
N−2k−2

)
. Hence V [i] = D[i]Ṽ [i] +

O
(
N2k−2

)
, where D[i] is a non-singular diagonal matrix and Ṽ [i] is a Vandermonde matrix with (r, s)th

entry Ṽ [i]
r,s = (µ[i]

m(r))
−s. Since the m(r) are distinct, this matrix is non-singular. Hence we obtain the first

result. If p[i]
r are Cardinal polynomials, then p̂s

[i]
m(r) is precisely (−1)m(r)+i(µ[i]

m(r))
−s−1. Thus non-singularity

holds for all N .
Suppose now that the functions q[i]

r are given by (1.7). Then, due to (1.6), it suffices to prove non-
singularity of the matrices with (r, s)th entries

q̂s
[0]
m(r) =

2(−1)m(r)+s+1(s + 1
2 ){

m(r)2 − (s + 1
2 )2

}
π

, q̂s
[1]
m(r) =

2(−1)m(r)+s+1s{
(m(r)− 1

2 )2 − s2
}

π
.

After appropriate premultiplication by non-singular diagonal matrices, we obtain matrices with (r, s)th entries

{
m(r)2 − (s + 1

2 )2
}−1

,
{
(m(r)− 1

2 )2 − s2
}−1

,

respectively. These are Cauchy matrices, hence nonsingularity follows immediately.

The standard construction of Eckhoff’s approximation (see [4, 10]), uses the Cardinal functions p[i]
r and

values Ā[i]
r [f ] given by (1.11). Indeed, this is the most simple form to consider for analysis. However, for

computational purposes it is often more convenient to use the subtraction basis q[i]
r , without resorting to

Cardinal functions. In this case

gk(x) =
1∑

i=0

k−1∑

r=0

Ã[i]
r [f ]q[i]

r (x), x ∈ [−1, 1],

and the values Ã[i]
r [f ] are specified by the linear system

k−1∑

s=0

q̂s
[i]
m(r)Ã

[i]
s [f ] = f̂ [i]

m(r), r = 0, ..., k − 1, i ∈ {0, 1}. (1.12)

The resulting approximation is identical to the Cardinal function formulation.
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1.3.1 Convergence rate of Eckhoff ’s approximation

Analysis of Eckhoff’s method in the univariate, Fourier case was carried out in [4]. Using virtually identical
techniques, the following result can be deduced for the modified Fourier setting:

Theorem 2. Suppose that m(r) = c(r)N +O (1), where c(r) ≥ 1 and that at most l ≤ k of the c(r) are equal.
Suppose further that 2K ≥ l + 1 and that f ∈ H2(k+K)(−1, 1). Then the coefficients Ā[i]

r [f ] of Eckhoff ’s
approximation satisfy (1.10).

This result was originally proved in [4] for the Cardinal basis comprised of polynomials. However, it is
easily extended to the general case. Using this result we deduce the following:

Theorem 3. Suppose that l,K and f are as in Theorem 2, and that FN,k[f ] is the approximation of f with
jump values approximated using Eckhoff ’s method. Then ‖f −FN,k[f ]‖q is O(Nq−2k− 3

2 ) for q = 0, ..., 2k+1.

Proof. Suppose that we write Fe
N,k[f ] and FN,k[f ] for the approximations based on the exact jump values

A[i]
r [f ] and their approximations Ā[i]

r [f ] respectively. In view of Lemma 2 it suffices to consider the difference
Fe

N,k[f ]− FN,k[f ]. We have

‖Fe
N,k[f ]− FN,k[f ]‖q ≤

1∑

i=0

k−1∑

r=0

∣∣A[i]
r [f ]− Ā[i]

r [f ]
∣∣∥∥p[i]

r − FN [p[i]
r ]

∥∥
q
. (1.13)

Now suppose that a smooth function h satisfies the first r derivative conditions. It can be shown that
‖h − FN [h]

∥∥
q

= O(Nq−2r− 3
2 ) for all q ∈ N. Substituting this result with h = p[i]

r into (1.13) and using
Theorem 2 immediately yields the result.

Theorem 4. Suppose that f and FN,k[f ] are as in Theorem 3. Then ‖f (q)−(FN,k[f ])(q)‖∞ is O
(
Nq−2k−1

)

for q = 0, ..., 2k.

Proof. This follows immediately from Theorem 3 and the Sobolev inequality

‖h‖∞ ≤ c
√
‖h‖‖h‖1, ∀h ∈ H1(−1, 1),

where c is a constant independent of h.

These results, in comparison with those of Section 1.2, demonstrate that Eckhoff’s method for approxi-
mating jump values does not deteriorate the convergence rate of the approximation. However, as we describe
in the Section 3, for certain choices of the values m(r), Eckhoff’s approximation offers at least one significant
advantage.

The results of Theorems 2, 3 and 4 also demonstrate that, for certain choices of m(r), Eckhoff’s method
requires additional smoothness to obtain the same convergence rate as the approximation based on the exact
jump values. However, whenever the c(r) are distinct, the smoothness requirement is identical.

In [4] the authors also compare the size of the error constants in ‖f−Fe
N,k[f ]‖0 and ‖f−FN,k[f ]‖0. They

demonstrate that approximating the jump values in this manner not only leads to the same convergence rate,
but also that the error constant is not increased unduly. For this reason we address only the asymptotic
order of convergence throughout the remainder of this paper.

1.3.2 Choice of the values m(r)

The values m(r) ≥ N can be chosen arbitrarily, provided they are distinct and satisfy m(r) = c(r)N +O (1).
Numerous choices are possible, including

m(r) = N + r, r = 0, ..., k − 1. (1.14)

In this case c(r) = 1 for all r, so that the function f being approximated must have H3k+1(−1, 1) or
H3k+2(−1, 1)-regularity (depending on whether k is odd or even) to ensure convergence. Other choices that
require only H2k+2(−1, 1)-regularity are also possible, including

m(r) = (r + 1)N, r = 0, ..., k − 1, (1.15)
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Figure 1: Log error log10 |f(1)−FN,k[f ](1)| against N = 1, ..., 100 for Eckhoff’s approximation using three different
bases: Cardinal polynomial basis (thinnest line), Chebyshev polynomial basis and the dual basis (1.7) (thickest line).

Here f(x) = cosh 6x (top diagrams), f(x) = 5ecos 5π(1−x2) (bottom diagrams) and m(r) = N + r, r = 0, ..., k − 1.
Numerical results obtained in standard precision, using the LinearSolve routine in Mathematica.

and, given some arbitrary value ω = 2, 3, ...,

m(r) = ωrN, r = 0, ..., k − 1. (1.16)

One immediate disadvantage of these choices is they do not lead to an auto-correction phenomenon (see
Section 3). Further, the values f̂ [i]

n , n = 0, ..., N − 1, n = m(r), r = 0, ..., k − 1, required to form the
approximation are not contiguous for (1.15) and (1.16), in contrast to (1.14)

1.3.3 Practical solution

The matrix V [i] is ill-conditioned. In fact, since V [i] is of the form D[i]Ṽ [i], where Ṽ [i] is a Vandermonde
matrix, the condition number is O

(
N2k+l−3

)
for any choice of the values m(r), where l is the number of equal

values c(r). This can be proved using well-known bounds for the norm of the inverse of a Vandermonde
matrix (see [11]). Nonetheless, reasonably accurate numerical results can be obtained using the Björk–
Pereyra algorithm, [6]. In this manner the values Ā[i]

r [f ] can be found in O
(
k2

)
operations.

However, far better numerical results can be obtained by replacing the Cardinal basis p[i]
r with an appro-

priately chosen subtraction basis q[i]
r . In this case, the linear system to solve, namely (1.12), is often much

more mildly conditioned (though asymptotically the same order), leading to better numerical results.
A significant improvement is offered by choosing q[i]

r as the (2r + i)th Chebyshev polynomial. This is
a fairly standard approach, and the underlying matrix of the linear system is a generalized Vandermonde
matrix (see [14]).

However, this can be further improved upon by using the basis of dual functions (1.7). In Figure 1 we
give numerical results for this basis and the Chebyshev and Cardinal polynomial bases applied to several
functions. We observe that the approximation based on (1.7) offers the smallest error. Moreover, unlike
the Cardinal polynomial basis, the error remains bounded. Note that the functions used here exhibit two
features, large derivatives and high oscillation, which make their approximation prone to numerical errors.
However, by simply replacing the subtraction basis we are able to obtain vastly superior approximations.

Regardless of the particular problem, the functions (1.7) offer a vast improvement in terms of the condition
number of the linear system. As mentioned, the condition number scales like N2k+l−3 regardless of the
subtraction functions used. However, a vast reduction in the constant occurs when using (1.7). For k = 10
and values (1.14), the L∞ condition number constant is roughly 3 × 10−16 for the linear system based on
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N 25 50 100 150 200
m(r) = N + r 1.215× 1024 1.808× 1031 7.398× 1038 2.784× 1043 5.335× 1046

m(r) = (r + 1)N 8.688× 1030 2.147× 1036 5.552× 1041 8.185× 1044 1.451× 1047

m(r) = 2rN 2.933× 1042 7.206× 1047 1.861× 1053 2.742× 1056 4.859× 1058

Table 1: L∞ condition number of the linear system (1.12) using the functions (1.7) with k = 10 and values m(r)
given by (1.14)–(1.16). All values to 4 significant figures.

(1.7). In comparison, for the Chebyshev and Cardinal polynomial bases these figures are 1×10−3 and 3×103

respectively, the latter being roughly 1019 times larger.
This effect is perhaps not surprising: the underlying matrix of the linear system (1.12) is a Cauchy matrix

(see Theorem 1). Typically such matrices, though ill-conditioned themselves, are less poorly conditioned than
Vandermonde matrices (see [14, chapter 22]). Note that such a linear system can also be solved in O

(
k2

)

operations.
In all numerical results thus far, we have used the values (1.14). Seemingly, the condition number of the

linear system (1.11) can be vastly improved from O
(
N3(k−1)

)
to O

(
N2(k−1)

)
by using the values (1.15) or

(1.16) instead. However, though true in theory, in practice the constant is so overbearingly large that it
nullifies this effect. In Table 1 we give figures for the condition number of this linear system using the values
(1.14)–(1.16). In this case, N > 200 before the values (1.15) begin to offer an advantage (for the values
(1.16) the scenario is much worse). However, since k = 10 in this example, any reasonable function will be
well-resolved by Eckhoff’s approximation for a much smaller value of N .

Numerical results can often be further improved by solving over-determined least squares problems. This
approach is fairly standard, [4, 10]. For practical purposes, the least squares systems are solved by singular
value decompositions, which can be found to high accuracy for Cauchy matrices, [14, p.515].

