Publications: In proceedings
- Arieh Iserles & Marcus Webb, "A differential analogue of Favard's theorem", in From Operator Theory to Orthogonal Polynomials, Combinatorics and Number Theory" (F. Gesztesi & A. Martinez-Finkelshtein, eds), Springer-Verlag (2021).
- Jing Gao & Arieh Iserles, "An adaptive Filon algorithm for highly oscillatory integrals", in Festschrift for the 80th Birthday of Ian Sloan, Volume I (J. Dick, F.Y. Kuo & H. Wozniakowski, eds), Springer-Verlag (2018), 407–424.
- A. Iserles & G.R.W. Quispel, "Why geometric numerical integration?", Discrete Mechanics, Geometric Integration and Lie–Butcher Series (K. Ebrahimi-Fard & M. Barbero, eds) (2018), 1–28.
- A. Iserles, "Three stories of high oscillation", Bulletin EMS 87 (2013) 18–23.
- M.J. Cantero & A. Iserles, "On a curious q-hypergeometric identity", Nonlinear Analysis: Stability, Approximation and Inequalities (P. Pardalos, H.M. Srivastava & P. Georgiev, eds), Springer-Verlag (2013), 121–126.
- A. Boettcher, S. Grudsky & A. Iserles, "The Fox–Li operator as a test and a spur for Wiener–Hopf theory", Essays in Mathematics and its Applications. In Honor of Stephen Smale's 80th Birthday (P.M. Pardalos & Th. Rassias, eds), Springer-Verlag (2012), 37&ndash48.
- M. Condon, A. Deaño & A. Iserles, "Asymptotic solvers for oscillatory systems of differential equations", SeMA Journal 53 (2011), 79–101.
- A. Iserles, "Magnus expansions and beyond", Contemporary Maths 539 (2011), 171–186.
- A. Iserles, S.P. Nørsett & S. Olver "Highly oscillatory quadrature: The story so far'', Proceedings of ENuMath, Santiago de Compostela (2006) (A. Bermudez de Castro et al., eds), Springer-Verlag, Berlin (2006), 97–118.
- A.M. Bloch & A. Iserles, "Aspects of generalized double-bracket flows'', in Group Theory and Numerical Analysis, CRM Proceedings 39 (2005), 65–75.
- A. Iserles, "On the numerical analysis of high oscillation'', in Group Theory and Numerical Analysis, CRM Proceedings 39 (2005), 149–163.
- A.M. Bloch & A. Iserles, "Optimality of double bracket and generalized double bracket flows'', in Proc. 42nd IEEE Conf. Decision & Control (2003), 528–532.
- B.J.C. Baxter & A. Iserles. "On the foundations of computational mathematics'', in Handbook of Numerical Analysis XI (P.G. Ciarlet & F. Cucker, eds), North-Holland, Amsterdam (2003), 3–34.
- A. Iserles, "Brief introduction to Lie-group methods'', in Collected Lectures on the Preservation of Stability under Discretization (D. Estep & S. Tavener, eds), SIAM, Philadelphia (2001), 123–143.
- M.D. Buhmann, A. Iserles & S.P. Nørsett, "Applications of radial basis functions: Sobolev-orthogonal functions, radial basis functions and spectral methods'', in Algorithms for Approximation IV (I. Anderson & J. Levesley, eds), Charlesworth Publ., Huddersfield (2002), 198–211.
- A. Iserles, "Numerical analysis in Lie groups'', in Foundations of Computational Mathematics, Oxford 1999 (R. DeVore, A. Iserles and E. Suli, eds), Cambridge University Press, Cambridge (2001), 105–123.
- C.J. Budd & A. Iserles, "Geometric integration: Numerical solution of differential equations on manifolds'', Phil. Trans Royal Soc. A 357 (1999), 945–956.
- A. Iserles, "Lie groups and the computation of invariants'', Self-Similar Systems (V.B. Priezzhev & V.P. Spiridonov, eds), JINR Dubna (1999), 133–148.
- A. Iserles & S.P. Nørsett, "Linear ODEs in Lie groups'', Proceedings of the 15th IMACS World Congress vol. II (A. Sydow, ed.), Wissenschaft & Technik Verlag, Berlin (1997), 589–594.
- A. Iserles, "Insight, not just numbers'', Proceedings of the 15th IMACS World Congress vol. II (A. Sydow, ed.), Wissenschaft & Technik Verlag, Berlin (1997), 1–9.
- A. Iserles, "Beyond the classical theory of computational ordinary differential equations'', in State of the Art in Numerical Analysis (I.S. Duff & G.A. Watson, eds), Oxford University Press, Oxford (1997), 171–192.
- A. Iserles, "Numerical methods on (and off) manifolds'', in Foundations of Computational Mathematics (F. Cucker and M. Shub, eds), Springer-Verlag, New York (1997), 180–189.
- A. Iserles & A. Zanna, "A scalpel, not a sledgehammer: Qualitative approach to numerical mathematics'', CWI Quarterly 9 (1996), 103–112.
