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We investigate the minimization of the Ising Hamiltonians, comparing the performance of gain-
based computing based on the dynamics of semi-classical soft-spin models with quantum annealing.
We systematically analyze how the energy landscape for the circulant couplings of a Möbius graph
evolves with increased annealing parameters. Our findings indicate that these semi-classical models
face challenges due to a widening dimensionality landscape. To counteract this issue, we intro-
duce the ‘manifold reduction’ method, which restricts the soft-spin amplitudes to a defined phase
space region. Concurrently, quantum annealing demonstrates a natural capability to navigate the
Ising Hamiltonian’s energy landscape due to its operation within the comprehensive Hilbert space.
Our study indicates that physics-inspired or physics-enhanced optimizers will likely benefit from
combining classical and quantum annealing techniques.

Pursuing enhanced computing speed and power effi-
ciency has led to exploring alternatives to traditional
electronic systems in solving complex tasks. Optical Neu-
ral Networks (ONNs) promise unprecedented parallelism,
potentially superior speeds, and reduced power consump-
tion. ONNs encode neural weights as phase shifts or
changes in light intensity, with activation functions in-
stantiated via nonlinear optical materials or components
or via a strong hybridization to matter excitations [1].
They offer the potential to operate in the terahertz range,
vastly surpassing the gigahertz frequencies of conven-
tional electronic systems that can be exploited in machine
learning and combinatorial optimization. The common
feature of ONNs is to utilize a network of optical os-
cillators dynamically described by a coupled system of
soft-spin models on complex-valued field ψi = ri exp[iθi]
that has the amplitude ri (referred to as ‘soft mode’) and
phase θi (discrete e.g. θi = {0, π} or continuous ‘spin’) de-
grees of freedom. Each spin in the network can be asso-
ciated with the quadrature of the optical complex-valued
fields, thereby reducing the system to a model of real
soft-spins given by ri cos θi which we analyze hereafter.

Optical parametric oscillator (OPOs) based coherent
Ising machines (CIM) [2–5], lasers [6–8], spatial light
modulators [9], lattices of polariton [10, 11], photon
condensates [12], Microsoft analogue iterative machine
[13] and Toshiba simulated bifurcation machine [14] can
all minimize the classical hard-spin Ising Hamiltonians
(HSIH) HI = −∑i,j Jijsisj with si = ±1 for a coupling
matrix J and other spin Hamiltonians (e.g. XY Hamil-
tonians HXY = −∑i,j Jijsi ⋅ sj with si = (cosϕi, sinϕi))
using soft-spin bifurcation dynamics via the Aharonov-
Hopf bifurcation [15]. This principle of operation leads to
an exciting new paradigm known as “gain-based comput-
ing”. The concept behind gain-based computing is that

computational problems can be encoded in the gain and
loss rates of driven-dissipative systems, which are then
driven through a symmetry-breaking transition (bifurca-
tion), selecting a mode that minimises losses. Such soft-
spin models exploit enhanced dimensionality, marked by
small energy barriers during amplitude bifurcation, but
also complicate the energy landscape with numerous lo-
cal minima. In parallel to these methods, quantum an-
nealing is another approach to minimize the HSIH. De-
spite numerous studies contrasting classical and quantum
methods, the limitations of currently available hardware
and limitations of simulating quantum systems classically
have led to contrasting conclusions as to whether a quan-
tum advantage can potentially be realized using quantum
annealing [16–23] and in particular, how quantum an-
nealers such as D-wave perform in comparison with CIM
[24]. In the latter, the connectivity of the coupling ma-
trix was assumed to be a key factor in performance differ-
ences between these machines [24]. In Supp.Inf. section
we illustrate the principle of gain-based computing and
contrast it with quantum annealing and simulated bifur-
cation.

Using ONNs for optimization has shown promise, yet
key questions remain: ‘what are suitable benchmarks for
optical machines, how to guide annealing to aid opti-
mization, what are the ONN energy landscape dynamics
during annealing to ensure the optimal state is achieved,
what are the distinguishing features between quantum
and classical annealing?’. Answers often rely on the
coupling matrix J. An instructive problem should be
technologically feasible, have controllable couplings, pos-
sess non-trivial structures resistant to simple local per-
turbations, and be mathematically tractable. Moreover,
it is better to have deterministic rather than random
couplings to avoid the issues of statistical convergence



2

[25, 26].

Here, we analyse and contrast gain-based computing
(GBC) for soft-spin Ising models (SSIM) with quantum
annealing for circulant coupling matrices that arise for
Möbius ladder graphs, which allow complete control of
frustration, energy gaps, and the structure of critical
points. Furthermore, the potential to realize them in
future optical systems [27] make them more suitable to
consider over previously reported benchmarks [28–30].
A highlighted challenge for SSIM annealing lies in the
opposing relationship between local and global minima
when mapping the Ising Hamiltonian to the energy of
the soft-spin system [26]. Notably, we demonstrate that
quantum annealing within the whole Hilbert space of the
hard-spin system navigates this challenge. Additionally,
we suggest that ‘manifold reduction’, aligning ampli-
tudes to the mean, is needed to augment the likelihood
of SSIM to finding the global minima.