2 Eckhoff ’s method for multivariate expansions

In this section we extend Eckhoff’s method to functions defined on the d-variate cube Ω̄ =[ −1, 1]d. To do so,
it is first necessary to introduce multivariate modified Fourier expansions and the multivariate polynomial
subtraction technique. The reader is referred to [1, 17] and [15] for further details.

2.1 Multivariate modified Fourier expansions

Suppose that x = (x1, ..., xd) ∈ Ω̄ and that f ∈ L2(Ω). The N th truncated modified Fourier series of f can
be written in the following succinct form:

FN [f ](x) =
∑

i∈{0,1}d

∑

n∈IN

f̂ [i]
n φ[i]

n (x), x ∈ Ω̄. (2.1)

Here i = (i1, ..., id), n = (n1, ..., nd) and φ[i]
n (x) = φ[i1]

n1 (x1)...φ
[id]
nd (xd). IN ⊂ Nd is some finite index set.

Throughout this section we assume that IN is the full index set

IN =
{
n ∈ Nd : 0 ≤ n1, ..., nd ≤ N − 1

}
. (2.2)

Note that |IN | = O
(
Nd

)
. In Section 4 we consider a different choice of index set, which greatly reduces the

complexity Eckhoff’s approximation without unduly affecting the convergence rate.

8



Throughout this section the bivariate case will serve as our primary example. In this setting (2.1) is

FN [f ](x1, x2) =
1
4
f̂ [0,0]
0,0 +

1
2

N−1∑

n1=1

{
f̂ [0,0]

n1,0 cos n1πx1 + f̂ [1,0]
n1,0 sin(n1 − 1

2 )πx1

}

+
1
2

N−1∑

n2=0

{
f̂ [0,0]
0,n2

cos n2πx2 + f̂ [0,1]
0,n2

sin(n2 − 1
2 )πx2

}

+
N−1∑

n1,n2=1

{
f̂ [0,0]

n1,n2
cos n1πx1 cos n2πx2 + f̂ [0,1]

n1,n2
cos n1πx1 sin(n2 − 1

2 )πx2

+f̂ [1,0]
n1,n2

sin(n1 − 1
2 )πx1 cos n2πx2 + f̂ [1,1]

n1,n2
sin(n1 − 1

2 )πx1 sin(n2 − 1
2 )πx2

}
.

2.1.1 Expansion of multivariate modified Fourier coefficients

The multivariate coefficients f̂ [i]
n , given by

f̂ [i]
n =

∫

Ω
f(x)φ[i]

n (x) dx, i ∈ {0, 1}d, n ∈ Nd,

are O
(
n−2

)
for large n, where n−2 = (n1...nd)−2. In fact

|f̂ [i]
n | ! (n̄1...n̄d)−2 = n̄−2,

where m̄ = max{m, 1} for m ∈ N. Here, and for the remainder of this paper, we use the symbol A ! B to
mean that there exists a constant c independent of N such that A ≤ cB.

The coefficients f̂ [i]
n admit an expansion similar to that of the univariate coefficients given in (1.2). For

this we need some additional notation. Suppose that [d] is the set of ordered tuples of length at most d
with entries in {1, ..., d}. We define [d]∗ = [d] ∪ {∅}. For t ∈ [d] we write |t| for the length (number of
elements) in t, so that t = (t1, ..., t|t|). We also write t̄ ∈ [d] for the tuple of length d − |t| of elements not
in t. For j ∈ {1, ..., d} we say that j ∈ t if j = tl for some l = 1, ..., |t|. Given x = (x1, ..., xd) we also define
xt = (xt1 , ..., xt|t|).

For a multi-index α = (α1, ...,αd) ∈ Nd, we define |α| and |α|∞ by

|α| =
d∑

j=1

αj , |α|∞ = max
j=1,...,d

αj ,

and the differentiation operator Dα by

Dα =
∂|α|

∂α1
x1 ...∂αd

xd

= ∂α1
x1

...∂αd
xd

.

If α = (r, r, ..., r), r ∈ N, we also write Dr. If t ∈ [d] and r ∈ N we define Dr
t = ∂r

xt1
...∂r

xt|t|
.

Given j = 1, ..., d, rj = 0, ..., k − 1 and ij ∈ {0, 1} we define B[ij ]
rj [f ] by

(−1)rjB[ij ]
rj

[f ](x1, ..., xj−1, xj+1, ..., xd) =∂2rj+1
xj

f(x1, ..., xj−1, 1, xj+1, ..., xd)

+ (−1)ij+1∂2rj+1
xj

f(x1, ..., xj−1,−1, xj+1, ..., xd).

For t ∈ [d]∗, rt = (rt1 , ..., rt|t|) ∈ N|t| and it = (it1 , ..., it|t|) ∈ {0, 1}|t| we define B[it]
rt [f ] as the composition

B[it]
rt

[f ](xt̄) = B[it1 ]
rt1

[
B[it2 ]

rt2

[
...

[
B

[it|t| ]
rt|t|

[f ]
]

...

]]
.

Note that these operators commute with each other and with differentiation in the variable xt̄.
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Finally, given t ∈ [d]∗, rt ∈ N|t|, i ∈ {0, 1}d and nt̄ = (nt̄1 , ..., nt̄|t̄|) ∈ N|t̄| we define A[i]
rt,nt̄ [f ] ∈ R by

A[i]
rt,nt̄

[f ] = (−1)k|t̄|
∏

j /∈t

(
µ[ij ]

nj

)−k
∫

B[it]
rt

[D2k
t̄ f ](xt̄)φ[it̄]

nt̄
(xt̄) dxt̄. (2.3)

Note that the final integral is just the modified Fourier coefficient of the function B[it]
rt [D2k

t̄ f ](xt̄) correspond-
ing to indices it̄ and nt̄. For this reason, we have the bound

∣∣∣A[i]
rt,nt̄

[f ]
∣∣∣ !

∏

j /∈t

n̄−2k−2
j = n̄−2k−2

t̄ , ∀nt̄ ∈ N|t̄|, i ∈ {0, 1}d. (2.4)

We are now able to derive an expansion for f̂ [i]
n . After k integrations by parts in each variable, we obtain

f̂ [i]
n =

∑

t∈[d]∗

k−1∑

|rt|∞=0

A[i]
rt,nt̄

[f ](−1)|nt|+|it|
∏

j∈t

(
µ[ij ]

nj

)−(rj+1)
. (2.5)

As we establish in the sequel, the values A[i]
rt,nt̄ [f ], t ∈ [d], are the appropriate generalization of the univariate

‘jumps’ A[i]
r [f ] given in (1.3). The task of approximating these values to sufficient accuracy is the content of

the remainder of this paper.
Suppose that p[i]

0 , ..., p[i]
k−1 are the Cardinal functions introduced in Section 1.2. Given t ∈ [d], it ∈ {0, 1}|t|

and rt ∈ {0, ..., k − 1}|t| we define
p[it]

rt
(xt) =

∏

j∈t

p[ij ]
rj

(xj).

With this in hand, we may rewrite (2.5) as

f̂ [i]
n =

∑

t∈[d]∗

k−1∑

|rt|∞=0

A[i]
rt,nt̄

[f ]p̂rt

[it]
nt

+O
(
n−2k−2

)
. (2.6)

If the functions p[i]
r are Cardinal polynomials then the final term of (2.6) vanishes. To simplify matters,

throughout the remainder of this paper, unless specified otherwise, we assume that this is the case.
We have not yet specified the smoothness required for the expansion (2.5)–(2.6) to be valid. Appropriate

conditions can be established upon introduction of the following spaces:

2.1.2 Sobolev spaces of dominating mixed smoothness

As described in greater detail in [1], modified Fourier expansions are best studied in so-called Sobolev spaces
of dominating mixed smoothness, [31, 33]. Given q ∈ N, we define the qth such space by

Hq
mix(Ω) = {f : Dαf ∈ L2(Ω), ∀α ∈ Nd : |α|∞ ≤ q},

with norm
‖f‖2q,mix =

∑

|α|∞≤q

‖Dαf‖2.

The importance of such spaces in the study of modified Fourier expansions is immediately emphasized by the
observation that FN [f ] converges uniformly to f on Ω̄ provided f ∈ H1

mix(Ω), [1]. Returning to the expansions
derived in the previous section, it is readily seen that (2.5)–(2.6) are valid for functions f ∈ H2k

mix(Ω).
We shall not discuss such spaces in greater detail. We refer to [31, 33] for further reading, and to [1] for

use of such spaces in the study of multivariate modified Fourier expansions.
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2.2 Multivariate polynomial subtraction

As described in greater detail in [15], to intepolate the jump values A[i]
rt,nt̄ [f ] it suffices to interpolate the

exact Neumann data of the function f on the boundary. In other words, given k ∈ N+, we seek a function
gk such that

∂2r+1
xj

gk

∣∣
xj=±1

= ∂2r+1
xj

f
∣∣
xj=±1

, ∀j = 1, ..., d, r = 0, ..., k − 1.

In the notation of the previous section

B[ij ]
rj

[gk] = B[ij ]
rj

[f ], ij ∈ {0, 1}, rj = 0, ..., k − 1, j = 1, ..., d. (2.7)

As in the univariate case, the function f − gk satisfies homogeneous Neumann boundary conditions up to
order k, and (as we shall observe) this guarantees faster convergence of the approximation FN,k[f ] given by

FN,k[f ] = FN [f − gk] + gk.

We refer to FN,k[f ] as the kth polynomial subtraction approximation of f .
A suitable function gk is given by the following lemma:

Lemma 3. Suppose that f ∈ H2k(Ω) and that

gk(x) =
∑

t∈[d]

∑

it∈{0,1}|t|

k−1∑

|rt|∞=0

(−1)|t|+1B[it]
rt

[f ](xt̄)p[it]
rt

(xt), x ∈ Ω̄. (2.8)

Then gk satisfies (2.7).

Proof. It suffices to prove that gk satisfies (2.7) with j = 1, ij = 0 and rj = s. We split the terms of (2.8)
corresponding to different t ∈ [d] into the three following cases: (i) t = (1), (ii) t = (1, u), where u ∈ [d],
1 /∈ u, and (iii) t = u, where 1 /∈ u.

Consider case (i). The contribution of the corresponding term to B[0]
s [gk] is

1∑

i1=0

k−1∑

r1=0

B[0]
s

[
B[i1]

r1
[f ](x2, ..., xd)p[i1]

r1
(x1)

]
(x2, ..., xd) = B[0]

s [f ](x2, ..., xd).

