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Abstract

The computation of the linear Schrödinger equation presents major challenges
because of the presence of a small parameter. Assuming periodic boundary con-
ditions, the standard approach consists of semi-discretisation with a spectral
method, followed by an exponential splitting. In this paper we sketch an al-
ternative strategy. Our analysis commences from the investigation of the free
Lie algebra generated by differentiation and by multiplication with the interac-
tion potential: it turns out that this algebra possesses structure that renders it
amenable to a very effective form of asymptotic splitting: exponential splitting
where consecutive terms are scaled by increasing powers of the small parame-
ter. This leads to methods that attain high spatial and temporal accuracy and
whose cost scales like O(N) or O(N logN), where N is the number of degrees of
freedom.

1 Introduction

The linear Schrödinger equation plays central role in a wide range of applications and
is the fundamental model of quantum mechanics (Griffiths 2004). Its computation
presents numerous enduring challenges (Jin, Markowich & Sparber 2011) which form
the centrepiece of this paper.

We consider the standard linear Schrödinger equation in a single space variable,

ih̄
∂u

∂t
= − h̄2

2m

∂2u

∂x2
− Ṽ (x)u, t ≥ 0, x ∈ [−(2m)−1/2, (2m)−1/2], (1.1)

where u = u(x, t), given with an initial condition and periodic boundary conditions,
where the interaction potential Ṽ is a periodic function and m is the mass of the
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underlying particle. We note, that the important case of unbounded potentials can
also be included in this setting, when we propagate bounded states inside a sufficiently
large interval. The parameter h̄, the reduced Planck constant , is truly minute, h̄ ≈
1, 05457168 · 10−34 Joule secs, while m is a small quantity, although substantially
larger than h̄. However, since physical interest is in fairly small spatial and temporal
‘windows’, it is usual to rescale x = x̃h̄/ε/

√
2m and t = t̃h̄/ε so that (1.1) is replaced

with

iε
∂u

∂t
= −ε2 ∂

2u

∂x2
− V (x)u, t ≥ 0, x ∈ [−1, 1], (1.2)

V (x) = Ṽ ((2m)−1/2xh̄/ε), where ε > 0 is a small parameter: it is useful to keep in
mind the range 10−8 ≤ ε ≤ 10−4.

The equation (1.2) is a univariate model for the considerably more important
multivariate linear Schrödinger equation,

iε
∂u

∂t
= −ε2E∇2u− V (x)u, t ≥ 0, x ∈ [−1, 1]d, (1.3)

where u = u(t,x) and E is a diagonal matrix, with periodic boundary conditions. This
equation models the evolution of a system of particles in (typically) R3. The method-
ology of this paper lends itself to straightforward generalisation to (1.3) provided that
the dimension d is moderate. Large values of d require combining our approach with
other computational techniques, an area under current investigation.

The small size of ε is a source of substantial difficulties in the numerical discretiza-
tion of (1.2) because, using a naive approach, rapid oscillations require a spatial res-
olution of O(ε) which is often impractical or, at best, exceedingly expensive. This is
the motivation to pursue alternative approaches, based in the main on the concept of
exponential splittings (Faou 2012, Jin et al. 2011, Lubich 2008, McLachlan & Quispel
2002).

The construction of exponential splitting methods typically commences from space
discretization. Rewriting (1.2) in the form

∂u

∂t
= iω−1 ∂

2u

∂x2
+ iωV (x)u, t ≥ 0, x ∈ [−1, 1], (1.4)

where ω = ε−1 � 1, we let the vector u(t) ∈ CN represent an approximation to
the solution at time t: typically, the components of u are either approximations to
the values of u on a grid or to Fourier coefficients of this function. Replacing the
second derivative operator by a matrix K (thus, replacing an infinite-dimensional
linear operator by a finite-dimensional one), we obtain the ODE system

u′ = i(ω−1K + ωD)u, t ≥ 0, (1.5)

where u(0) is derived from the initial conditions and D represents a multiplication by
the interaction potential V in the finite-dimensional space.

The exact solution of (1.5) is of course

u(t) = exp
(
it(ω−1K + ωD)

)
u(0)
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and a natural temptation is to approximate it (using small time steps) by any of many

methods to compute the matrix exponential, u((n + 1)∆t) ≈ ei∆t(ω−1K+ωD)u(n∆t),
n ∈ Z+. This is generally accepted as a poor idea, because the vastly different scales
of ω−1K and ωD require either very small time step ∆t or exceedingly expensive
methods to approximate the exponential (e.g. Krylov subspace methods of dimension
≈ N) to attain reasonable accuracy. The alternative is to separate scales by means of
an exponential splitting. The starting point is usually the Strang splitting

eit(ω−1K+ωD) = e
1
2 itω−1KeitωDe

1
2 itω−1K +O

(
t3
)
. (1.6)

This has the clear virtue of separating scales. Moreover, usually each individual ex-
ponential can be computed very affordably: e.g., once we semidiscretise (1.4) with

a spectral method, K is diagonal and D a circulant, therefore e
1
2 itω−1K is a diagonal

matrix, while eitωD can be approximated in O(N logN) operations with FFT. Yet
the order of approximation is unacceptably low. The standard generalisation of the
Strang splitting bears the form

eiα1tω
−1Keiβ1tωDeiα2tω

−1K · · · eiαrtω
−1KeiβrtωDeiαrtω

−1K · · · eiα2tω
−1Keiβ1tωDeiα1tω

−1K.

The palindromic form of this splitting (it reads the same from the left and from the
right), which is referred to as symmetric splitting in much of the literature, is not
accidental, since it guarantees higher order. The coefficients αi and βi are typically
chosen to ensure either higher order (because of palindromy, the order is always even)
or smaller error constants or both (Blanes, Casas & Murua 2006, McLachlan & Quispel
2002).

This approach retains the main virtues of (1.6), namely separation of scales and the
ease of computation of individual exponentials. However, a inordinately large number
of exponentials is required to attain significant order. The simplest means toward a
high-order splitting, the Yošida method (McLachlan & Quispel 2002, Yošida 1990),
calls for r = 3p−1 (which translates to 2 · 3p−1 + 1 exponentials) to attain order 2p.
Our aim in this paper is to present splittings that require far fewer exponentials to
attain given order: we wish the number of exponentials to grow linearly, rather than
exponentially, with order. Moreover, once the number of exponentials becomes large,
ideally we do not want all of them to fit into the same two scales but wish for them
to become increasingly smaller: to have an asymptotic splitting .

In this paper we introduce a family of exponential splittings with these favourable
features. More specifically, we introduce and analyse exponential splittings of the form

ei∆t(ω−1K+ωD) = eR0eR1 · · · eRseTs+1eRs · · · eR1eR0 = O
(
εs+3/2

)
, (1.7)

where

Rk = Rk(∆t, ε,K,D) = O
(
εk−1/2

)
, k = 0, 1, . . . , s,

Ts+1 = Ts+1(∆t, ε,K,D) = O
(
εs+1/2

)
(recall that ω = ε−1) and variations on this theme. Note a number of critical differences
between (1.7) and standard exponential splittings.
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Firstly, we quantify the error not in terms of the step-size ∆t but of the small
parameter ε. Of course, there are three small quantities at play: ε,∆t and 1/M
(where M is the number of degrees of freedom in the semidiscretisation). By letting
power laws govern the relationship between ε and the choices of ∆t and M , we express
the error in the single quantity ε.

Secondly, the number of individual terms in (1.7) is remarkably small and it grows
linearly with s – compare with the exponential growth, as a function of order, in the
number of components of standard splittings. The reason is that the arguments of the
exponentials in (1.7) decay increasingly more rapidly in ε.

Thirdly, each of these exponentials can be computed rapidly. Some of the Rks are
diagonal matrices, whereby computing the exponential is trivial. Other are circulants
and can be computed with FFT. Finally, because of the minute size of the arguments
for sufficiently large k, the remaining exponentials can be evaluated up to O

(
εs+3/2

)
using a very low-dimensional Krylov subspace method.