Möbius Ladder Graphs: Cyclic graphs with N nodes are
characterized by an N × N circulant coupling matrix
J, constructed through cyclical permutations of any N -
vector. These graphs inherently have vertex permutation
symmetry, signifying boundary periodicity and uniform
neighbourhoods. The structure of a circulant matrix is
contained in any row, and its eigenvalues and eigenvec-
tors can be analytically derived using theN roots of unity
of a polynomial, where the row components of the matrix
act as coefficients: λn = ∑

N
j=1 J1,j cos[ 2πn

N
(j − 1)] [31–35].

We consider the minimization of the Ising Hamilto-
nian, H = − 1

2 ∑
N,N
i,j=1 Jijsisj , on a particular form of a

cyclic graph – a Möbius ladder graph with even number
of vertices N such that the i-th vertex has two edges
connecting it to vertices i ± 1 with antiferromagnetic
coupling with strength Ji,i±1 = −1 (circle couplings), and
an additional antiferromagnetic coupling with vertex
i + N/2 with strength Ji,i+N/2 = −J, J > 0 (cross-circle
couplings). We denote by S0 the state where the spins,
si, alternate along the ring so that sisi±1 = −1 for
all i (Fig. 1(a)), and by S1 the state where the spins
alternate everywhere except at two positions on the
opposite sides of the ring: sisi+1 = −1 for all i ≠ i0
and si0si0+1 = si0+N/2si0−1+N/2 = 1 Fig. 1(b)). When
N/2 is odd, S0 is always the ground state with energy
HI(J) = −(J + 2)N/2. When N/2 is even, the S0

configuration has Hamiltonian H
(0)
I (J) = (J − 2)N/2

and S1 has H
(1)
I (J) = 4 − (J + 2)N/2. Therefore, S0

[S1] is the global minimum (while S1 [S0] is the excited
state) if J < Jcrit ≡ 4/N [J > Jcrit]. The eigenvalues
of the coupling matrix J for the Möbius ladder with
J1,j ∈ {−1,0,−J} are λn = −2 cos(2πn/N) − J(−1)n.
Equating the two largest eigenvalues 2 cos(2π/N)+J and
2 − J gives the value of J = Je = 1 − cos(2π/N) at which
the leading eigenvectors change. When Je < J < Jcrit
the eigenvalues for S0 are less than that for S1 despite

S0 being the lower energy state (see Supp. Inf. for the
detailed derivation of the spectra). This is in contrast
to computationally simple problem instances, in which
the ground state minimizer is located at the hypercube
corner of the projected eigenvector corresponding to the
largest eigenvalue [36].

Soft Spin Ising Model (SSIM): The ONNs based on laser
operation are non-Hermitian systems that tend to min-
imise losses on their route to coherence. The losses can be
written as an ‘energy’ (‘cost’) function to be minimized.
For instance, CIM’s energy landscape to be minimised
(in a classical limit) is

E =
C

4

N

∑
i=1

(p(t) − x2i )
2
−

1

2

N

∑
i=1

N

∑
j=1

Jijxixj , (1)

where xi are quadratures of the OPOs, p(t) describes
the effective laser pumping power (injection minus linear
losses), and C corresponds to the strength of saturable
nonlinearity. As p(t) grows from a large negative to large
positive p(t) = p∞ values, E anneals from the dominant
convex first term on the right-hand side of Eq. (1) that
is minimized at xi = 0 for all i to the minimum of the
second term which is the scaled target Ising Hamiltonian
with xi = ±

√
p∞. The temporal change of p(t), therefore,

is the annealing parameter combined with a gradient de-
scent as

ẋi = −
∂E

∂xi
= C(p(t)xi − x

3
i ) +∑

i≠j

Jijxj . (2)

All ONN soft spin optimizers exploit this central princi-
ple, while the details of the nonlinearity or the gradient
dynamics can vary from platform to platform [15]. In
particular, CIM dynamics is an example of the Hopfield-
Tank network (HT) ẋi = p(t)xi + ∑i≠j Jijxj also used
[37] for Ising Hamiltonian minimization [38]. Another
approach uses the second-order resonance to project the
XY onto the Ising dynamics [39].