Here the second equality follows directly from the properties of the Cardinal functions p[i]
r . It now suffices

to prove that the contributions corresponding to cases (ii) and (iii) cancel. For case (ii) the contribution is

∑

iu∈{0,1}|u|

k−1∑

|ru|∞=0

1∑

i1=0

k−1∑

r1=0

(−1)|u|B[0]
s

[
B[it]

rt
[f ](xt̄)p[it]

rt
(xt)

]
(x2, ..., xd)

=
∑

iu∈{0,1}|u|

k−1∑

|ru|∞=0

(−1)|u|B[(0,iu)]
(s,ru) [f ](xū)p[iu]

ru
(xu),

where (0, iu) = (0, iu1 , ..., iu|u|) and (s, ru) = (s, ru1 , ..., ru|u|). It is readily seen that this is precisely the
negative of the contribution of case (iii).

Concerning the error of polynomial subtraction we have the following result, proved in [1]:

Theorem 5. Suppose that f ∈ H2k+2
mix (Ω) and that FN,k[f ] is the kth polynomial subtraction approximation

to f . Then ‖f − FN,k[f ]‖∞ is O
(
N−2k−1

)
and ‖f − FN,k[f ]‖q is O(Nq−2k− 3

2 ) for q = 0, ..., 2k + 1. If,
additionally, f ∈ H2k+3

mix (Ω) then f(x)− FN,k[f ](x) is O
(
N−2k−2

)
uniformly in compact subsets of Ω.

As in the univariate case, we interpret FN,0[f ] as just FN [f ]. When k = 0 this theorem also establishes the
rate of convergence of the multivariate modified Fourier expansion FN [f ].

11



For d = 2, the function gk is given by

gk(x) =
1∑

i1=0

k−1∑

r1=0

p[i1]
r1

(x1)B[i1]
r1

[f ](x2) +
1∑

i2=0

k−1∑

r2=0

B[i2]
r2

[f ](x1)p[i2]
r2

(x2)

−
1∑

i1,i2=0

k−1∑

r1,r2=0

B[i1]
r1

[
B[i2]

r2
[f ]

]
p[i1]

r1
(x1)p[i2]

r2
(x2).

For d ≥ 2 the problem with the practical computation of gk, as given by (2.8), is that it requires knowledge
of the exact derivatives of the function f over (d − 1)-dimensional subsets of the boundary. One approach
to alleviate this problem, which we now introduce since it will be used in the sequel, is to approximate
these lower dimensional functions using polynomial subtraction. To do so, requires knowledge of functions
over (d − 2)-dimensional subsets of the boundary. However, we may repeat the same process, replacing
exact functions by polynomial subtraction approximations, until we obtain an approximation that uses only
derivative values over the 0-dimensional subsets of the boundary consisting of the vertices (±1,±1, ...,±1).

To differentiate between the two approaches we refer to the approximation based on (2.8) as exact
polynomial subtraction and the approximation obtain by the above process as approximate polynomial
subtraction. We write ge

k, Fe
N,k[f ] and ga

k , Fa
N,k[f ] respectively. Note that for d = 1 both approximations

coincide.
In the d = 2 case we merely replace the univariate functions B[i1]

r1 [f ] and B[i2]
r2 [f ] by their kth polynomial

subtraction approximation. This yields the new function ga
k given by

ga
k(x) =

1∑

i1=0

k−1∑

r1=0

p[i1]
r1

(x1)FN,k

[
B[i1]

r1
[f ]

]
(x2) +

1∑

i2=0

k−1∑

r2=0

FN,k

[
B[i2]

r2
[f ]

]
(x1)p[i2]

r2
(x2)

−
1∑

i1,i2=0

k−1∑

r1,r2=0

B[i1]
r1

[
B[i2]

r2
[f ]

]
p[i1]

r1
(x1)p[i2]

r2
(x2).

For d ≥ 3 we define the new approximation inductively. If Fa
N,k[·] has been obtained for d− 1, we define the

d-variate approximate polynomial subtraction function ga
k by

ga
k(x) =

∑

t∈[d]

∑

it∈{0,1}|t|

k−1∑

|rt|∞=0

(−1)|t|+1Fa
N,k

[
B[it]

rt
[f ]

]
(xt̄)p[it]

rt
(xt), x ∈ Ω̄. (2.9)

We now prove the following lemma, which demonstrates that replacing (2.8) by (2.9) does not deteriorate
the convergence rate of the approximation:

Lemma 4. Suppose that f ∈ H2k+2
mix (Ω) and that Fa

N,k[f ] is the kth approximate polynomial subtraction
approximation of f . Then ‖f − Fa

N,k[f ]‖∞ is O
(
N−2k−1

)
and ‖f − Fa

N,k[f ]‖q is O(Nq−2k− 3
2 ) for q =

0, ..., 2k + 1. If, additionally, f ∈ H2k+3
mix (Ω) then f(x) − Fa

N,k[f ](x) is O
(
N−2k−2

)
uniformly in compact

subsets of Ω.

Proof. By Theorem 5 it suffices to consider the difference Fe
N,k[f ] − Fa

N,k[f ]. We use induction on d. For
d = 1 there is nothing to prove. Now suppose that the result holds for d− 1. We have

Fe
N,k[f ](x)− Fa

N,k[f ](x) = ge
k(x)− ga

k(x)− FN

[
ge

k − ga
k

]
(x).

Since F̂a
N,k[h]

[i]

n
= F̂e

N,k[h]
[i]

n
= ĥ[i]

n for all i ∈ {0, 1}d, n ∈ IN and arbitrary functions h, it is follows that
FN [ge

k − ga
k ] = 0. Hence

Fe
N,k[f ](x)− Fa

N,k[f ](x) = ge
k(x)− ga

k(x)

=
∑

t∈[d]

∑

it∈{0,1}|t|

k−1∑

|rt|∞=0

(−1)|t|+1
(
B[it]

rt
[f ](xt̄)− Fa

N,k

[
B[it]

rt
[f ]

]
(xt̄)

)
p[it]

rt
(xt).
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If f ∈ H2k+2
mix (Ω) then it can be shown that B[it]

rt [f ] ∈ H2k+2
mix (−1, 1)|t̄|, [1]. Since |t| ≥ 1, we may use the

induction hypothesis on each such term to obtain the result.

For practical purposes we need an explicit expression for ga
k . This is given by the following lemma:

Lemma 5. The approximate polynomial subtraction function ga
k is given by

ga
k(x) =

∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

A[i]
rt,nt̄

[f ]p[it]
rt

(xt)φ[it̄]
nt̄

(xt̄), (2.10)

where the coefficients A[i]
rt,nt̄ [f ] are defined in (2.3).

To prove this lemma we need the following notation. Given t ∈ [d] we write [t] for the set of tuples u ∈ [d]
with u ⊆ t. We write [t]∗ = [t] ∪ {∅} and ū ∈ [t]∗ for the tuple of elements in t but not in u. Further, given
t, u ∈ [d]∗ we write t∪ u ∈ [d] for the ordered tuple of elements j = 1, ..., d in t or in u and t∩ u for the tuple
of elements in both t and u.

Proof of Lemma 5. We prove this result by induction on d. For d = 1, since ga
k = ge

k and A[i]
r [f ] = B[i]

r [f ],
there is nothing to prove. Now assume that the result holds for d− 1. Then, by definition

ga
k(x) =

∑

t∈[d]

∑

it∈{0,1}|t|

k−1∑

|rt|∞=0

(−1)|t|+1Fa
N,k

[
B[it]

rt
[f ]

]
(xt̄)p[it]

rt
(xt). (2.11)

Since B[it]
rt [f ] is a function of at most (d − 1) variables, we may use the induction hypothesis to derive an

expression for Fa
N,k

[
B[it]

rt [f ]
]
(xt̄). To do so, we first note the following:

A[it̄]
ru,nū

[
B[it]

rt
[f ]

]
= (−1)k|ū|

∏

j∈ū

(µ[ij ]
nj

)−k

∫
B[iu]

ru

[
D2k

ū B[it]
rt

[f ]
]
φ[iū]

nū
(xū) dxū, ∀u ∈ [t̄]∗.

Since the operators B[iu]
ru and B[it]

rt commute with each other and with differentiation in the independent
variables, this gives

A[it̄]
ru,nū

[
B[it]

rt
[f ]

]
= (−1)k|ū|

∏

j∈ū

(µ[ij ]
nj

)−k

∫
B[it∪u]

rt∪u

[
D2k

ū f
]
φ[iū]

nū
(xū) dxū.

Since u ∈ [t̄]∗, ū = t̄\u = t ∪ u. Hence A[it̄]
ru,nū

[
B[it]

rt [f ]
]

= A[i]
rt∪u,nt∪u

[f ]. Our next observation is the
following. If h is a function of at most (d− 1) variables, and ga

k is the approximate polynomial subtraction
function for h, then

FN [h− ga
k ](x) =

∑

i∈{0,1}d−1

N−1∑

|n|∞=0

A[i]
n [h]φ[i]

n (x), x ∈ [−1, 1]d−1,

where A[i]
n [h] is the value A[i]

rt,nt̄ [h] given by (2.3) with t = ∅. This follows immediately from the induction
hypothesis and equations (2.5) and (2.10).

Returning to B[it]
rt [f ] and using these observations we obtain

Fa
N,k

[
B[it]

rt
[f ]

]
(xt̄) =

∑

it̄∈{0,1}|t̄|

N−1∑

|nt̄|∞=0

A[i]
rt,nt̄

[f ]φ[it̄]
nt̄

(xt̄)

+
∑

it̄∈{0,1}|t̄|

∑

u∈[t̄]

k−1∑

|ru|∞=0

N−1∑

|nū|∞=0

A[i]
rt∪u,nt∪u

[f ]p[iu]
ru

(xu)φ[iū]
nū

(xū).
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Substituting this into (2.11) gives

ga
k(x) =

∑

i∈{0,1}d

∑

t∈[d]

(−1)|t|+1

{
k−1∑

|rt|∞=0

A[i]
rt,nt̄

[f ]p[it]
rt

(xt)φ[it̄]
nt̄

(xt̄)

+
∑

u∈[t̄]

k−1∑

|rt∪u|∞=0

N−1∑

|nū|∞=0

A[i]
rt∪u,nt∪u

[f ]p[it∪u]
rt∪u

(xt∪u)φ[iū]
nū

(xū)

}
. (2.12)

To complete the proof it suffices to show that, for any v ∈ [d], the coefficient of A[i]
rv,nv̄ [f ]p[iv ]

rv (xv)φ[iv̄ ]
nv̄ (xv̄)

in (2.12) is precisely 1. The first term of (2.12) gives a contribution of (−1)|v|+1. For the second, the terms

that give contributions satisfy t ∪ u = v. Since t, u -= ∅ and there are
(

|v|
l

)
possible choices of u with

|u| = l, the contribution of the second term is

(−1)|v|
(

|v|
1

)
+ .... +

(
|v|

|v|− 1

)
= (−1)|v|+1

|v|−1∑

l=1

(
|v|
l

)
(−1)l = 1− (−1)|v|+1.