The asymptotic splitting (1.7) is possible because we have deliberately breached the
consensus in the design of exponential splittings: the termsRk and Ts+1 contain nested
commutators. The use of commutators is usually frowned upon because of their cost,
and also because they are believed to increase in norm. However, as we demonstrate
in Section 2, in the current setting the use of commutators, appropriately handled,
is benign. The first idea is to forego the standard steps of first semidiscretising like
in (1.5) and then splitting the exponential: we semidiscretise only once the splitting
has been done! Thus, the entire narrative take place within the free Lie algebra
F = FLA{∂2

x, V }, where ∂x = d
dx and V is the operation of multiplying with the

interaction potential: since we have not yet discretised, both are infinite-dimensional
linear operators. We demonstrate in Section 2 that F can be embedded in a larger
Lie algebra G, where the commutation has simple, straightforward interpretation. To
all intents and purposes, commutators are replaced by simple linear combinations of
powers of ∂x. Moreover – and this is what lets all this procedure work in a beneficial
manner – these are smaller powers of ∂x then naively expected. Section 2 also describes
two Lie-algebraic concepts which are at the heart of our methodology, the symmetric
BCH formula and the Zassenhaus splitting.

In Section 3 we introduce – still working in an infinite-dimensional operatorial
setting – our exponential splitting. This requires a recursive procedure, based upon
repeated application of the symmetric BCH formula in G, working in the Hall basis.
Although the underlying algebra is time consuming, it needs be done just once and
the outcome is fairly simple.

Section 4 is concerned with semidiscretisation. We consider several alternatives,
finally concluding that finite differences of appropriately high order are not just the
simplest but the most appropriate option, since they lend themselves to very rapid
calculation of matrix exponentials.

The computation of matrix exponentials is the theme of Section 5. Most exponen-
tials in (1.7) are trivial to calculate because the underlying matrix is either diagonal or
a circulant. The one exception are matrices of size O(εα) for sufficiently large α > 0.
Therefore, once they are calculated by Krylov subspace methods, the price tag is very
small.

In Section 6 we present a number of preliminary numerical results, while Section 7
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is devoted to brief conclusions and pointers for future research.

2 A Lie-algebraic setting

2.1 An algebra of operators

The vector field in the linear Schrödinger equation (1.5) is a linear combination of
the action of two operators, ∂2

x and the multiplication by the interaction potential V .
Since the calculation of exponential splittings entails nested commutation, the focus
of our interest is on the free Lie algebra

F = FLA{∂2
x, V },

i.e. the linear-space closure of all nested commutators generated by ∂2
x and V . The

elements of F are operators, acting on the initial value of (1.5): for the purpose of this
paper and for simplicity sake we assume that the initial value, hence the solution of
(1.5) for moderate values of t ≥ 0, is a periodic function in C∞[−1, 1], but our results
extend in a straightforward manner to functions of lower smoothness.

To compute commutators we need in principle to describe their action on functions,
e.g.

[V, ∂2
x]u = V (∂2

xu)− ∂2
x(V u) = −(∂2

xV )u− 2(∂xV )∂xu

implies that [V, ∂2
x] = −(∂2

xV ) − 2(∂xV )∂x. We list the lowest order further commu-
tators that form a so called Hall basis (Reutenauer 1993) of the free Lie-algebra F
in Table 1. “Grade” therein refers to the number of “letters” V and ∂2

x in the ex-
pression, while χj is the coefficient of this term in the symmetric BCH formula, cf.
Subsection 2.2.

Table 1: The terms of the Hall basis of F of grade ≤ 4.

j Nested commutator χj grade

H1 ∂2
x 1 1

H2 V 1 1
H3 [V, ∂2

x] 0 2
H4 [[V, ∂2

x], ∂2
x] − 1

24 3

H5 [[V, ∂2
x], V ] − 1

12 3

H6 [[[V, ∂2
x], ∂2

x], ∂2
x] 0 4

H7 [[[V, ∂2
x], ∂2

x], V ] 0 4

H8 [[[V, ∂2
x], V ], V ] 0 4



6 P. Bader, A. Iserles, K. Kropielnicka & P. Singh

Computing the commutators Hj , j = 3, 4, . . . , 8 explicitly, we have

H3 = −(∂2
xV )− 2(∂xV )∂x,

H4 = (∂4
xV ) + 4(∂3

xV )∂x + 4(∂2
xV )∂2

x,

H5 = −2(∂xV )2,

H6 = −(∂6
xV )− 6(∂5

xV )∂x − 12(∂4
xV )∂2

x − 8(∂3
xV )∂3

x,

H7 = 4[(∂xV )(∂3
xV ) + (∂2

xV )2] + 8(∂xV )(∂2
xV )∂x,

H8 = 0.

We note that all the terms belong to the set

G =

{
n∑
k=0

yk(x)∂kx : n ∈ Z+, y0, . . . , yn ∈ C∞[−1, 1] periodic with period 2

}
.

It is trivial to observe that G is itself a Lie algebra.

There are numerous cancellations, similar to H8 = 0, because of the special struc-
ture induced by the letters ∂2

x and V (x), nevertheless, for our exposition it is more
appropriate to operate in the larger Lie-algebra G, where all cancellations will be
taken care of by simple computation of the commutators, according to

 n∑
i=0

fi(x)∂ix,

m∑
j=0

gj(x)∂jx

 =

n∑
i=0

m∑
j=0

i∑
`=0

(
i

`

)
fi(x)

(
∂i−`x gj(x)

)
∂`+jx

−
m∑
j=0

n∑
i=0

j∑
`=0

(
j

`

)
gj(x)

(
∂j−`x fi(x)

)
∂`+ix . (2.1)

2.2 The symmetric BCH formula

Let X and Y be two terms in a Lie algebra g. The symmetric Baker–Campbell–
Hausdorff formula (usually known in an abbreviated form as the symmetric BCH
formula) is

e
1
2XeY e

1
2X = esBCH(X,Y ), (2.2)
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where

sBCH(tX, tY ) (2.3)

= t(X + Y )− t3( 1
24 [[Y,X], X]− 1

12 [[Y,X], Y ]) + t5( 7
5760 [[[[Y,X], X], X], X]

+ 7
1440 [[[[Y,X], X], X], Y ] + 1

180 [[[[Y,X], X], Y ], Y ]

+ 1
720 [[[[Y,X], Y ], Y ], Y ] + 1

480 [[[Y,X], X], [Y,X]]

− 1
360 [[[Y,X], Y ], [Y,X]]) + t7(− 31

967680 [[[[[[Y,X], X], X], X], X], X]

− 31
161280 [[[[[[Y,X], X], X], X], X], Y ]− 13

30240 [[[[[[Y,X], X], X], X], Y ], Y ]

− 53
120960 [[[[[[Y,X], X], X], Y ], Y ], Y ]− 1

5040 [[[[[[Y,X], X], Y ], Y ], Y ], Y ]

− 1
30240 [[[[[[Y,X], Y ], Y ], Y ], Y ], Y ]− 53

161280 [[[[[Y,X], X], X], X], [Y,X]]

− 11
12096 [[[[[Y,X], X], X], Y ], [Y,X]]− 3

4480 [[[[[Y,X], X], Y ], Y ], [Y,X]]

− 1
10080 [[[[[Y,X], Y ], Y ], Y ], [Y,X]]− 1

4032 [[[[Y,X], X], [Y,X]], [Y,X]]

− 1
6720 [[[[Y,X], Y ], [Y,X]], [Y,X]]− 19

80640 [[[[Y,X], X], X], [[Y,X], X]]

− 1
10080 [[[[Y,X], X], Y ], [[Y,X], X]] + 17

40320 [[[[Y,X], Y ], Y ], [[Y,X], X]]

− 53
60480 [[[[Y,X], X], X], [[Y,X], Y ]]− 19

13440 [[[[Y,X], X], Y ], [[Y,X], Y ]]

− 1
5040 [[[[Y,X], Y ], Y ], [[Y,X], Y ]]) +O

(
t9
)
.

The expansion (2.3) can be computed to an arbitrary power of t using an algorithm
from (Casas & Murua 2009). (Because (2.3) is palindromic, only odd powers of t
feature in the expansion.) An observant reader would have noticed that the coefficients
are the numbers χj from Table 1. This is not accidental: once we let X = ∂2

x and
Y = V , the table lists the coefficients up to O

(
t4
)
.