Eq. (1) has real amplitudes xi. As the laser pump-
ing p(t) increases from negative values, the minimizers
x∗ of Eq. (1) and minima of E change. We associate
Ising spins with xi via si = xi/∣xi∣. We expect that the
soft-spin energy state E0 that corresponds to the hard-
spin Ising state S0 and depicted in Fig. (1)(a) is sym-
metric in amplitudes as all spins experience the same
frustration of the cross-circle coupling, so all amplitudes
have the same modulus ∣xi∣ =X. From Eq. (2) X satisfies

X =
√
p(t) + (2 − J)/C with the corresponding soft-spin

energy E0 = (J − 2)N(2 − J + 2Cp)/4. This state can be
realised from a vacuum state when p(t) exceeds (J−2)/C.

The soft-spin energy state E1 corresponding to S1,
when two side edges are frustrated, is asymmetric in
amplitudes. This asymmetry is shown schematically in
Figs. (1)(b,c). This occurs because the lower energy is
achieved if the amplitudes connected by the frustrated
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edges ∣xi∣ = XL are lower than in the rest of the sys-
tem. For N = 8 in Fig. (1)(b), there are two types of
amplitudes: 4 nodes with ±∣XL∣ and 4 with amplitudes
∣xi∣ =XB , where XB = (1−J −Cp)XL+CX

3
L as obtained

from the steady states of Eq. (2) governing the dynamics
of XL, while the steady-state on the evolution of XL gives
(p + 1 + J)XB +XL = X3

B . These are in agreement with
the dynamical simulations presented in Figs. (2)(b). By
solving the polynomial equation for XL, we can compute
E1 across any p, J,N, and C. This allows us to discern re-
gions in this parameter space where the global minimum
aligns with either E0 or E1 and confirm if these states
correspond with the hard-spin Ising Hamiltonian’s global
minimum. Figure (1)(d) depicts distinct regions in the
J − p parameter space. Within the Je < J < Jcrit interval
S0 emerges as the hard-spin Ising model’s lowest energy
state. For the soft-spin model, however, only the region
shown in pink corresponds to this state (E0). Figure
(1)(d) shows that for values Je < J < Jcrit, as laser power
p rises, the E0 state becomes the energy minimum for the
soft-spin model, aligning with the hard-spin Ising Hamil-
tonian’s S0. Yet, the success probability of converging
to the true ground state does not increase beyond 0.2 as
shown in Fig.(1)(e). This is a consequence of increasing
amplitudes that bring the increased height of the energy
barriers that prevent the system from transitioning to the
state, S0 (see Fig. (1)(f)). Figure 3 in Supp.Inf. provides
further context, depicting basins of attraction for a di-
verse set of values, p, within a fixed range Je < J < Jcrit.
The space structure of soft spin models can be further
understood by considering the critical points of their en-
ergy landscape for different annealing parameter values
[40]; (see Supp. Inf).

Manifold Reduction for SSIM: These considerations sug-
gest that amplitude heterogeneities have a severely detri-
mental effect on the optimization process in some regions
of parameter space as they allow the soft-spin energy
landscape to find and follow its ground state, which is
quite different from the ground state of the hard-spin
Ising Hamiltonian. This problem has been recognised
before [41, 42], but in the context of the final state, so
various feedback schemes were suggested to bring all am-
plitudes to the same value, say, ±1 at the end of the
simulations. This could be achieved, for instance, by
changing the laser intensity individually for each spin as
ṗi(t) = ε(1 − x2i ), where ε is a small constant param-
eter. However, as our results on the simple circulant
graphs illustrate, this feedback does not change the most
essential part of the dynamics during the pitchfork bifur-
cation from the vacuum state. Moreover, this feedback
becomes important only for amplitudes sufficiently close
to ±1 when the barriers between states are already too
high.

To circumvent this behaviour, we introduce feedback
restricting the soft spin energy landscape to keep them
close to the average value. This restriction can be

Figure 1. (a-c) Schematic representation of the states realised
by soft-spin models of Eq. (1) on the Möbius ladder graphs
with varying cross-ring couplings (shown in red). (a),(b) and
(c) depict states that map onto S0, S1 Ising states for N = 8
and S1 state for N = 12, respectively. (c) uses a different node
arrangement that illustrates the graph relationship with the
topology of the Möbius strip. The same colours are used to
show equal intensities; the larger sizes correspond to larger
intensities. (d) Regions of different global minima of Eq. (1):
E1 in the blue region and E0 in the pink region, in J − p
space for N = 8,C = 1. Two critical values of J are shown as
solid black lines. Between these lines, S0 is expected as the
hard-spin Ising model global minimizer. Thin lines show the
contours E1 = E0 for C = 1,1.2,1.5,2,4 in that region. (e)
Success probability of reaching E0 (labelled as SP0) and E1