Summing together the contributions of the two terms now yields the result.

The result of this lemma justifies the statement made in the previous section: in the multivariate case, to
accelerate convergence it suffices to approximate the jump values A[i]

rt,nt̄ [f ]. This indicates the appropriate
generalization of Eckhoff’s method, which we consider in the next section.

Though the approximate polynomial subtraction process achieves a significant improvement over exact
polynomial subtraction, it still requires knowledge of the values A[i]

rt,nt̄ [f ]. In general these are unknown.
Since there are

2d
d∑

j=1

(
d
j

)
kjNd−j = 2d

{
(k + N)d − kd

}
= O

(
kNd−1

)
, k . N,

such values, the need for a method of approximation becomes more vital as d increases.

2.3 The multivariate version of Eckhoff ’s method

We now extend Eckhoff’s method to the multivariate setting. The bivariate version of this method was
originally developed, without analysis, in [24, 25, 27]. In this section we first provide an extension for general
d and then provide pertinent analysis.

We seek to approximate the exact jump values A[i]
rt,nt̄ [f ] with values Ā[i]

rt,nt̄ [f ]. Suppose that we define
the subtraction function

gk(x) =
∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

Ā[i]
rt,nt̄

[f ]p[it]
rt

(xt)φ[it̄]
nt̄

(xt̄), (2.13)

and the approximation FN,k[f ] = FN [f − gk] + gk. In the univariate setting it follows from (1.11) that the
function gk satisfies the condition

ĝk
[i]
n = f̂ [i]

n , n = m(0), ...,m(k − 1), i ∈ {0, 1}. (2.14)

For the d-variate extension we enforce a similar condition. Suppose that we define the finite index set
Mk ⊂ Nd by

Mk =
⋃

t∈[d]

{
n = (n1, ..., nd) ∈ Nd : nj = m(rj), rj = 0, ..., k−1 if j ∈ t, nj = 0, ..., N−1, otherwise

}
. (2.15)

We now impose the condition
ĝk

[i]
n = f̂ [i]

n , ∀n ∈ Mk, i ∈ {0, 1}d. (2.16)
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Figure 2: (left) Index set M5 with N = 25 and m(r) = N+2r. (right) Index set M10 with N = 50 and m(r) = N+2r.

For d = 1 (2.16) reduces to (2.14). For d = 2 we obtain the following system of equations

ĝk
[i]
m(r1),m(r2)

= f̂ [i]
m(r1),m(r2)

, r1, r2 = 0, ..., k − 1, i ∈ {0, 1}2,

ĝk
[i]
m(r1),n2

= f̂ [i]
m(r1),n2

, r1 = 0, ..., k − 1, n2 = 0, ..., N − 1, i ∈ {0, 1}2,

ĝk
[i]
n1,m(r2)

= f̂ [i]
n1,m(r2)

, n1 = 0, ..., N − 1, r2 = 0, ..., k − 1, i ∈ {0, 1}2. (2.17)

Figure 2 shows typical form of the index set Mk for d = 2. Note that, as in the univariate case, the system
of equations (2.16) completely decouples for different values of i ∈ {0, 1}d.

For practical and analytical purposes, we need to expand the left hand side of (2.16). Given u ∈ [d],
su ∈ {0, ..., k − 1}|u| and nū ∈ {0, ..., N − 1}|ū|, the corresponding term in gk is

Ā[i]
su,nū

[f ]p[iu]
su

(xu)φ[iū]
nū

(xū) = Ā[i]
ru,nū

[f ]
∏

j∈u

p[ij ]
sj

(xj)
∏

j /∈u

φ[ij ]
nj

(xj).

For this term to give a non-zero contribution to the left hand side of (2.16) we require that t ⊆ u, where
t ∈ [d] is the tuple corresponding to n ∈ Mk. Hence

ĝk
[i]
n =

∑

u∈[d]
t⊆u

k−1∑

|su|∞=0

Ā[i]
su,nū

[f ]
∏

j∈u

p̂sj

[ij ]
nj

=
k−1∑

|st|∞=0

∏

j∈t

V [ij ]
rj ,sj

{
∑

t⊆u

k−1∑

|su\t|∞=0

Ā[i]
su,nū

[f ]
∏

j∈u\t

p̂sj

[ij ]
nj

}
, (2.18)

where u\t ∈ [d]∗ is the ordered |u|−| t| tuple of elements j = 1, .., d that are in u but not t. Here rj , j ∈ t is
the index used in the definition of Mk, (2.15), and V [i] is the matrix introduced in Section 1.3.

For d = 2, we may expand the system of equations (2.17) using (2.18) to give the following linear system:

k−1∑

s1,s2=0

V [i1]
r1,s1

V [i2]
r2,s2

Ā[i]
s1,s2

[f ] = f̂ [i]
m(r1),m(r2)

, r1, r2 = 0, ..., k − 1, i ∈ {0, 1}2,

k−1∑

s1=0

V [i1]
r1,s1

{
Ā[i]

s1,n2
[f ] +

k−1∑

s2=0

Ā[i]
s1,s2

[f ]p̂r2
[i2]
n2

}
= f̂ [i]

m(r1),n2
, r1 = 0, ..., k − 1, n2 = 0, ..., N − 1, i ∈ {0, 1}2,

k−1∑

s2=0

V [i2]
r2,s2

{
Ā[i]

s2,n1
[f ] +

k−1∑

s1=0

Ā[i]
s1,s2

[f ]p̂r1
[i1]
n1

}
= f̂ [i]

n1,m(r2)
, n1 = 0, ..., N − 1, r2 = 0, ..., k − 1, i ∈ {0, 1}2.

In this case, it is obvious how to solve these equations. We first obtain Ā[i]
r1,r2 [f ] from the first equation, then

use this to find Ā[i]
r1,n2 [f ] and Ā[i]

r2,n1 [f ] explicitly. At each stage we have to solve linear systems involving
the matrix V [i], and, since we need to do this repeatedly, it is easiest to find (V [i])−1 first.

The same can be done in d ≥ 3 dimensions. Starting with the equation corresponding to t = (1, 2, ..., d),
we find Ā[i]

rt [f ]. Using this we solve the d equations corresponding to |t| = d− 1. Continuing in this manner
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we obtain all the coefficients Ā[i]
rt,nt̄ [f ]. Though straightforward in theory, this process becomes increasingly

complicated to implement for large d.
Note that existence and uniqueness of a solution to these linear systems is completely determined by the

non-singularity of the matrix V [i] (see Theorem 1).
In the univariate case, the complexity of forming Eckhoff’s approximation is O

(
max{k2, kN}

)
. In the

multivariate setting it is readily seen that this figure is

O
(
max{kd+1, kdNd}

)
.

Typically k . N so this figure reduces to kdNd. In comparison, forming the approximation FN [f ] involves
O

(
Nd

)
operations, so the increase in complexity is relatively mild for moderate values of k. Nonetheless,

the value Nd grows exponentially with d. In Section 4 how it can be reduced dramatically without affecting
the convergence rate of FN,k[f ] unduly.

2.4 Analysis of Eckhoff ’s method

To commence our analysis we require the following two lemmas, the first of which is a generalization of
Theorem 2:

Lemma 6. Suppose that h ∈ H2(k+K)
mix (Ω), where 2K ≥ l + 1 and l is the number of equal values c(r), and

that t ∈ [d]. Suppose further that

B[ij ]
rj

[h] = 0, rj = 0, ..., k − 1, ij ∈ {0, 1}, j ∈ t,

and that the values E [it]
rt,nt̄ satisfy

k−1∑

|st|∞=0

∏

j∈t

V [ij ]
rj ,sj

E [it]
rt,nt̄

= ĥ[i]
n ,

for all n ∈ Nd such that nj = m(rj), rj = 0, ..., k − 1 when j ∈ t and nj ∈ N otherwise. Then we have
∣∣∣E [it]

rt,nt̄

∣∣∣ ! N2(|rt|∞−k)n̄−2
t̄ .

Proof. For each j ∈ t we may expand ĥ[i]
n (k + K) times with respect to nj using the univariate expansion

(1.2). We now apply (V [ij ]
rj ,sj )−1 to the result and use Theorem 2.

Lemma 7. Suppose that t ∈ [d], rt ∈ {0, ..., k − 1}|t|, nt̄ ∈ {0, ..., N − 1}|t̄| and

E [i]
rt,nt̄

[f ] =
∑

u∈[d]
t⊆u

k−1∑

|su\t|∞=0

(
A[i]

su,nū
[f ]− Ā[i]

su,nū
[f ]

) ∏

j∈u\t

p̂sj

[ij ]
nj

. (2.19)

Then ∣∣E [i]
rt,nt̄

[f ]
∣∣ ! N2(|rt|∞−k)n̄−2

t̄ .

Proof. Consider the right hand side of (2.16). Using the expansion (2.6) gives

f̂ [i]
n =

∑

u∈[d]
t⊆u

k−1∑

|su|∞=0

A[i]
su,nū

[f ]p̂su

[iu]
nu

+
∑

u∈[d]∗

t)⊆u

k−1∑

|su|∞=0

A[i]
su,nū

[f ]p̂su

[iu]
nu

, n ∈ Mk, i ∈ {0, 1}d.

Equating this with (2.18) and rearranging gives

k−1∑

|st|∞=0

∏

j∈t

V [ij ]
rj ,sj

E [i]
rt,nt̄

[f ] = −
∑

u∈[d]∗

t)⊆u

k−1∑

|su|∞=0

A[i]
su,nū

[f ]p̂su

[iu]
nu

, n ∈ Mk, i ∈ {0, 1}d. (2.20)
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We now split the terms in the right hand side into two cases. If u ∈ [d]∗ and t -⊆ u the either t ∩ u = ∅ or
t ∩ u -= ∅. Suppose first that t ∩ u -= ∅. We have

p̂su

[iu]
nu

=
∏

j∈u

p̂sj

[ij ]
nj

=
∏

j∈t∩u

V [ij ]
rj ,sj

∏

j∈u\t

p̂sj

[ij ]
nj

.

Substituting this back into (2.20) we obtain

k−1∑

|st|∞=0

∏

j∈t

V [ij ]
rj ,sj

E [i]
rt,nt̄

[f ] = −
∑

t)⊆u
t∩u )=∅

k−1∑

|su|∞=0

A[i]
su,nū

[f ]
∏

j∈t∩u

V [ij ]
rj ,sj

∏

j∈u\t

p̂sj

[ij ]
nj
−

∑

t)⊆u
t∩u=∅

k−1∑

|su|∞=0

A[i]
su,nū

[f ]p̂su

[iu]
nu

.