2.3 The Zassenhaus splitting

Unless X and Y commute, it is in general not true that et(X+Y ) = etXetY . The
Zassenhaus splitting (Oteo 1991)

et(X+Y ) = etXetY et
2U2(X,Y )et

3U3(X,Y )et
4U4(X,Y ) · · · , (2.4)

where

U2(X,Y ) = 1
2 [Y,X],

U3(X,Y ) = 1
3 [[Y,X], Y ] + 1

6 [[Y,X], X],

U4(X,Y ) = 1
24 [[[Y,X], X], X] + 1

8 [[[Y,X], X], Y ] + 1
8 [[[Y,X], Y ], Y ],

quantifies this discrepancy. (More terms can be generated using the – non-symmetric
– BCH formula.)

The splitting (2.4) is not well known and seldom used in computation, for the
perfectly valid reason that it is not palindromic. The natural temptation is thus to
symmetrize it and consider a palindromic splitting of the form

et(X+Y ) = · · · et
5Q5(X,Y )et

3Q3(X,Y )e
1
2 tXetY e

1
2 tXet

3Q3(X,Y )et
5Q5(X,Y ) · · · (2.5)
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where we can deduce by inspection of (2.3), that

Q3(X,Y ) = 1
48 [[Y,X], X] + 1

24 [[Y,X], Y ].

Rather than engaging in increasingly tedious calculations to compute Q5, we replace
(2.5) by a more computation-friendly splitting. We commence from the symmetric
BCH formula (2.3),

e−
1
2 tXet(X+Y )e−

1
2 tX = esBCH(−tX,t(X+Y )),

which we rewrite in the form

et(X+Y ) = e
1
2 tXesBCH(−tX,t(X+Y ))e

1
2 tX . (2.6)

It follows from (2.3) that

sBCH(−tX, t(X + Y )) =W [1] = tY +O
(
t3
)
,

and we note that we have extracted the outer term tX from the inner exponent. We
iterate (2.6) over the resulting term and continue to symmetrically pull-out the lowest
order terms, one by one, until the central exponent reaches the desired high order,

exp t(X + Y ) = e
1
2 tXesBCH(−tX,t(X+Y ))e

1
2 tX

= e
1
2 tXe

1
2 tY esBCH(−tY,sBCH(−tX,t(X+Y )))e

1
2 tY e

1
2 tX .

Notice that by pulling-out, we essentially subtract a term and add higher order cor-
rections. It is important to observe that the order of the exponent given by the sBCH
formula (2.6) is never decreased by this procedure1 and thus we can easily control
the order of the approximation error when truncating the BCH formula. With the
notation

W [k+1] = sBCH(−W [k],W [k]), W [0] = t(X + Y ), (2.7)

the result after s steps can be written as

exp t(X + Y ) = e
1
2W

[0]

e
1
2W

[1]

· · · e 1
2W

[s]

eW
[s+1]

e
1
2W

[s]

· · · e 1
2W

[1]

e
1
2W

[0]

.

We emphasise that, in principle, we can freely choose the elements W [k] that we want
to extract. A first idea is to choose the W [k] = O

(
t2k−1

)
for k > 0 and W [0] =

O(t), which yields a separation of powers, analogous to (2.5), and thus for s stages
and approximating W [s+1] = W [s+1] + O

(
t2s+3

)
, we obtain a symmetric Zassenhaus

splitting of order 2s+ 2.
We have almost established the splitting (1.7) – ‘almost’ because of yet another

consideration. In standard splittings, e.g. in the context of a numerical solution of
Hamiltonian ordinary differential equations, there is usually a single small parameter,
∆t (the time step), and it makes perfect sense to expand in its powers. However, once
we contemplate the discretization of (1.4), we have three small parameters to reckon
with:

1Unless a non-existing term is subtracted and thus newly introduced instead of removed.
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1. The built-in small parameter ε = ω−1;

2. The time step ∆t;

3. 1/M , where M is the number of degrees of freedom in the spatial semidiscreti-
sation.

Although we derive our splitting before the infinite-dimensional operator ∂2
x has been

discretised, we must keep the eventual discretisation at the back of our mind. In
other words, sooner or later (more specifically, in Section 4) we replace ∂2

x with a
differentiation matrix acting on an appropriate M -dimensional space: M might be
the number of nodal values or of Fourier modes. It is elementary that the norm of a
differentiation matrix corresponding to ∂nx scales like O(Mn), n ∈ N. Therefore, we
must employ in our analysis the shorthand ∂2

x ∼ O
(
M2
)
.

We propose to deal with three small parameters in unison by converting them
into a single currency. More specifically, we assume that our choice of ∆t and M is
governed by the scaling laws

M ∼ O(ωρ) = O
(
ε−ρ
)
, ∆t ∼ O

(
ω−σ

)
= O(εσ) , (2.8)

where ρ, σ > 0 are given. More specifically, we assume that each ∂nx scales likeO(ε−nρ).
The simplest and most obvious choice of parameters in (2.8) is ρ = σ = 1

2 and this
is what we assume in the next section.

3 An asymptotic splitting

3.1 Towards an asymptotic splitting

Recalling that ρ = σ = 1
2 , we commence in in this section with an asymptotic splitting

(1.7) with s = 2, i.e. bearing the error of O
(
ε7/2

)
. Given that ε > 0 is very small,

this presents a method which is very accurate – arguably, of higher accuracy than
required in standard numerical computations. We will expand the commutators in
powers of ε and successively remove them from the core of our expansion, aiming for
W [j] = O

(
εj−1/2

)
. Our next observation is that ∆t is always multiplied by i, therefore

it is handy to let

τ = i∆t = O
(
ε1/2

)
.

Note that τω−1δ2
x = O

(
ε1/2

)
and τωV = O

(
ε−1/2

)
, or more generally

τ `ωm∂nx = O
(
ε`/2−m−n/2

)
, ε→ 0. (3.1)

We can now commence the algorithm (2.7), setting

W [0] = τωV + τω−1δ2
x, W [0] = W [0] = τωV.

With the help of (2.3), we compute the commutators in W [1] = sBCH(−W [0],W [0])
according to (2.1). This task faces us with long and tedious algebra, but can, however
be automatized with a computer algebra programme. It is worth pointing out, that all
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simplifications, such as [V, ∂2
x], V ], V ] = 0 are automatically performed once we work

in the larger Lie algebra S with differential operators and scalar functions. Likewise,
there is no need for a tedious representation of expansion elements in, say the Hall
basis, because this is done automatically in G.

Substituting and aggregating terms of the same order of magnitude, we obtain

W [1] =

O(ε1/2)︷ ︸︸ ︷
τω−1∂2

x + 1
12τ

3ω(∂xV )2 (3.2)

+

O(ε3/2)︷ ︸︸ ︷
1
60τ

5ω(∂2
xV )(∂xV )2 − 1

3τ
3ω−1(∂2

xV )∂2
x−

O(ε2)︷ ︸︸ ︷
1
3τ

3ω−1(∂3
xV )∂x

+

O(ε5/2)︷ ︸︸ ︷
τ3ω−1 1

12 (∂4
xV ) + τ5ω−1{− 1

90 (∂3
xV )(∂xV ) + 4

45 (∂2
xV )2}∂2

x

+

O(ε5/2)︷ ︸︸ ︷
τ7ω{ 1

840 (∂3
xV )(∂xV )3 + 1

945 (∂2
xV )2(∂xV )2}

+

O(ε3)︷ ︸︸ ︷
τ5ω−1{ 1

6 (∂4
xV )(∂xV )− 1

90 (∂3
xV )(∂2

xV )}∂x +O
(
ε7/2

)
.

Unfortunately, (3.2) contains terms of order O
(
ε2
)

and O
(
ε3
)

that are both due
to the presence of odd powers of ∂x. This presence is worrisome for an important
reason, namely stability. Both ∂2

x and multiplication by V are Hermitian operators,
therefore τ(ω−1∂2

x+ωV ) is a skew-Hermitian operator: its exponential is thus unitary.
This survives under eventual discretisation, because any reasonable approximation of
∂2
x preserves Hermitian structure. However, ∂x (and, in general, odd powers of ∂x) is

a skew-symmetric operator and so are its reasonable approximations. Therefore, the
introduction of odd powers of ∂x is fraught with loss of unitarity and stability. An
extra ingredient is required in our algorithm!