- A. Iserles & Y. Liu, "Integro-differential equations and generalized hypergeometric functions'', ZAMM 76 (1996), 253–256.
- A. Iserles & A. Zanna, "Qualitative numerical analysis of ordinary differential equations'', in The Mathematics of Numerical Analysis (J. Renegar, M. Shub & S. Smale, eds), Lectures in Applied Maths 32, American Mathematical Society, Providence RI (1966), 421–442.
- M.P. Calvo, A. Iserles & A. Zanna, "Runge–Kutta methods on manifolds'', in Numerical Analysis: A.R. Mitchell's 75th Birthday Volume (G.A. Watson & D.F. Griffiths, eds), World Scientific, Singapore (1996), 57–70.
- A. Iserles & L. Littlejohn, "Polynomials orthogonal in a Sobolev space'', in Linear and Complex Analysis Problem Book II (V.P. Havin & N.K. Nikolski, eds), Lecture Notes in Mathematics, No. 1574, Springer-Verlag, New York (1994), 190–193.
- A. Iserles, "From Schrödinger spectra to orthogonal polynomials, via a functional equation'', in Approximation and Computation, (R.V.M. Zahar, ed.) ISNM 119, Birkhäuser-Verlag, Basel–Boston–Berlin (1994), 285–307.
- A. Iserles, "Dynamics of numerics'', Bull. IMA (1994) 30, 106–115.
- A. Iserles, "The dynamics of the Theodorus spiral'', Supplement B to Spirals: From Theodorus of Cyrene to Meta–Chaos (P.J. Davis), Hedrick Lectures 1990, Math. Assoc. Amer.
- M.D. Buhmann, A. Iserles & S.P. Nørsett, "Runge–Kutta methods for neutral differential equations'', in Contributions in Numerical Mathematics (R.P. Agarwal, ed.), World Scientific Series in Applicable Analysis, World Scientific, Singapore (1993), 85–98.
- A. Iserles & S.P. Nørsett, "Parallel Runge–Kutta methods'', in Numerical Ordinary Differential Equations, London 1989 (J. Cash and I. Gladwell, eds), Oxford Univ. Press (1992), 385–392.
- M.D. Buhmann & A. Iserles, "Numerical analysis of functional equations with a variable delay'', in Numerical Analysis, Dundee 1991 (D.F. Griffiths and G.A. Watson, eds), Longman (1992), 17–33.
- A. Iserles, P.E. Koch, S.P. Nørsett & J.M. Sanz-Serna, "Approximation and orthogonality in a Sobolev space'', in Algorithms for Approximation II (J.C. Mason and M.G. Cox, eds), Chapman and Hall (1990), 117–124.
- A. Iserles, "Nonlinear stability and asymptotics of ODE solvers'', in International Conference on Numerical Mathematics, Singapore 1988 (R.P. Agarwal, ed.), Birkhäuser ISNM Vol. 86 (1988), 225–236.
- A. Iserles, "Dynamical systems and nonlinear stability theory for numerical ODEs'', in Numerical Treatment of Differential Equations, Halle 1987 (K. Strehmel, ed.), Teubner (1988), 84–94.
- H.-P. Blatt, A. Iserles & E.B. Saff, "Remarks on the behavior of zeros of best approximating polynomials and rational functions'', in Approximation of Functions and Data (M.G. Cox and J. Mason, eds), Oxford Univ. Press (1987), 437–445.
- A. Iserles & S.P. Nørsett, "Error control of rational approximations with matrix argument'', in Approximation of Functions and Data (M.G. Cox and J.C. Mason, eds) Oxford Univ. Press (1987), 293–305.
- A. Iserles, "Order stars and stability barriers'', in Numerical Analysis, Dundee 1985 (D.F. Griffiths and G.A. Watson, eds), Longman (1986), 98–111.
- A. Iserles & S.P. Nørsett, "Bi-orthogonal polynomials'', in Orthogonal Polynomials, Bar-le-Duc 1984-> (C. Brezinski et al., eds), Springer-Verlag LNiM 1171 (1985), 92–100.
- A. Iserles, "Order stars, contractivity and a Pick-type theorem'', in Rational Approximation and Interpolation (P.R. Graves-Morris, E.B. Saff and R.S. Varga, eds) Springer-Verlag LNiM 1105 (1984), 117–124.
- A. Iserles, "Order stars and the structure of Padé tableaux'', in Padé Approximation, Bad Honnef 1983 (H. Werner, ed.), Springer-Verlag LNiM 1071 (1984), 166–175.
- A. Iserles, "Padé and rational approximations to the exponential and their applications in numerical analysis'', in Padé Approximation and Convergence Acceleration Techniques (J. Gilewicz, ed.), Centre de Physique Theorique, Marseille (1981).
- A. Iserles, "Generalized order star theory'', in Rational Approximation, Theory and Application (H. van Rossum and M.G. de Bruin, eds), Springer-Verlag LNiM 888 (1981), 228–238.
- A. Iserles, "Efficient two-step numerical methods for parabolic partial differential equations'', in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (O. Axelsson and L. Frank, eds), North Holland (1981), 319–326.