(2.21)
We now use Lemma 6 on each term of the right hand side. Consider first terms in the latter sum. The values
A[i]

su,nū [f ]p̂su

[iu]
nu

are the modified Fourier coefficients of a d-variate function h that satisfies

B[ij ]
rj

[h] = 0, rj = 0, ..., k − 1, j ∈ ū.

Since t ⊆ ū, an application of Lemma 6 now yields the required bound for such terms.
For terms in the first sum, we essentially repeat the same process, but taking the term

∏
j∈t∩u V

[ij ]
rj ,sj into

account where necessary.

Due to Lemma 4, to estimate the convergence rate of the multivariate Eckhoff approximation FN,k[f ], it
suffices to consider the difference Fa

N,k[f ]−FN,k[f ], where Fa
N,k[f ] is the approximate polynomial subtraction

approximation introduced in Section 2.2. For this we need the following lemma, which demonstrates the
importance of the quantity (2.19) in the analysis of Eckhoff’s approximation:

Lemma 8. We have

Fa
N,k[f ](x)− FN,k[f ](x) =

∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

E [i]
rt,nt̄

[f ]φ[i]
nt̄

(xt̄)
∏

j∈t

(
p[ij ]

rj
(xj)− FN [p[ij ]

rj
](xj)

)
. (2.22)

Proof. We may write
Fa

N,k[f ](x)− FN,k[f ](x) = hk(x)− FN [hk](x), (2.23)

where hk is the smooth function

hk(x) =
∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

(
A[i]

rt,nt̄
[f ]− Ā[i]

rt,nt̄
[f ]

)
p[it]

rt
(xt)φ[it̄]

nt̄
(xt̄).

To prove the result it suffices to demonstrate that the right hand sides of (2.22) and (2.23) have equal
modified Fourier coefficients for all indices i ∈ {0, 1}d and n ∈ Nd. For coefficients with n ∈ IN it is readily
shown that both sides give zero, hence we consider n /∈ IN . In this case, there is some u ∈ [d] such that
nj ≥ N whenever j ∈ u and nj = 0, ..., N − 1 otherwise. By identical arguments to those used to obtain

(2.18) we have that the coefficient the right hand side of (2.23), namely ĥk
[i]

n , is

ĥk
[i]

n =
k−1∑

|ru|∞=0

p̂ru

[iu]
nu

E [i]
ru,nū

[f ]. (2.24)

We now consider the corresponding coefficient of (2.22). For each t ∈ [d], due to the function φ[it̄]
nt̄ , we must

have that u ⊆ t otherwise the corresponding term vanishes. However, due to the product, we must also have
that t ⊆ u for a non-zero contribution. Hence, t = u and the modified Fourier coefficient of (2.22) reduces
to (2.24), completing the proof.

With this in hand we are able to deduce the main result of this section:

17



Theorem 6. Suppose that f ∈ H2(k+K)
mix (Ω), where 2K ≥ l + 1 and l is the number of equal c(r), and

that FN,k[f ] is the multivariate Eckhoff approximation of f . Then ‖f − FN,k[f ]‖∞ is O
(
N−2k−1

)
and

‖f − FN,k[f ]‖q is O(Nq−2k− 3
2 ) for q = 0, ..., 2k + 1.

Proof. It suffices to consider the difference Fa
N,k[f ]−FN,k[f ]. Using Lemma 8, the bound derived in Lemma

7 and the fact that ‖p[i]
r − FN [p[i]

r ]‖∞ = O
(
N−2r−1

)
, r ∈ N, we deduce that

‖Fa
N,k[f ]− FN,k[f ]‖∞ !

∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

∣∣E [i]
rt,nt̄

[f ]
∣∣
∏

j∈t

∣∣∣p[ij ]
rj

(xj)− FN [p[ij ]
rj

](xj)
∣∣∣

!
∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

n̄−2
t̄ N2(|rt|∞−k)

∏

j∈t

N−2rj−1 ! N−2k−1,

which gives the result for the uniform error. Now suppose that α ∈ Nd is a multi-index with |α| ≤ q. Then

Dα
(
Fa

N,k[f ] − FN,k[f ])

=
∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

E [i]
rt,nt̄

[f ]Dαt̄φ[i]
nt̄

(xt̄)
∏

j∈t

(
∂αj

xj
p[ij ]

rj
(xj)− ∂αj

xj
FN [p[ij ]

rj
](xj)

)
.

Note that
‖Dαt̄φ[it̄]

nt̄
‖ ! n̄αt̄

t̄ =
∏

j /∈t

n̄
αj

j ,

and that ‖p[i]
r − FN [p[i]

r ]‖q = O(Nq−2r− 3
2 ). Using these observations, we obtain

‖Dα
(
Fa

N,k[f ]− FN,k[f ]
)
‖ !

∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|∞=0

n̄αt̄−2
t̄ N2(|rt|∞−k)

∏

j∈t

Nαj−2rj− 3
2

! N |α|−2k− 3
2 ≤ Nq−2k− 3

2 .

Summing over all |α| ≤ q now gives the result for the Hq-norm error.

As in the univariate case, additional smoothness is required for the multivariate version of Eckhoff’s
method over approximation by polynomial subtraction unless the values c(r), r = 0, ..., k − 1, are distinct.
However, as we now consider, there is an advantage to choosing equal values c(r), namely a much faster
convergence rate inside the domain Ω.

3 The auto-correction phenomenon

As demonstrated in Lemmas 1 and 4, the approximation based on exact jump values has a convergence rate
one power of N faster inside the domain than on the boundary. It turns out that for the particular choice of
the values m(r) = N +r, Eckhoff’s approximation possesses the much faster convergence rate of O

(
N−3k−2

)

away from the boundary; a full O
(
Nk+1

)
faster. This auto-correction phenomenon was observed numerically

in [26] and proved in the univariate, Fourier case in [29]. The aim of this section is to extend this result to
the multivariate modified Fourier setting.

In previous sections we observed that Eckhoff’s approximation decouples into terms corresponding to
each paticular value of i. The analysis of each such term can be handled separately, and, since the analysis
is virtually identical, it suffices to consider only one particular value. For the remainder of this section we
assume that f only has non-zero modified Fourier coefficients when i = (0, 0, ..., 0). Accordingly, we drop
the [i] superscript.

Since uniform convergence of Eckhoff’s approximation on Ω̄ is guaranteed by Theorem 6 we may write

f(x)− FN,k[f ](x) =
∑

n/∈IN

v̂nφn(x) =
∑

t∈[d]

∑

|nt|∞≥N

N−1∑

|nt̄|∞=0

v̂nφn(x), x ∈ Ω̄, (3.1)
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where v(x) = f(x)− gk(x) and gk is given by (2.13). Following the same method of proof as in [29] we seek
to expand the right hand side of (3.1) using the so-called Abel transformation. Given a sequence am ∈ R,
m ∈ N, we define the operator /r,n, r, n ∈ N, by

/0,n[am] = an, /r+1,n[am] = /r,n[am] +/r,n+1[am], r, n ∈ N.

It is easily seen that

/r,n[am] =
r∑

s=0

(
r
s

)
an+s, r, n ∈ N. (3.2)

Now suppose that am ∈ R, m ∈ Nd. We write /j
r,n, j = 1, .., d, for the above operator acting on the jth entry

of n. Further, given t ∈ [d], r ∈ N|t| and n ∈ N|t| we define /t
r,n by the composition of |t| such operators:

/t
r,n[am] = /t1

rt1 ,nt1

[
/t2

rt2 ,nt2

[
.../t|t|

rt|t| ,nt|t|
[am]

]]
.

It follows from (3.2) that

/t
r,n[am] =

rt1∑

st1=0

....

rt|t|∑

st|t|=0

(
rt1

st1

)
...

(
rt|t|

st|t|

)
a(n+s,m;t), (3.3)

where (n + s, m; t) has jth entry nj + sj if j ∈ t and mj otherwise.
Before using this transform, we need some additional notation. Given x, y ∈ Rd we write x.y = x1y1 +

...xdyd, and if y = (c, c, ..., c) has equal entries, just x.c. Moreover, given u ∈ [t]∗, ru ∈ N|u| and k ∈ N we
define (ru; k) ∈ N|t| by the condition that the jth entry of (ru; k), which we write (ru; k)j , takes value rj if
j ∈ u and k otherwise.

Lemma 9. Suppose that g ∈ H1
mix(Ω), t ∈ [d] and that x ∈ Ω. Then, for k ∈ N, we have

∑

|nt|∞≥N

ĝnφnt(xt) =

0
{

∑

u∈[t]∗

k∑

|ru|∞=0

eiπxu.(N−1)
∏

j∈t

(1 + e−iπxj )−(ru;k)j−1
∑

|nū|∞≥N

/t
(ru;k+1),(nū;N)[ĝm]eiπnū.xū

}
.

Proof. We proceed by induction on |t|. Suppose first that |t| = 1 and, without loss of generality, that d = 1.
The verification of the lemma in this case is very standard (see also [29]). We have

∑

n≥N

ĝneinπx =
∑

n≥N

(/1,n[ĝm]− ĝn+1) einπx =
∑

n≥N

/1,n[ĝm]einπx − e−iπx
∑

n≥N

ĝneinπx + ĝNei(N−1)πx.

Rearranging gives
∑

n≥N

ĝneinπx =
ei(N−1)πx

1 + e−iπx
ĝN +

1
1 + e−iπx

∑

n≥N

/1,n[ĝm]einπx,

which provides the result for k = 0. Iterating this process yields the result for general k.
Now let t ∈ [d] be of length |t| ≥ 2. Write t = (t1, τ), where τ ∈ [d] and |t| = |τ |+ 1. We have

∑

|nt|∞≥N

ĝnφnt(xt) =
∑

nt1≥N

φnt1
(xt1)

∑

|nτ |∞≥N

ĝnφnτ (xτ ).
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Using the induction hypothesis we obtain

∑

|nt|∞≥N

ĝnφnt(xt) = 0
∑

nt1≥N

eint1πxt1

{
∑

u∈[τ ]∗

eiπxu.(N−1)
k∑

|ru|∞=0

∏

j∈t

(1 + e−iπxj )−(ru;k)j−1

×
∑

|nū|∞≥N

/τ
(ru;k+1),(nū;N)[ĝm]eiπnū.xū

}

= 0
∑

u∈[τ ]∗

eiπxu.(N−1)
k∑

|ru|∞=0

∏

j∈t

(1 + e−iπxj )−(ru;k)j−1

×
∑

|nū|∞≥N

eiπnū.xū
∑

nt1≥N

eint1πxt1/τ
(ru;k+1),(nū;N)[ĝm]. (3.4)

Using the result for |t| = 1 yields

∑

nt1≥N

eint1πxt1/τ
(ru;k+1),(nū;N)[ĝn] =

k∑

rt1=0

eiπxt1 (N−1)(1 + eiπxt1 )−rt1−1/rt1 ,N

[
/τ

(ru;k+1),(nū;N)[ĝm]
]

+
∑

nt1≥N

(1 + e−iπxt1 )−k−1/k+1,nt1

[
/τ

(ru;k+1),(nū;N)[ĝm]
]
. (3.5)

If we substitute (3.5) into (3.4) we obtain the result. Note that if v ∈ [t]∗ then either v = (t1, u) for some
u ∈ [τ ]∗ or v ∈ [τ ]∗. The two terms of (3.5) correspond respectively to these scenarios.