3.2 An intermezzo: getting even

Let y be a C1 function. The starting point for our current construction is the identity

y(x)∂x = − 1
2

∫ x

x0

y(ξ) dξ∂2
x − 1

2∂xy(x) + 1
2∂

2
x

[∫ x

x0

y(ξ) dξ ·
]
, (3.3)

where x0 is arbitrary: its direct proof is trivial. Note that, while we have ∂x on the
left, the right-hand side features ∂0

x and ∂2
x, both even powers of the differentiation

operator. Since in principle we might be interested in expanding beyond O
(
ε7/2

)
or

employ different values of ρ and σ, we wish to cater not just for ∂x but for all its odd
powers. The challenge is thus to generalise (3.3) and express y(x)∂2s+1

x , s ∈ Z+, solely
by means of even derivatives.
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Theorem 1 Let s ∈ Z+, define the real sequence {βk}k≥0 by

∞∑
k=0

(−1)kβk
(2k + 1)!

T k =
1

T

(
1− T 1/2

sinhT 1/2

)
and set

Qk(x) = (−1)s−k+1βs−k

(
2s+ 1

2k

)
∂2s−2k+1
x y(x), k = 0, 1, . . . , s, (3.4)

Qs+1(x) =
1

2s+ 2

∫ x

x0

y(ξ) dξ, (3.5)

Pk(x) = −
s+1∑
`=k

(
2`

2k

)
∂2`−2k
x Q`(x), k = 1, 2, . . . , s+ 1. (3.6)

Then

y(x)∂2s+1
x =

s+1∑
k=0

Pk(x)∂2k
x +

s+1∑
k=0

∂2k
x [Qk(x) · ]. (3.7)

Proof We act on the second sum on the right of (3.7) with the Leibnitz rule,
whereby

y∂2s+1
x =

s+1∑
k=1

Pk∂
2k
x +

s+1∑
`=0

2∑̀
k=0

(
2`

k

)
(∂2`−k
x Q`)∂

k
x

=

s+1∑
k=1

Pk∂
2k
x +

s+1∑
k=0

[
s+1∑
`=k

(
2`

2k

)
(∂2(`−k)
x Q`)

]
∂2k
x

+

s∑
k=0

[
s+1∑
`=k+1

(
2`

2k + 1

)
(∂2(`−k)−1
x Q`)

]
∂2k+1
x .

Equating powers of ∂x on both sides, we obtain (3.5), (3.6) and the equations

s+1∑
`=k+1

(
2`

2k + 1

)
∂2(`−k)−1
x Q` = 0, k = s− 1, s− 2, . . . , 0. (3.8)

Our contention is that there exist coefficients {βk}k≥0 such that (3.4) is true. Indeed,
substituting (3.4) in (3.8) yields, after simple algebra, the triangular linear system

s∑
`=k+1

(−1)s−`
(

2s− 2k

2s+ 1− 2`

)
βs−` =

1

2s− 2k + 1
, k = 0, 1, . . . , s− 1.

We deduce that
k−1∑
`=0

(−1)`
(

2k

2`+ 1

)
β` =

1

2k + 1
, k ∈ N.
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Finally, we multiply the last equation by T k−1/(2k)! and sum up for k ∈ N. On the
left we have

∞∑
k=1

1

(2k)!

k−1∑
`=0

(−1)`
(

2k

2`+ 1

)
β`T

k−1 =

∞∑
`=0

(−1)`β`
(2`+ 1)!

∞∑
`=k+1

T k−1

(2k − 2`− 1)!

=

∞∑
`=0

(−1)`β`
(2`+ 1)!

T `
∞∑
k=0

T k

(2k + 1)!

=
sinhT 1/2

T 1/2

∞∑
`=0

(−1)`β`
(2`+ 1)!

T `,

while on the right we obtain

∞∑
k=1

T k−1

(2k + 1)!
=

1

T

(
sinhT 1/2

T 1/2
− 1

)
.

This confirms (3.4) and completes the proof. 2

First few values are β0 = 1
6 , β1 = 7

60 , β2 = 31
126 , β3 = 127

120 , β4 = 511
66 , β5 = 1414477

16380
and β6 = 8191

6 . Practically, just

y∂x = − 1
2

∫ x

0

y(ξ) dξ∂2
x − 1

2∂xy + 1
2∂

2
x

[∫ x

0

y(ξ) dξ ·
]
,

y∂3
x = −(∂xy)∂2

x − 1
4

∫ x

0

y(ξ) dξ∂4
x + 1

4∂
3
xy − 1

2∂
2
x[(∂xy) · ] + 1

4∂
4
x

[∫ x

0

y(ξ) dξ ·
]
,

y∂5
x = 4

3 (∂3
xy)∂2

x − 5
3 (∂xy)∂4

x − 1
6

∫ x

0

y(ξ) dξ∂6
x − 1

2∂
5
xy + 7

6∂
2
x[(∂3

xy) · ]

− 5
6∂

4
x[(∂xy) · ] + 1

6∂
6
x

[∫ x

0

y(ξ) dξ ·
]
.

are ever likely to be needed in practical computation.

3.3 An asymptotic splitting

Now, all necessary tools are available and we dedicate this subsection to illustrate how
to compute the splitting (1.7) with the algorithm in Table 2. Using (3.3) to replace
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Symmetric Zassenhaus Algorithm

s := 0; W [0] := τ(ω−1∂2
x + ωV (x)); W [0] := τωV (x)

do
s := s+ 1
computeW [s] := sBCH(−W [s−1],W [s−1])
rewriteW [s] in even derivatives, cf. (3.7)
expand result in powers of ε
define W [s] := O

(
εs−1/2

)
, s.t. W [s] −W [s] = O

(
εs+1/2

)
while s < desired order smax

Resulting method:

eW
[0]

= eW
[0]/2eW

[1]/2 · · · eW [smax] · · · eW [1]/2eW
[0]/2 +O

(
εsmax+1/2

)
Table 2: Symmetric Zassenhaus splitting of the first kind in even order derivatives

all the occurrences of ∂x in (3.2), we express W [1] in the form

W [1] =

ε1/2︷ ︸︸ ︷
τω−1∂2

x + 1
12τ

3ω(∂xV )2

+

ε3/2︷ ︸︸ ︷
1
60τ

5ω(∂2
xV )(∂xV )2 − 1

6τ
3ω−1{∂2

x[(∂2
xV ) · ] + (∂2

xV )∂2
x}

+

ε5/2︷ ︸︸ ︷
1
12τ

3ω−1(∂4
xV )

+

ε5/2︷ ︸︸ ︷
1

180τ
5ω−1{−∂2

x[(∂3
xV )(∂xV ) · ] + 8∂2

x[(∂2
xV )2 · ]− (∂3

xV )(∂xV )∂2
x + 8(∂2

xV )2∂2
x}

+

ε5/2︷ ︸︸ ︷
1

7560τ
7ω{9(∂3

xV )(∂xV )3 + 8(∂2
xV )2(∂xV )2}+O

(
ε7/2

)
.

Recall that we have started the algorithm with

R0 = 1
2W

[0] = 1
2τωV

and, to progress to the second stage, we choose to eliminate the lowest ε-order term,

R1 = 1
2W

[1] = 1
2τω

−1∂2
x + 1

24τ
3ω(∂xV )2

from W [1].
Although the new W [1] andW [1] are more complicated, the computations are now

much simpler. The main reason is that the ε-order behaves under commutation like

[τ i1ωj1f(x)∂k1x , τ
i2ωj2g(x)∂k2x ] = O

(
τ i1+i2ωj1+j2∂k1+k2−1

x

)
,

and thus, the order increases under very general assumptions. The first commutators
then become,

[W [1],W [1]] = O
(
ε2
)

and [[W [1],W [1]],W [1]], [[W [1],W [1]],W [1]] = O
(
ε7/2

)
.
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Subsequent commutators are even smaller and we obtain

W [2] = sBCH(−W [1],W [1]) = −W [1] +W [1] +O
(
ε7/2

)

=

ε3/2︷ ︸︸ ︷
1
60τ

5ω(∂2
xV )(∂xV )2 − 1

6τ
3ω−1{∂2

x[(∂2
xV ) · ] + (∂2

xV )∂2
x}

+

ε5/2︷ ︸︸ ︷
1
12τ

3ω−1(∂4
xV )

+

ε5/2︷ ︸︸ ︷
1

180τ
5ω−1{−∂2

x[(∂3
xV )(∂xV ) · ] + 8∂2

x[(∂2
xV )2 · ]− (∂3

x)(∂xV )∂2
x + 8(∂2

xV )2∂2
x}

+

ε5/2︷ ︸︸ ︷
1

7560τ
7ω{9(∂3

xV )(∂xV )3 + 8(∂2
xV )2(∂xV )2}+O

(
ε7/2

)
.