The crux of the auto-correction phenomenon is the following trivial observation:

Lemma 10. Suppose that v = f − gk, where gk is given by (2.13), and that the values m(r) = N + r,
r = 0, ..., k − 1. Then /t

rt,nt
[v̂m] = 0 for all |rt|∞ ≤ k − 1, |nt|∞ ≤ N and t ∈ [d].

Proof. By construction v̂n = 0 for |n|∞ ≤ N + k − 1. We now use (3.3) to obtain the result.

We may now re-write (3.1) as follows:

f(x)− FN,k[f ](x) =
∑

t∈[d]

N−1∑

|nt̄|∞=0

hnt̄
(xt)φnt̄

(xt̄). (3.6)

Here hnt̄
(xt) is obtained from the expansion derived in Lemma 9. This gives

hnt̄
(xt) = 0

{
∑

u∈[t]∗

k∑

|ru|∞=0

eiπxu.(N−1)
∏

j∈t

(1 + e−iπxj )−(ru;k)j−1
∑

|nū|∞≥N

/t
(ru;k+1),(nū;N)[v̂m]eiπnū.xū

}
.

Consider the term of hnt̄
corresponding to u = t separately. This is

eiπxt.(N−1)
k∑

|rt|∞=0

∏

j∈t

(1 + e−iπxj )−rj−1/t
rt,N [v̂m].

Using Lemma 10, all terms of this expression where |rt|∞ < k are zero. Hence, we define

Hnt̄
(xt) = eiπxt.(N−1)

∑

|rt|∞=k

∏

j∈t

(1 + e−iπxj )−rj−1/t
rt,N [v̂m], (3.7)

and

Gnt̄
(xt) =

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

eiπxu.(N−1)
∏

j∈t

(1 + e−iπxj )−(ru;k)−1
∑

|nū|∞≥N

/t
(ru;k+1),(nū;N)[v̂m]eiπnū.xū , (3.8)
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so that the function hnt may be expressed as hnt̄
(xt) = 0

{
Gnt̄

(xt) + Hnt̄
(xt)

}
. To derive an estimate for

the error f(x)− FN,k[f ](x) we need bounds for the functions Gnt̄
and Hnt̄

, which we present in the sequel.
First, however, it is useful to consider the case d = 1 to demonstrate elements of the multivariate proof.
This is given in a similar form in [29]:

3.1 The case d = 1

For d = 1, using (3.1) and the characterization given in Lemma 9 with t = (1) we may write

f(x)−FN,k[f ](x) =
∑

n≥N

v̂nφn(x) = 0
{

k∑

r=0

ei(N−1)πx

(1 + e−iπx)−r−1
/r,N [v̂m]+

1
(1 + e−iπx)k+1

∑

n≥N

/k+1,n[v̂m]einπx

}
.

In light of Lemma 10, /r,N [v̂m] = 0 for r = 0, ..., k − 1, so this reduces to

f(x)− FN,k[f ](x) = 0
{

ei(N−1)πx

(1 + e−iπx)−k−1
/k,N [v̂m] +

1
(1 + e−iπx)k+1

∑

n≥N

/k+1,n[v̂m]einπx

}

= 0{H(x) + G(x)}, (3.9)

where G(x) and H(x) are the univariate forms of Gnt̄
and Hnt̄

. Note that for d = 1 there is only one t ∈ [d],
namely t = (1), and trivially t̄ = ∅. We now seek bounds for G and H.

To do so, we require the following lemma, which is given in a similar form in [29]:

Lemma 11. Suppose that ps, s = 0, ..., k−1 are the univariate Cardinal polynomials for the first k derivative
conditions. Then

/r,n[p̂sm] = p̂sn
(2s + r + 1)!(−1)r

(2s + 1)!nr
+O

(
n−2s−r−3

)
, ∀r ∈ N, s = 0, ..., k − 1, n →∞.

Proof. By construction, p̂sm = (−1)m(mπ)−2(s+1). Using (3.2) we obtain

/r,n[p̂sm] =
r∑

l=0

(
r
l

)
(−1)n+l

(n + l)π)2(s+1)
=

(−1)n

(nπ)2(s+1)

r∑

l=0

(
r
l

)
(−1)l

(1 + l
n )2(s+1)

=
(−1)n

(nπ)2(s+1)

r∑

l=0

(−1)l

(
r
l

) {
r∑

p=0

(
l

n

)p (
2s + p + 1

p

)
+O

(
n−r−1

)
}

= p̂sn

r∑

p=0

n−p

(
2s + p + 1

p

) r∑

l=0

(−1)l

(
r
l

)
lp +O

(
n−2s−r−3

)
.

It is readily seen that
r∑

l=0

(−1)l

(
r
l

)
lp =

{
0 p = 0, ..., r − 1,
(−1)rr! p = r.

Substituting this into the previous expression now gives the result.

We now consider the coefficients v̂m. Using the asymptotic expansion (1.2) and the form of the univariate
function gk, we obtain

v̂n =
k−1∑

r=0

(
Ar[f ]− Ār[f ]

)
p̂rn +

k+K−1∑

r=k

Ar[f ]p̂rn +O
(
n−2(k+K+1)

)
,

provided f ∈ H2(k+K+1)(−1, 1). In particular

/s,n[v̂m] =
k−1∑

r=0

(
Ar[f ]− Ār[f ]

)
/s,n[p̂rm] +

k+K−1∑

r=k

Ar[f ]/s,n[p̂rm] +O
(
n−2(k+K+1)

)
.
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Using Theorem 2 and Lemma 11 we obtain

|/s,n[v̂m]| !
k−1∑

r=0

N2(r−k)n̄−2r−s−2 + n̄−2k−s−2 + n̄−2(k+K+1).

In particular, provided 2K ≥ k + 1, we have

|/k,N [v̂m]| ! N−3k−2, |/k+1,n[v̂m]| ! N−3k−1n−2.

Recalling the definitions of G and H given in (3.9), this yields

|G(x)| ! N−3k−2, |H(x)| ! N−3k−2, x ∈ (−1, 1),

provided f ∈ H3(k+1)(−1, 1). From this we immediately obtain the univariate result:

Theorem 7. Suppose that FN,k[f ] is the univariate Eckhoff approximation of f ∈ H3(k+1)(Ω) using the
values m(r) = N + r, r = 0, ..., k − 1. Then f(x) − FN,k[f ](x) is O

(
N−3k−2

)
uniformly for x in compact

subsets of Ω.

3.2 Bounds for Gnt̄
and Hnt̄

For the extension of the proof of the auto-correction phenomenon to the multivariate setting we first require
bounds for the functions Gnt̄

and Hnt̄
. For this we need the following preliminary result:

Lemma 12. Suppose that t ∈ [d], rt ∈ N|t|, 2K ≥ k + 1 and that the function h ∈ H2(k+K)+1
mix (Ω), satisfies

the first k derivative conditions. Then
∣∣∣/rt,nt [ĥn]

∣∣∣ ! n̄−2k−2
∏

j∈t

n̄
−2rj

j = n̄−2k−2n̄−2rt
t .

Proof. It suffices to consider t = (1, ..., d) and use induction on d. Consider d = 1 and a univariate function
h. Since h obeys the first k derivative conditions, we have

ĥn =
k+K−1∑

s=k

As[h]p̂sn +O
(
n−2(k+K)−1

)
,

Hence, using Lemma 11, we obtain

/r,n[ĥn] =
k+K−1∑

s=k

As[h]/r,n[p̂sn] +O
(
n−2(k+K+1)

)
! n̄−r−2k−2 + n̄−2(k+K)−1.

This gives the result for d = 1. Now assume that the result holds for all functions of at most (d−1) variables.
Then, if h is function of d variables and t = (1, ..., d), we have

/t
rt,nt

[ĥn] =
∑

u∈[d]

k+K−1∑

|su|∞=k

/t
rt,nt

[
Asu,nū [h]p̂su nu

]
+O

(
n−2(k+K)−1

)

=
∑

u∈[d]

k+K−1∑

|su|∞=k

/ū
rū,nū

[Asu,nū [h]]/u
ru,nu

[
p̂su nu

]
+O

(
n−2(k+K)−1

)
.

Using Lemma 11, we deduce that
∣∣/u

ru,nu

[
p̂su nu

]∣∣ !
∏

j∈u

∣∣∣/j
rj ,nj

[p̂sj nj
]
∣∣∣ ! n̄−ru−2su−2

u . (3.10)

22



Furthermore Asu,nū [h] is the modified Fourier coefficient of a function of xū that satisfies the first k derivative
conditions. Since |ū| < d, we may use the induction hypothesis and (3.10) to give

∣∣∣/t
rt,nt

[ĥn]
∣∣∣ !

∑

u∈[d]

k+K−1∑

|su|∞=k

n̄−rū−2k−2
ū n̄−ru−2su−2

u + n̄−2(k+K)−1 ! n̄−rt
t n̄−2k−2,

as required.

With this in hand we may estimate the functions Gnt̄
and Hnt̄

. We have:

Lemma 13. Suppose that f ∈ H3(k+1)
mix (Ω). Then the function Hnt̄

defined by (3.7) satisfies the bound

|Hnt̄
(xt)| ! N−3k−2n̄−2

t̄ ,

uniformly for xt in compact subsets of (−1, 1)|t|.

Proof. We first observe that, for n ∈ Nd such that nj ≥ N whenever j ∈ t and nj = 0, ..., N − 1 otherwise,
v̂n satisfies

v̂n =
k−1∑

|st|∞=0

p̂stnt
Est,nt̄

[f ] +
∑

v∈[d]∗

t)⊆v

k−1∑

|sv|∞=0

Asv,nv̄ [f ]p̂sv nv
. (3.11)

We now substitute the two terms of (3.11) into the definition of Hnt̄
given in (3.7) and consider them

separately. For the first term we observe that

/t
rt,N

[
p̂stnt

Est,nt̄
[f ]

]
= /t

rt,N

[
p̂stnt

]
Est,nt̄

[f ] = Est,nt̄
[f ]

∏

j∈t

/j
rj ,N [p̂sj nj

].