In the next iteration, we pull out the O
(
ε3/2

)
term,

2R2 = W [2] = 1
60τ

5ω(∂2
xV )(∂xV )2 − 1

6τ
3ω−1{∂2

x[(∂2
xV ) · ] + (∂2

xV )∂2
x}

and need to computeW [3]. Because of [W [2],W [2]] = O
(
ε4
)

, again, commutators can

be disregarded to obtain T3 =W [3] = O
(
ε5/2

)
: the asymptotic splitting is therefore

S [1]

( 1
2 ,

1
2 ),2

= eR0eR1eR2eT3eR2eR1eR0 . (3.9)

where

R0 = 1
2τωV = O

(
ε−1/2

)
, (3.10)

R1 = 1
2τω

−1∂2
x + 1

24τ
3ω(∂xV )2 = O

(
ε1/2

)
,

R2 = − 1
12τ

3ω−1{∂2
x[(∂2

xV ) · ] + (∂2
xV )∂2

x}+ 1
120τ

5ω(∂2
xV )(∂xV )2 = O

(
ε3/2

)
,

T3 = 1
12τ

3ω−1(∂4
xV )

+ 1
180τ

5ω−1{−∂2
x[(∂3

xV )(∂xV ) · ] + 8∂2
x[(∂2

xV )2 · ]− (∂3
x)(∂xV )∂2

x

+ 8(∂2
xV )2∂2

x}+ 1
7560τ

7ω{9(∂3
xV )(∂xV )3 + 8(∂2

xV )2(∂xV )2} = O
(
ε5/2

)
The notation S [1]

( 1
2 ,

1
2 ),2

is mostly self-explanatory: ( 1
2 ,

1
2 ) refers to the values of ρ and

σ, while s = 2. The superscript [1] stands for an asymptotic splitting of the first
kind: in Subsection 3.5 we consider an alternative splitting (with initial W [0] equalling
−τω−1∂2

x), which we designate as an asymptotic splitting of the second kind.
Once we replace derivatives by differentiation matrices, the evaluation of a sin-

gle time step un+1 = S̃ [1]

( 1
2 ,

1
2 ),2

un requires in principle 7 exponentials. However, we

note that, once we use nodal values in semidiscretisation, the discretised matrix R0 is
diagonal and the computation of its exponential can be accomplished in O(M) opera-
tions.2 This is an important point because R0 is the largest matrix present. All other

2Using a Fourier basis the cost is O(M logM).
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matrices are O
(
ε1/2

)
or less and, as will be clear in Section 5, their computation with

Krylov subspace methods is very affordable.

3.4 Stability

The convergence of classical methods for initial-value partial differential equations
is governed by the Lax equivalence theorem: convergence equals consistency plus
stability (Iserles 2008). Our method is clearly consistent but the question is whether,
once derivatives are replaced by differentiation matrices, the ensuing finite-dimensional
operator is stable in the sense of Lax. Within our formalism this is equivalent to

lim
ε→0

lim sup
n→∞

‖(S̃ [1]

( 1
2 ,

1
2 ),2

)n‖ <∞, (3.11)

where S̃ [1]

( 1
2 ,

1
2 ),2

is the finite-dimensional discretisation of S [1]

( 1
2 ,

1
2 ),2

. Here ‖ · ‖ is the

standard Euclidean norm.

The condition (3.11) is clearly implied by S̃ [1]

( 1
2 ,

1
2 ),2

being a unitary matrix for all

(sufficiently small) ε > 0, in other words by the discretisation method being unitary.
This has the added virtue of the discretisation method mimicking the unitarity of
the infinite-dimensional operator exp(it(ω−1∂2

x + ωV )). (The latter follows because
both i∂2

x and multiplication by iV are skew-Hermitian.) Consequently, in that case we
obtain a geometric integrator in the sense of (Faou 2012, Hairer, Lubich & Wanner
2006, Lubich 2008).

Suppose that R0,R1,R2 and T3 are all unitary matrices. Then, by (3.9), so is

S [1]

( 1
2 ,

1
2 ),2

. But are they?

The discretisation of ∂2
x is the subject of Section 4. Here we preempt the discussion

by identifying two options. Either we choose the unknowns as nodal values (e.g.
by using finite differences, spectral collocation or a pseudo-spectral method) or as
Fourier coefficients (using a spectral method). In the first case ∂2

x is approximated by
a symmetric circulant K and multiplication with V by a diagonal matrix D. In the
second case all is reversed: ∂2

x is approximated by a diagonal matrix and multiplication
by V by a symmetric circulant. In either case iK, iD ∈ suM (C), the Lie algebra of
M ×M complex skew-Hermitian matrices. It follows at once that R̃0, R̃1 ∈ suM (C),

consequently eR̃0 , eR̃1 ∈ UM (C).3 However,

R̃2 = − 1
12τ

3ω−1(KD∂2
xV

+D∂2
xV
K) + 1

120τ
5ωD(∂2

xV )(∂xV )2 ,

where Df is the discretisation of a multiplication by f , may seem problematic: iK, iD ∈
suM (C) need not imply that iKD, iDK ∈ suM (C).4 Fortunately, it is trivial to verify
that i(KD +DK) ∈ suM (C) and this proves that R̃2 ∈ suM (C). Examining carefully

(3.10), we observe that so does T̃3. We deduce that eR̃2 , eT̃3 ∈ UM (C) and stability
(3.11) follows.

3As before, a tilde denotes a discretisation.
4All powers of τ are odd, because of the palindromy of the symmetric BCH formula. Since τ = i∆t,

this means that they always contribute a multiple of ±i.



16 P. Bader, A. Iserles, K. Kropielnicka & P. Singh

The unitarity of S [1]

( 1
2 ,

1
2 ),2

is not accidental and we do not need to repeat our analysis

on a case-by-case basis for different values of ρ, σ and s or for the asymptotic splittings
of the second kind from the next subsection.

Theorem 2 Supposing that the splitting (1.7) has been derived by the symmetric
Zassenhaus algorithm of Table 2, it is true that W [i] ∈ su(C) for all i ≥ 0 and
thus also R0,R1, . . . ,Rs, Ts+1 ∈ su(C).

Proof The algorithm starts from a skew-symmetric operator W [0] and, in each
step, pulls out a term W [j] via the symmetric BCH formula (2.3). Assume, that W [j]

is skew-symmetric, then so will W [j+1] because skew-symmetry is preserved under
commutation. What remains to be shown is that at each step, the lowest order ε
terms in W [j] after the ‘odd to even’ substitution (3.3), namely W [j], are indeed
skew-symmetric. Recall that, by assumption, W [j] is skew-symmetric and since the
substitution is exact, it will still be. For this reason, it is clear that its summands are
either skew-symmetric or come in skew-symmetric pairs i(KlD + DKl), where Kk is
a symmetric discretisation of ∂2k

x . The algorithm groups terms with the same scaling
and since DKk = O

(
ε−k
)

= KkD, the pair will not be split and thus W [j] ∈ su(C).
2

3.5 An asymptotic splitting of the second kind

It is natural to commence the symmetric Zassenhaus splitting from the largest term,
τωV . However, natural need not be the best: as it turns out, there is an advantage
to start from the smaller term, τω−1∂2

x. Although this leads to a larger number of
terms, we will demonstrate in this subsection that this procedure leads to exponentials
which are easier to compute.

Revisiting the narrative of Subsection 3.1, while proceeding faster and sparing the
reader many details of algebraic computations, we start from

2R−1 = W [0] = τω−1∂2
x, W [0] = τω−1∂2

x + τωV

This results in

W [1] = sBCH(−W [0],W [0]) =

∞∑
j=−1

W [1]
j , where W [1]

j = O
(
εj+1/2

)
,

and

W [1]
−1 = τωV,

W [1]
0 = − 1

6τ
3ω(∂xV )2

W [1]
1 = 1

12τ
3ω−1{∂2

x[(∂2
xV ) · ] + (∂2

xV )∂2
x}+ 2

45τ
5ω(∂2

xV )(∂xV )2

W [1]
2 = − 1

24τ
3ω−1(∂4

xV )− τ5ω−1{ 1
30∂

2
x[(∂3

xV )(∂xV ) · ] + 1
30 (∂3

xV )(∂xV )∂2
x

− 1
60∂

2
x[(∂2

xV )2 · ]− 1
60 (∂2

xV )2∂2
x} − τ7ω{ 1

630 (∂3
xV )(∂xV )3

+ 19
945 (∂2

xV )2(∂xV )2}.
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We next remove 2R0 = W [1] = W [1]
−1 = O

(
ε1/2

)
and obtain, with the short hand

X = −W [1], Y =W [1],

W [2] = sBCH(X,Y ) = X + Y − 1
24 [[Y,X], X]− 1

12 [[Y,X], Y ] +O
(
ε7/2

)
=

∞∑
j=0

W [2]
j ,

where

W [2]
0 = − 1

6τ
3ω(∂xV )2,

W [2]
1 = 1

12τ
3ω−1{∂2

x[(∂2
xV ) · ] + (∂2

xV )∂2
x}+ 7

120τ
5ω(∂2

xV )(∂xV )2,

W [2]
2 = − 1

24τ
3ω−1(∂4

xV )− τ5ω−1{ 1
30∂

2
x[(∂3

xV )(∂xV ) · ] + 1
30 (∂3

xV )(∂xV )∂2
x

− 1
60∂

2
x[(∂2

xV )2 · ]− 1
60 (∂2

xV )2∂2
x} − τ7ω{ 1

140 (∂3
xV )(∂xV )3

+ 17
840 (∂2

xV )2(∂xV )2.

Next,

R1 = 1
2W

[2] = 1
2W

[2]
0 = − 1

12τ
3ω(∂xV )2,

and we deduce that the relevant terms of W [3] =
∑∞
j=1W

[3]
j are

W [3]
1 = 1

12τ
3ω−1{∂2

x[(∂2
xV ) · ] + (∂2

xV )∂2
x}+ 7

120τ
5ω(∂2

xV )(∂xV )2,

W [3]
2 = − 1

24τ
3ω−1(∂4

xV )− τ5ω−1{ 1
30∂

2
x[(∂3

xV )(∂xB) · ] + 1
30 (∂3

xV )(∂xV )∂2
x −

1
60∂

2
x[(∂2

xV )2 · ]− 1
60 (∂2

xV )2∂2
x} − τ7ω{ 1

140 (∂3
xV )(∂xV )3

+ 17
840 (∂2

xV )2(∂xV )2.

And, finally,

R2 = 1
2W

[3]
1 , T3 =W [3]

2 .

The outcome is the splitting

S [2]

( 1
2 ,

1
2 ),2

= eR−1eR0eR1eR2eT3eR2eR1eR0eR−1 , (3.12)

where

R−1 = 1
2τω

−1∂2
x,

R0 = 1
2τωV,

R1 = − 1
12τ

3ω(∂xV )2,

R2 = 1
24τ

3ω−1{∂2
x[(∂2

xV ) · ] + (∂2
xV )∂2

x}+ 7
240τ

5ω(∂2
xV )(∂xV )2,

T3 = − 1
24τ

3ω−1(∂4
xV )− τ5ω−1{ 1

30∂
2
x[(∂3

xV )(∂xV ) · ] + 1
30 (∂3

xV )(∂xV )∂2
x −

1
60∂

2
x[(∂2

xV )2 · ]− 1
60 (∂2

xV )2∂2
x} − τ7ω{ 1

140 (∂3
xV )(∂xV )3

+ 17
840 (∂2

xV )2(∂xV )2.

Compare (3.12) with (3.9): we have presently 9 exponentials in place of 7. However,
R̃−1 is either a circulant (once we use nodal values) or a diagonal matrix (in case we
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employ a Fourier expansion), while both R̃0 and R̃1 are then either diagonal matrices
or circulants – the opposite of R̃−1. Therefore the cost of computing R̃i, i = −1, 0, 1,
is O(M logM) operations. This leaves R̃2 = O

(
ε3/2

)
and T̃3 = O

(
ε5/2

)
, which need

be computed with Krylov subspace methods. The small magnitude of both these
matrices means that their exponentials can be computed in ridiculously small number
of Krylov iterations, cf. Section 5.

Note that the palindromic property allows us to further reduce the number of
exponentials if no output at intermediate steps is required. This so-called First-Same-
As-Last (FSAL) property, together with the observation that [R0,R1] = 0, hence that
eR0+R1 can be computed easily, effectively yield a method

S̃(α)
[2]

( 1
2 ,

1
2 ),2

= eR0+R1eR2eT3eR2eR1+R0eαR−1 , (3.13)

where the first step has to be calculated with α = 1, and further steps with α = 2.
Whenever output is required, we apply eR−1 , and initialise the method by letting
α = 1 for the next step. All in all, we only need to compute six exponentials each
step, two of which are of diagonal matrices, R1 is circulant and the remaining ones
can be approximated cheaply by Krylov methods.

4 The semidiscretisation

The asymptotic splittings (3.9) and (3.12) are expressed in operatorial terms: to render
them into proper computational algorithms we must replace ∂2

x with an appropriate
differentiation matrix, acting on an M -dimensional space.

It is common in the numerical solution of the Schrödinger equation to use spectral
discretization (Faou 2012, Jin et al. 2011). Thus, the unknowns are the Fourier coef-
ficients of u, K is a diagonal matrix, Kj,j = −π2j2, j = 1, 2, . . . ,M (note that indeed
‖K‖ = O

(
M2
)

= O
(
ε−1
)
) and the operator of a multiplication by f is discretised

a circulant Df , composed of the Fourier coefficients of f . We deduce that, for any

v ∈ CM , the computation of Kv costs O(M) operations, while the price tag of Dfv,
computed with FFT, is O(M logM). The main appeal of spectral methods is that
they exhibit spectral convergence: for sufficiently large M the error decays faster than
M−α = O

(
εα/2

)
for any α > 0. In classical terms, the method is of an infinite order.

Alternative methods of discretisation are all based on nodal values. In all such
methods a multiplication by a function f discretises into a diagonal matrix. Since it
is compelling in the presence of period boundary conditions to use equispaced points,
the unknowns are thus um ≈ u(m/(N + 1

2 )), |m| ≤ N , where M = 2N + 1. We prefer
to use nodal values because, as evident in (3.9) and (3.12), more R`s are multiples of
a function than multiples of ∂2

x, therefore we are keen for multiplication by a function
to discretise into a diagonal matrix.

We consider the following three types of nodal methods:

1. Symmetric finite differences

u′′( m
N+ 1

2

) ≈ 1

(∆x)

r∑
k=−r

αr,kum+k (4.1)
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where r ≤ N , ∆x = 1/(N + 1
2 ) and

ar,k = ar,−k =
2(−1)k−1r!2

k2(r − k)!(r + k)!
, 1 ≤ k ≤ r, ar,0 = −2

r∑
k=1

ar,k.

Once m+ k in (4.1) is outside the range {−N,−N + 1, . . . , N}, we wrap around
using periodicity. The method (4.1) is of order 2r, i.e. its error behaves like
O
(
(∆x)2r+1

)
= O

(
εr+1/2

)
.

In this case K is a banded circulant, Kj,` = ar,|j−`| mod N .