Using Lemma 7 and (3.10) we obtain the bound
∣∣/t

rt,N

[
p̂stnt

Est,nt̄
[f ]

]∣∣ ! N2(|st|∞−k)
∏

j∈t

N−2sj−rj−2n̄−2
t̄ ! N−2k−|rt|−2|t|n̄−2

t̄ .

Since |rt| ≥| rt|∞ = k and |t| ≥ 1, we obtain the required bound for the first term.
Now consider the second term of (3.11) substituted into (3.7). For v ∈ [d]∗ with t -⊆ v either (i) v ∩ t -= ∅

or (ii) v ∩ t = ∅. Consider case (i) first. We have

/t
rt,N

[
Asv,nv̄ [f ]p̂sv nv

]
= /t∩v

rt∩v,N [p̂sv nv
]/t\v

rt\v,N [Asv,nv̄ [f ]] .

Since Asv,nv̄ [f ] = ĥnv̄ , where h is a function of xv̄ that obeys the first k derivative conditions, we may apply
Lemma 12 to give

∣∣/t
rt,N

[
Asv,nv̄ [f ]p̂sv nv

]∣∣ !
∏

j∈t∩v

N−2sj−rj−2
∏

j∈t\v

N−2k−rj−2n̄
−2sv\t−2

v\t n̄−2k−2
t∪v

! N−|rt|−2|t∩v|−2(k+1)(|t\v|)n̄−2
t̄ ! N−3k−2n̄−2

t̄ .

Here the final inequality follows since, by assumption, |t∩v|, |t\v| ≥ 1. Now consider case (ii). Since t∩v = ∅,
we have

/t
rt,N

[
Asv,nv̄ [f ]p̂sv nv

]
= /t

rt,N [Asv,nv̄ [f ]] p̂sv nv
.

Using Lemma 12 and (3.10) we obtain
∣∣/t

rt,N

[
Asv,nv̄ [f ]p̂sv nv

]∣∣ !
∏

j∈t

N−rj−2k−2
∏

j /∈v∪t

n̄−2k−2
j

∏

j∈v

n̄
−2sj−2
j ! N−|rt|∞−2k−2n̄−2

t̄ ! N−3k−2n̄−2
t̄ ,

since |rt|∞ = k. This completes the proof.
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We now derive a bound for Gnt̄
:

Lemma 14. Suppose that f ∈ H3(k+1)
mix (Ω). Then the function Gnt̄

defined by (3.8) satisfies the bound

|Gnt̄
(xt)| ! N−3k−2n̄−2

t̄ , (3.12)

uniformly for xt in compact subsets of (−1, 1)|t|.

Proof. Since xt ∈ (−1, 1)|t| it suffices to bound

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

∣∣∣/t
(ru;k+1),(nū;N)[v̂m]

∣∣∣ , (3.13)

by the right hand side of (3.12). To do so we substitute the two terms of (3.11) into (3.13) and consider
them separately. For the first term we have

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

k−1∑

|st|∞=0

∣∣∣/t
(ru;k+1),(nū;N)

[
p̂stnt

Est,nt̄
[f ]

]∣∣∣ . (3.14)

Since u ⊆ t, we observe that

/t
(ru;k+1),(nū;N)

[
p̂stnt

Est,nt̄
[f ]

]
= Est,nt̄

[f ]
∏

j∈u

/j
rj ,N [p̂sj nj

]
∏

j∈t\u

/j
k+1,nj

[p̂sj nj
].

Using Lemmas 7 and (3.10) we deduce that
∣∣∣/t

(ru;k+1),(nū;N)

[
p̂stnt

Est,nt̄
[f ]

]∣∣∣ ! N2(|st|∞−k)
∏

j∈u

N−2sj−rj−2n̄−2
t̄ n̄−2sū−k−3

ū .

Substituting this into (3.14) we obtain

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

k−1∑

|st|∞=0

∣∣∣∣∣/
t
(ru;k+1),(nū;N)

[
p̂stnt

Est,nt̄
[f ]

]
∣∣∣∣∣

!
∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

k−1∑

|st|∞=0

N2(|st|∞−k)
∏

j∈u

N−2sj−rj−2n̄−2
t̄ n̄−2sū−k−3

ū

! n̄−2
t̄

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

k−1∑

|st|∞=0

N2(|st|∞−k)
∏

j∈u

N−2sj−rj−2
∏

j∈t\u

N−2sj−k−2

! n̄−2
t̄

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

N−2k−|ru|−2|u|−(k+2)(|t|−|u|) ! N−3k−2n̄−2
t̄ .

Here the last inequality follows by noting that |t|−| u| ≥ 1.
We now consider the second term of (3.11) substituted into (3.13):

∑

v∈[d]∗

t)⊆v

k−1∑

|sv|∞=0

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

∣∣∣/t
(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]∣∣∣ . (3.15)
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As in the proof of Lemma 13 we split this into two cases: either (i) v ∩ t -= ∅ or (ii) v ∩ t = ∅. Suppose that
we consider case (i). Since v ∩ t -= ∅ we have

/t
(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]
= /t∩v

(ru∩v ;k+1),(nū∩v ;N)

[
p̂sv nv

]
/t∩v̄

(ru∩v̄ ;k+1),(nū∩v̄ ;N) [Asv,nv̄ [f ]] .

We have ∣∣∣/t∩v
(ru∩v ;k+1),(nū∩v ;N)

[
p̂sv nv

]∣∣∣ !
∏

j∈u∩v

N−2sj−rj−2n̄−2sū∩v−k−3
ū∩v n̄

−2sv\t−2

v\t .

Furthermore ∣∣∣/t∩v̄
(ru∩v̄ ;k+1),(nū∩v̄ ;N) [Asv,nv̄ [f ]]

∣∣∣ !
∏

j∈u∩v̄

N−2k−rj−2n̄−3k−3
ū∩v̄ n̄−2k−2

t∪v
.

Combining these two estimates we obtain
∣∣∣/t

(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]∣∣∣ !
∏

j∈u∩v

N−2sj−rj−2
∏

j∈u∩v̄

N−2k−rj−2n̄−2sū∩v−k−3
ū∩v n̄−3k−3

ū∩v̄ n̄−2
t̄ .

Hence
∣∣∣∣∣

k−1∑

|sv|∞=0

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

/t
(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]
∣∣∣∣∣

!
k−1∑

|sv|∞=0

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∏

j∈u∩v

N−2sj−rj−2
∏

j∈u∩v̄

N−2k−rj−2
∏

j∈ū∩v

N−2sj−k−2
∏

j∈ū∩v̄

N−3k−2n̄−2
t̄

!
∑

u∈[t]∗

u )=t

N−2(k+1)|u∩v̄|N−(k+2)|ū∩v|N−(3k+2)|ū∩v̄|n̄−2
t̄ .

We claim that this term is ! N−3k−2n̄−2
t̄ . We have two possibilities: either ū ∩ v̄ -= ∅ or ū ∩ v̄ = ∅. If

ū∩ v̄ -= ∅ then the result follows immediately. Suppose that ū∩ v̄ = ∅. In this case, it follows that u∩ v̄ -= ∅
and ū ∩ v -= ∅. Hence we also obtain the result. This completes case (i).

Next consider case (ii). Since v ∩ t = ∅ we have

/t
(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]
= /t

(ru;k+1),(nū;N) [Asv,nv̄ [f ]] p̂sv nv
.

In the standard manner we obtain
∣∣∣/t

(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]∣∣∣ !
∏

j∈u

N−2k−rj−2n̄−3k−3
ū n̄−2k−2

v̄\t n̄−2sv−2
v ! N−2(k+1)|u|−|ru|∞ n̄−3k−3

ū n̄−2
t̄ .

Hence, in this case

k−1∑

|sv|∞=0

∑

u∈[t]∗

u )=t

k∑

|ru|∞=0

∑

|nū|∞≥N

∣∣∣/t
(ru;k+1),(nū;N)

[
Asv,nv̄ [f ]p̂sv nv

]∣∣∣ !
∏

j∈ū

N−3k−2n̄−2
t̄ ! N−3k−2n̄−2

t̄ ,

where the final inequality follows since |ū| ≥ 1. This completes the proof.

3.3 Analysis of the auto-correction phenomenon and numerical results

We may now prove the key result of this section:

Theorem 8. Suppose that FN,k[f ] is the multivariate Eckhoff approximation of f ∈ H3(k+1)
mix (Ω) using the

values m(r) = N + r, r = 0, ..., k − 1. Then f(x) − FN,k[f ](x) is O
(
N−3k−2

)
uniformly for x in compact

subsets of Ω.
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Figure 3: Graphs of |f(x) − FN,k[f ](x)| for −1 ≤ x ≤ 1 (left), −0.75 ≤ x ≤ 0.75 (middle) and −0.5 ≤ x ≤ 0.5
(right), where N = 50, k = 2 and f(x) = x2 sin 5x + cos 6x.

(x1, x2) N = 10 N = 20 N = 30 N = 40 N = 50
(1, 1) 4.958× 10−8 1.307× 10−10 3.799× 10−12 3.022× 10−13 4.202× 10−14

(−1,−1) 6.341× 10−8 1.372× 10−10 3.723× 10−12 2.861× 10−13 3.898× 10−14

( 1
2 , 2

3 ) 1.189× 10−12 4.293× 10−15 2.039× 10−19 4.673× 10−19 1.485× 10−20

(0, 0) 9.542× 10−13 1.885× 10−16 9.473× 10−19 2.037× 10−20 1.002× 10−21

Table 2: Pointwise error |f(x1, x2)−FN,k[f ](x1, x2)| for various values of (x1, x2) and N , where k = 4 and f(x1, x2) =`
e3x1 + e−4x1

´ `
sin 5x2 + 1

2

´
. Results to 4 significant figures.

Proof. Substituting the bounds derived in Lemmas 13 and 14 into the expansion (3.6) immediately yields
the result.

Note that for the auto-correction phenomenon we require f ∈ H3(k+1)
mix (Ω), rather than just f ∈ H3k+1

mix (Ω)
or f ∈ H3k+2

mix (Ω) for uniform convergence (see Theorem 6). This extra smoothness condition is also present
for polynomial subtraction: here H2k+3

mix (Ω)-regularity is required to obtain an O
(
N−2k−2

)
error away from

the boundary, rather than just H2k+2
mix (Ω)-regularity for uniform convergence (see [1]). In [29] the author

demonstrates that slightly different smoothness assumptions can be imposed depending on whether k is even
or odd. For simplicity we do not make this distinction.

For values general values m(r) it can be shown using similar methods that an auto-correction phenomenon
is present provided the first l ≤ k values are chosen so that m(r) = N + r, r = 0, ..., l − 1. In this case the
convergence rate away from the boundary is O

(
N−2k−l−2

)
. In particular if m(0) = N , as is the case with

the choices (1.15) and (1.16), then the convergence rate is O
(
N−2k−3

)
.

The auto-correction phenomenon is also exhibited by the error f −FN,k[f ] measured in the L2(Ω′) norm,
where Ω′ is some set compactly contained in Ω. This has been studied in the univariate, Fourier case in [29]
and the extension to the multivariate, modified Fourier case is straightforward.

Though the analysis in this section was carried out for the approximation based on Cardinal polynomials,
it is a simple exercise to extend it to the general subtraction bases described in Section 1. Hence we
have established the existence of an auto-correction phenomenon for arbitrary dimension d and arbitrary
subtraction basis q[i]

r .
In Figure 3 we demonstrate the univariate auto-correction phenomenon. For the particular choice of

function and parameters the error at the endpoints is roughly 10−8, whereas in the interval [−0.5, 0.5] this
figure is 5× 10−13.

In Table 2 we present numerical results for the auto-correction phenomenon in the bivariate setting. Once
more we observe that the error inside the domain is much smaller than on the boundary.

4 Hyperbolic cross index sets and Eckhoff ’s method

Thus far the approximation FN,k[f ] has been based on the full index set (2.2). This is arguably the most
natural index set to consider. However, it turns out that the truncated expansion FN [f ] of a function f
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based on this index set includes a large number of terms that have a insignificant contribution to the overall
sum.

In view of this, an alternative approach to define IN is to include only those terms in FN [f ] that are
greater in absolute value than some tolerance ε. This is the idea of hyperbolic cross index sets, [3, 33]. In
many applications, modified Fourier series included, such an approach leads to a greatly reduced index set
of size |IN | = O

(
N(log N)d−1

)
. Moreover the approximation FN [f ] converges to f at a comparable rate. In

this section we consider the use of such a set in Eckhoff’s approximation.

4.1 A hyperbolic cross for modified Fourier coefficients

To develop a hyperbolic cross index set for modified Fourier coefficients we need an estimate for |f̂ [i]
n |. This

is provided by the bound |f̂ [i]
n | ! (n̄1...n̄d)−2. If we set ε = N−2, then the term f̂ [i]

n is included in FN [f ] only
if n̄1...n̄d < N . This leads to a hyperbolic cross index set:

IN =
{
n ∈ Nd : n̄1...n̄d < N

}
. (4.1)

This set, in conjunction with modified Fourier series, has been investigated in [1, 15]. It is lementary to show
that |IN | = O

(
N(log N)d−1

)
; a vast reduction over the full index set (2.2) for which this value is O

(
Nd

)
.

Furthermore, we have the following result proved in [1]:

Theorem 9. Suppose that f ∈ H2k+2
mix (−1, 1)2 and that Fe

N,k[f ] is the exact polynomial subtraction approx-
imation to f based on the hyperbolic cross index set (4.1). Then

‖f − Fe
N,k[f ]‖∞ = O

(
N−2k−1(log N)d−1

)
, ‖f − Fe

N,k[f ]‖0 = O
(
N−2k− 3

2 (log N)
d−1
2

)
,

‖f − Fe
N,k[f ]‖q = O

(
Nq−2k− 3

2

)
, q = 1, ..., 2k + 1.

If, additionally, f ∈ H2k+3
mix (Ω) then f(x)−Fe

N,k[f ](x) is O
(
N−2k−2(log N)d−1

)
uniformly in compact subsets

of Ω.

In view of Theorem 5 we conclude that replacing the full index set (2.2) by (4.1) does not affect the
convergence rate of the approximation aside from possibly a logarithmic factor (note that setting k = 0
in the above theorem establishes the convergence rate of FN [f ] to f). This, combined with the significant
reduction in number of expansion terms, makes hyperbolic cross index sets greatly beneficial.

4.2 The hyperbolic cross version of Eckhoff method

Given n ∈ Nd we define |n|0 = n̄1...n̄d so that the hyperbolic cross index set (4.1) includes only those n with
|n|0 < N . To adapt the multivariate version of Eckhoff’s method to use hyperbolic cross index sets we first
replace the function gk given in (2.13) by

gk(x) =
∑

i∈{0,1}d

∑

t∈[d]

k−1∑

|rt|∞=0

N−1∑

|nt̄|0=0

Ā[i]
rt,nt̄

[f ]p[it]
rt

(xt)φ[it̄]
nt̄

(xt̄). (4.2)

The new function gk satisfies the conditions

ĝk
[i]
n = f̂ [i]

n , n ∈ Mk,

where Mk is the index set

Mk =
⋃

t∈[d]

{
n = (n1, ..., nd) ∈ Nd : nj = m(rj), rj = 0, ..., k − 1 if j ∈ t, |nt̄|0 < N, otherwise

}
.

Note that the only difference in the definitions of gk and Mk is the replacement of |nt̄|∞ by |nt̄|0. We now
define the approximation FN,k[f ] in the standard manner:

FN,k[f ] = FN [f − gk] + gk.
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k 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16

1 121 1521 31329 — — — — —
89 513 3053 17461 97241 — — —

2 49 121 561 1849 10201 60025 — —
49 105 297 841 2269 6269 17501 48485

3 81 121 169 441 1225 3969 13689 47089
81 117 193 353 697 1333 2773 5585

4 81 121 169 289 529 1089 2401 5929
81 121 165 257 397 593 1005 1649

5 121 121 169 289 361 625 1089 2025
121 121 169 273 329 493 789 1145

Table 3: Number of terms in the full (top value) and hyperbolic cross (bottom value) index set versions of Eckhoff’s
approximation applied to the function f(x, y) = e2x (cos 3y + sin 2y) required to obtain an accuracy of |FN,k[f ](1, 1)−
f(1, 1)| < 10−2j for j = 1, 2, ..., 8 (the dash indicates where more than 100, 000 terms are required to obtain the
prescribed tolerance).

1000 2000 3000 4000 5000 6000

!8

!6

!4

!2
1000 2000 3000 4000 5000

!14
!12
!10
!8
!6
!4
!2 1000 2000 3000 4000 5000 6000

!15

!10

!5

k = 2 k = 4 k = 6

Figure 4: Log error log10 |f(1, 1, 1)−FN,k[f ](1, 1, 1)| against number of approximation terms for the full (thin line)
and hyperbolic cross (thick line) versions of Eckhoff’s method applied to (4.3).

Here FN [h] is the truncated modified Fourier series of a function h based on the index set (4.1).
For d = 2 there is no difference between the functions given in (2.13) and (4.2). The only difference

between the two resulting approximations arises from index set used in FN [·]. However, for d ≥ 3, the
functions (2.13) and (4.2) are distinct.

It is readily seen that the operational cost of forming the hyperbolic cross version of Eckhoff’s approx-
imation is O

(
max{kd+1, kdN(log N)d−1}

)
. For k . N this represents a significant reduction over the full

index set version, where the corresponding figure is O
(
max{kd+1, kdNd}

)
(see Section 2.3).

In Table 3 we demonstrate the improvement offered by this approximation. As an example, we observe
that for k = 3 to obtain an error of less than 10−16 requires around 50, 000 terms for the full index set
version of Eckhoff approximation, but only around 5, 500 for its hyperbolic cross counterpart.

For d = 3 the improvement offered is more substantial. In Figure 4 we compare the error of the full and
hyperbolic cross versions Eckhoff’s method applied to the function

f(x1, x2, x3) =
(
x2

1 cos 5x1 + 46
125 sin 5− 4

25 cos 5
)
(cosh 2x2 − cosh 1 sinh 1)

(
x3 sin 2x3 + 1

2 cos 2− 1
4 sin 2

)
.

(4.3)
For k = 4, using roughly 5000 terms, the hyperbolic cross version offers an error roughly 105 times smaller
than the full version. For k = 6, the hyperbolic cross approximation obtains machine epsilon using roughly
4000 terms. The full index set approximation will not reach this value until the number of terms exceeds
20, 000.

Figure 4 also demonstrates the advantage offered by the combination of Eckhoff’s method and the hy-
perbolic cross. To obtain an accuracy of 10−10 with k = 6 requires less than 2000 terms, whereas to do the
same with the original (k = 0) modified Fourier approximation FN [f ] requires in excess of 1012 terms.

The analysis of this approximation is beyond the scope of this paper. Numerical results indicate that
the uniform convergence rate remains O

(
N−2k−1(log N)d−1

)
. This is a subject of further investigation.
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Unfortunately, numerical results also demonstrate that there is no auto-correction phenomenon for the
hyperbolic cross version of Eckhoff’s method. Away from the boundary the approximation converges at the
same rate as exact polynomial subtraction. In other words, the error is O

(
N−2k−2(log N)d−1

)
.

Conclusions and future work

The aim of this paper was the convergence acceleration of multivariate modified Fourier expansions. To do
so we have generalized Eckhoff’s method to multivariate expansions, and proved that this approach yields
not only faster uniform convergence but also an auto-correction phenomenon inside the domain. We have
then considered two improvements. First, we have greatly increased numerical stability by using a particular
subtraction basis. Second, we have demonstrated how a significant reduction in the number of approximation
coefficients can be achieved by using a hyperbolic cross index set. The combination of Eckhoff’s method and
such index sets yields accurate approximations comprising only a relatively small number of terms.

There are a number of areas for future investigation. First, as mentioned in the Introduction, Eckhoff’s
method can be extended to non-Cartesian product domains, provided suitable orthogonal expansions are
known. Due to their applications in spectral elements, the equilateral and right isosceles triangles are two
important examples which warrant future consideration.

In [1, 2] the author considers the application of modified Fourier series to the spectral approximation of
second order boundary value problems. The method possesses a number of advantages including mild condi-
tioning of the discretization matrix and the availability of an optimal, diagonal preconditioner. However, the
convergence rate is only cubic in the truncation parameter. Accelerating convergence is a subject of current
investigation, including the incorporation of the methods developed in this paper into such approximations.

Finally, there are several open problems relating to this paper itself. First, as mentioned, the analysis of
the hyperbolic cross version of Eckhoff’s method has not yet been carried out. We intend to address this in
a future paper. Second, we have demonstrated numerically the advantage offered by the subtraction basis
(1.7). However, we are yet to explain theoretically why this is the case.
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