2. Spectral collocation (Hesthaven, Gottlieb & Gottlieb 2007) The idea here is to
interpolate the solution at the nodal values using a trigonometric polynomial.
Since a trigonometric interpolation can be written as a convolution with the
values of the scaled Dirichlet kernel

DN (x) =
sin((N + 1

2 )πx)

(2N + 1) sin( 1
2πx)

– in other words,
∑N
`=−N DN (x − `/(N + 1

2 ))u` is an Nth-order trigonometric

polynomial that equals um at m/(N+ 1
2 ) – therefore Kj,` = D′′N ((j−`)/(N+ 1

2 ))
is a circulant.

Like spectral methods, spectral collocation exhibits spectral convergence.

3. Pseudo-spectral methods (Fornberg 1998). There is nothing to prevent us from
taking r ≥ N + 1 in (4.1): all it means is that we wrap around a number
of times, while making the order as large as we want. Indeed, we may allow
r →∞, resulting in spectral convergence, except that numerical experimentation
indicates a law of diminishing returns: after several wrap-arounds any further
improvement is marginal.

The differentiation matrix K is again a dense circulant. For example, letting
r = 2N + 1, we have Kj,j = a2N+1,0 and, for j 6= `, Kj,` = a2N+1,|j−`| mod N +
a2N+1,|N+1−j+`| mod N .

Faced with this embarrassment of riches, we opt for the simplest: a finite difference
method (4.1) of adequately high order. The main reason is that there is little point
in gaining spectral accuracy in space discretisation and commit an O

(
ε7/2

)
in the

time discretisation. Instead, we exploit the fact that for finite difference methods
K is a banded circulant. Therefore, inasmuch as we can multiply Kv with FFT in
O(M logM) operations, we can do so in O(M) operations in a naive matrix-vector
product exploiting sparsity!

Our method of choice is r = 4, namely

u′′m ≈
1

(∆x)2

(
− 1

560
um−4 +

8

315
um−3 −

1

5
um−2 +

8

5
um−1 −

205

72
um +

8

5
um+1

− 1

5
um+2 +

8

315
um+3 −

1

560
um+4

)
, |m| ≤ N. (4.2)
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Figure 4.1: The error committed in approximating u′′ using the finite difference
method (4.2), u(x) = 1/(2 + sinπx) and N = ω1/2.

Therefore, K is a 9-diagonal circulant.

How good is (4.2)? In Figs 4.1 and 4.2 we display the error committed by (4.2)
in approximating the second derivative of two functions: 1/(2 + sinπx) and ecosπx,
both analytic and periodic in [−1, 1]. We have taken M = 2N + 1 = O

(
ε−1/2

)
to its

logical conclusion, setting N = ω1/2 = ε−1/2. It is evident that the error decreases as
ω increases – little surprise, because ∆x = 1/(N + 1

2 ). The rate of decrease, however,
is exceedingly rapid.

To quantify this rate of decrease in the error we examine the two figures more
closely. The first conclusion is that, at variance with the expected situation with
spectral (and spectral-type) methods, the rate of decrease is roughly the same for
both functions, although the first is meromorphic and the second entire in the complex
plane. More interestingly, perhaps, it is compelling that the error in each figure lives
on (or exceedingly near) a scaled curve. To identify this curve, thereby predicting the
size of the error and rate of its decay as ε decreases, we recall that, being of order 2r,
the coefficients of (4.1) satisfy the equation

r∑
m=−r

am cosmθ = −θ2 + crθ
2r+2 +O

(
θ2r+4

)
, θ → 0,
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Figure 4.2: The error committed in approximating u′′ using the finite difference
method (4.2), u(x) = ecosπx and N = ω1/2.

for some cr and its error, once (1.1) acts on a function u ∈ C∞[−1, 1], is

cr(∆x)2ru(2r+2)(x) +O
(
(∆x)2r+2

)
(Iserles, Munthe-Kaas, Nørsett & Zanna 2000). In the present case c4 = − 1

3150 and
we thus deduce that the local error is

− 1
3150

1

(N + 1
2 )8

u(10)(x) +O
(
N−10

)
. (4.3)

Numerical experimentation confirms that, even for moderate values of ω, the leading
term in (4.3) represents a very good approximation to the error, well in excess of what
is typically expected from discretisation methods for partial differential equations of
evolution.

How well does the finite difference method (4.2) compare with spectrally-convergent
methods? The error for 1/(2 + sinπx) and ecosπx is displayed in Figs 4.3 and 4.4 re-
spectively. The error in Fig. 4.3 is a vast improvement on the top row of Fig. 4.1:
although the spectacular performance of spectrally-convergent methods is hardly sur-
prising, it is amazing nonetheless. The difference between Fig. 4.2 and Fig. 4.4 is even
more striking: the reason spectral convergence for ecosπx is so fast – super-exponential,
compared to exponential convergence for 1/(2 + sinπx) – is because the first function
is entire, while the second has a polar singularity at i(

√
3 − 2). However, the sort
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Figure 4.3: The error in approximating u′′ committed by the Fourier method (top
row), spectral collocation (middle row) and a pseudo-spectral method with 20 ‘wrap
arounds’ for the function u(x) = 1/(2 + sinπx) and N = ω1/2.
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Figure 4.4: The error in approximating u′′ committed by the Fourier method (top
row), spectral collocation (middle row) and a pseudo-spectral method with 20 ‘wrap
arounds’ for the function u(x) = ecosπx and N = ω1/2.
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of accuracy exhibited in Figs 4.3–4 is clearly in excess of O
(
ε7/2

)
, the error commit-

ted in the course of time discretisation. Therefore, after all, there is little advantage
in using spectrally-convergent methods to discretise in space, while using the finite-
difference method (4.2) has the virtue of cheaper linear algebra in the evaluation of
matrix exponentials.

We need accompany our choice of a finite-difference method by an important
caveat. Once u oscillates, the size of its derivatives increases rapidly. In particular, if
u oscillates (as it will often do) like sin(ω1/2t) then (4.3) implies that N = O

(
ω1/2

)
is

insufficient for reasonable accuracy. On the other hand, spectral-type methods cope
well with high oscillation for N > cω1/2 and c > 1 sufficiently large. In that case,
keen to use nodal values, we recommend either a pseudo-spectral method or spectral
collocation.

5 The computation of exponentials

Considering splitting of the second kind (3.10), each step forward in time calls for the
computation of

un+1 = eR−1eR0+R1eR2eT3eR2eR0+R1eR−1un, (5.1)

where un is the initial value at tn, say, while un+1 approximates u( · , tn+1), where
tn+1 = tn + ∆tn. The matrices Rk and T3 depend on ∆tn and we aggregate R0 +
R1 consistently with the discussion by the end of Section 3. We recall that, using
finite differences, spectral collocation of a pseudo-spectral method, un is made out
of equally-distributed function values, R−1 is a Toeplitz circulant and R0 + R1 is
diagonal. However, once we use a spectral method, the entries of un consist of Fourier
coefficients, R−1 is diagonal and R0 + R1 is a circulant. One way or the other, we
need to calculate (or approximate up to O

(
ε7/2

)
) the vector eSv for v ∈ CM and three

types of M ×M skew-Hermitian matrices S: (a) diagonal, (b) Toeplitz circulant, and
(c) neither, yet small: R2 = O

(
ε3/2

)
and T3 = O

(
ε5/2

)
. Note that we must keep in

mind three prerogatives: not just error of O
(
ε7/2

)
and low cost but also maintenance

of unitarity.
Cases (a) and (b) are straightforward. The exponential of a diagonal matrix is

itself diagonal and can be computed in O(M) = O
(
ε−1/2

)
operations, while eSv for

a circulant S can be calculated by two FFTs, at the price tag of O(M log2M) =
O
(
−ε−1/2 log ε

)
operations. Since both calculations are exact (up to machine ac-

curacy), unitarity is maintained. Finally, to deal with case (c) we use a Krylov sub-
space method. Such methods have undergone many enhancements since the pioneering
work of Tal Ezer & Kosloff (1984): in the current paper we adopt the approach in
(Hochbruck & Lubich 1997).

Given an M ×M matrix A and v ∈ CM , the mth Krylov subspace is

Km(A,v) = span {v,Av,A2v, . . . ,Am−1v}, m ∈ N.

It is well known that dimKm−1(A,v) ≤ dimKm(A,v) ≤ min{m,M} and we refer
to (Golub & Van Loan 1996) for other properties of Krylov subspaces. The main idea
is to approximate

eAv ≈ VmeHmV∗mv, (5.2)
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where Vm and Hm are M ×m and m×m respectively and m�M . In addition, the
columns of Vm are orthonormal vectors which form a basis of Km(A,v), while Hm is
upper Hessenberg.

The matrices Vm and Hm are generated by the Arnoldi process

The Arnoldi process

v1 = v/‖v‖2
for j = 1, . . . ,m− 1 do
t = Avj
for i = 1, . . . , j do
hi,j = v∗i t, t = t− hi,jvi

end for
hj+1,j = ‖t‖2; vj+1 = t/hj+1,j

end for

(Golub & Van Loan 1996, Hochbruck & Lubich 1997). Note that, once A ∈ suM (C),
it follows that Hm ∈ sum(C). Therefore, the columns of Vm being orthonormal,
unitarity is conserved. Moreover, since V∗mv = ‖v‖2e1, where e1 ∈ Cm is the first unit
vector, it follows that eHmV∗mv is merely the first column of eHm , scaled by ‖v‖2. To
compute the approximation (5.2) we thus need to evaluate a small exponential and
calculate a single matrix–vector product, at overall cost of O(mM) operations.

The question of an appropriate value of m is answered by the inequality

‖eAv − VmeHmV∗mv‖2 ≤ 12e−ρ
2/(4m)

( eρ

2m

)m
, m ≥ ρ, (5.3)

where ρ = ρ(A) (Hochbruck & Lubich 1997). We know that R3 = O
(
ε3/2

)
and

assume, with very minor loss of generality, that ρ(R3) ≤ cε3/2 for some c > 0. We
thus deduce from (5.3) that

‖eR3v − VmeHmV∗mv‖2 ≤ 12
( ec

2m

)m
ε3m/2, m ≥ ρ,

and m = 3 is sufficient to reduce the error to O
(
ε9/2

)
, well under the O

(
ε7/2

)
error

of our symmetric Zassenhaus algorithm. This is true provided that ρ ≤ 3, i.e. ε ≤
(3/c)2/3: since we expect ε > 0 to be very small, this is not much in a way of restriction.
Likewise, T4 = O

(
ε5/2

)
and the inequality ρ(T4) ≤ c̃ε5/2 implies that

‖eT4v − VmeHmV∗mv‖2 ≤ 12

(
ec̃

2m

)m
ε5m/2, m ≥ ρ

and for ε ≤ (2/c̃)2/5 we need just m = 2. Altogether, we deduce that the computation
(consistent with the error of O

(
ε7/2

)
) of eR3v (twice) and eT4v in each step (5.1) cost

just O(M) operations.
Fig. 5.1 presents the `2 error committed in approximating eR3v, where we have

combined the semidiscretisation (4.2) with V (x) = 10−2e−20 sin2(πx/4) and v(x) =

e−4[sin2(5πx/2)+sin2(πx/2)], both discretised at nodal values with N = bω1/2c. Although
we have used just m = 3 (i.e., approximated the (2N + 1)× (2N + 1) exponential by
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Figure 5.1: The error, compared to the error bound and the line ω−7/2 = ε7/2, in
computing eR3v.

an 3×3 one) the error is truly minuscule, well below our upper bound. Moreover, con-
sistently with our theory (but not with conventional numerical intuition) it decreases
when ω grows. Indeed, the sort of accuracies we obtain for significant values of ω are
well in excess of what is required in realistic numerical computations.

In Fig. 5.2 we display identical information for eT4v. Again, everything is consistent
with our analysis: note that in this case we approximate with just a 2×2 exponential!

The slope of the error bound is steeper than ω−7/2 in both figures and this should
cause no surprise. The error for eR3v decays like O

(
ω−9/2

)
and for eT4v like O

(
ω−5

)
,

both faster than required.

6 Conclusions

In this paper we have presented a methodology for the computation of the linear
Schrödinger equation (1.4) with large values of ω. It has led to asymptotic exponential
splitting á la (3.9) and (3.12), where each consecutive argument (except perhaps for
one) is progressively smaller. Moreover, these arguments are skew-Hermitian (hence
stability and unitarity) and the underlying exponentials are easy to compute. All
this has been accomplished by creating a Lie-algebraic framework that uses nested
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Figure 5.2: The error, compared to the error bound and the line ω−7/2 = ε7/2, in
computing eT4v.

commutators, yet avoids their expensive computation, combined with a repeated use
of the symmetric BCH formula to form a symmetric Zassenhaus splitting. We have
also discussed the choice of semidiscretisation and of effective means to approximate
matrix exponentials.

We do not view the work of this paper as a finished and complete endeavour: it is
more in the nature of an initial foray into a broad and fascinating subject area. There
is a wide range of issues that our work raises. Some are already subject to active
investigation, others more speculative:

1. Asymptotic splittings with different values of ρ and σ. Setting ρ = σ = 1
2 is the

first, perhaps the most obvious choice but, if there is one lesson of this work, it is
that obvious choice need not be optimal. A great deal of further experimentation
is required, not just with different values of ρ and σ but also of s ≥ 1. Ideally,
such work should avoid the error-prone tedium of human algebra: the authors
are in the process of experimenting with symbolic algebra routines to this end.

2. A time-dependent interaction potential. In place of (1.4) we can consider the
non-autonomuos equation

∂u

∂t
= iω−1 ∂

2u

∂x2
+ iωV (x, t)u, t ≥ 0, x ∈ [−1, 1],
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again with periodic boundary conditions. To this end we need to combine our
methodology – algebra of operators, symmetric Zassenhaus – with Magnus ex-
pansions (Iserles et al. 2000). Preliminary work indicates that, inasmuch as this
leads to considerably more complicated framework, it can fit into our narrative.
Specifically, different Magnus terms can be written in a form consistent with the
Lie algebra G. We expect to report on this work in the near future.

3. A multivariate setting. An effective numerical discretisation of the equation
(1.3), evolving in a torus in Cd, is the ultimate goal of this work. Insofar as
small d ≥ 1 is concerned, this is a fairly straightforward exercise but matters
are more complicated when d becomes large and the cost of O

(
Nd logN

)
be-

comes unsustainable. It is clear that, for our methodology to be scaleable to
large dimensions, it must be combined with other approaches, e.g. sparse grids
(Bungartz & Griebel 2004).

4. The nonlinear Schrödinger equation. A major challenge is to apply our method-
ology in a nonlinear setting, e.g. to the nonlinear Schrödinger equation

iε
∂u

∂t
= − ε2

2m

∂2u

∂x2
− V (x)u+ λ|u|2u.

Preliminary investigation seems to indicate that a naive generalisation does not
work, because we are not enjoying the reduction of positive powers of ω = ε−1

after commutation with Lie-derivatives corresponding to |u|2.

5. Symmetric Zassenhaus in other settings. Exponential splittings have reached
their apogee in the context of symplectic integrators for Hamiltonian ordinary
differential equations (Hairer et al. 2006, McLachlan & Quispel 2002). Can
symmetric Zassenhaus be used in this setting? The idea seems particularly
appealing in the context of Hamiltonian functions of the form

H(p, q) = H1(p, q) + εH2(p, q),

where 0 < |ε| � 1. Such systems occur often in celestial mechanics and many-
body problems once there exists large disparity of masses and it is tempting
to use an asymptotic splitting. However, in general we cannot employ in this
context the formalism of Subsection 2.1, computing commutators easily. The
computation of commutators in this context (in which they become Poisson
brackets) is frowned upon because it is expensive. However, for special Hamil-
tonian functions this approach might be feasible.

Similar reasoning applies to volume-conserving geometric integrators based on
splittings (McLachlan, Munthe-Kaas, Quispel & Zanna 2008).

The symmetric Zassenhaus formula might be also relevant within the realm
of partial differential equations in the presence of a small parameter, e.g. the
Klein–Gordon equation

1

c2
∂2u

∂t2
= ∇2u+

m2c2

h̄2 u.

This, again, is matter for further research.
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Yošida, H. (1990), ‘Construction of higher order symplectic integrators’, Phys. Lett.
150, 262–268.