(labelled as SP1) states of the soft-spin energy in Eq. (1) from
a point x with randomly chosen components xi in [−1,1] for
different values of p and J = 0.4,N = 8,C = 1. For larger
values of p a third state of higher energy appears with the
success probability SP2; when projected on spins si = xi/∣xi∣
this state corresponds to S1. (f) The height of the minimum
energy barrier between E1 and E0 calculated as the energy
difference between E1 and energy of the nearest saddle point is
shown as a black dashed line for J = 0.4,C = 1. The difference
between E0 and E1 is shown in red.

achieved by modifying the signal intensities bringing
them towards the average mass per particle defined by
the squared radius of the quadrature R(x) ≡ ∑i=1 x

2
i /N

xi → (1 − δ)xi + δRxi/∣xi∣. (3)

If δ = 0, then no adjustment is made. If δ = 1, then
all amplitudes are set to the same (average) value. For
0 < δ < 1, 1/δ determines the proportion of the effective
space for the restricted evolution.

Figure (2)e shows the probability of finding the ground
state of the Ising Hamiltonian using the HT networks
[37], Eq.(2) (CIM-I), Eq.(2) with individual pumping ad-
justments p→ pi according to ṗi = ε(1−x

2
i ) (CIM-II), and
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Eq.(2) with manifold reduction by Eq. (3) (CIM-III). For
CIM-I and CIM-III, we set p(t) = (1 − p0) tanh(ε t) + p0.
CIM-III shows a significant improvement in finding the
ground state compared with other models. Thus, in soft-
spin models, the imperative to constrain the manifold
implies that dimensional annealing should be tailored
according to the energy landscape’s characteristics [40].
Next, we study the quantum evolution on the Ising
energy landscape of circulant coupling matrices to con-
trast its performance with the soft-spin nonlinear models.

Quantum Annealing: We consider the transverse field
Ising model given by

Ĥ = −
1

2

N,N

∑
i,j=1
i≠j

JijŜ
z
i Ŝ

z
j −

N

∑
i=1

hiŜ
z
i − γ(t)

N

∑
i=1

Ŝxi , (4)

where Ŝα are the spin-1/2 Pauli matrices (see Supp.
Inf.). The first term, Ĥ0, is diagonal and represents
the classical Ising Hamiltonian HI ; the second term is a
symmetry-breaking longitudinal magnetic field; the third
term is a transverse field that results in a non-diagonal
Hamiltonian operator and gives rise to the quantum Ising
model. We will take the annealing term to be of the form
γ(t) = B/

√
t + t0 for some constantB [43] and set t0 = 0.5.

We begin with an initial state, which is the ground
state of the transverse field Hamiltonian. The initial
state at time ti can then be expressed as ∣Ψ(ti)⟩ = ∣ψ→⟩⊗
⋯⊗ ∣ψ→⟩ where for each subsystem ∣ψ→⟩ = (∣↑⟩+ ∣↓⟩)/

√
2.

The wavefunction is then evolved according to the time-
dependent Schrödinger equation (see Supp. Inf. for de-
tails) [44]. As t → ∞, γ(t) → 0 and the contribution of
the last term decays to bring about the target Hamil-
tonian. Provided γ(t) is varied adiabatically, the system
evolves, remaining in the true ground state of the system,
and settles into the target Hamiltonian’s desired ground
state at sufficiently long times.

To determine the probability of finding the ground
state, we compute the projection of ∣Ψ(t)⟩ onto the
ground state ∣φ

GS
⟩ of the classical Hamiltonian, Ĥ0, given

by P
GS

= ∣⟨φ
GS

∣Ψ(t)⟩∣2. For J < Jcrit, the S0 ground
state has a two-fold degeneracy. Therefore, we can expect
that the probability of finding one of the ground states is
P

GS
= 1/2. In Fig. 2f, we present numerical simulations of

the time evolution of the success probability for finding
the ground state of N = 8 spin system for J = 0.35. For
comparison, we have also included the results for simu-
lated annealing [45] and classical annealing by evolving
a master equation [43] (see Supp. Inf. for details). In
the former, we allow transition probabilities for single-
spin flips only, whereas, in the latter, we allow for all
spin flips to reveal the importance of spin correlations on
the success probability of finding the ground states. As
can be seen from Fig. 2f, for the chosen annealing sched-
ule, only simulated annealing does not converge to the

Figure 2. (a) Evolution of N = 8 soft spins for J = 0.35
and (b) J = 0.55 according to Eq. (2). In each case, the
ground state is recovered. The amplitudes connected by the
frustrated edges are lower than in the rest of the system and
are shown in red. In all runs, C = 1, p0 = J − 2, ε = 0.003,
∆t = 0.1, and each xi(0) is chosen randomly from a uniform
distribution in the range [−0.001,0.001]; (c) Similar evolution
for probability amplitude of ∣↑⟩ state in quantum annealing
simulation for hi = 0.05∣ξ⟩S0 + 0.005∣ξ⟩S1 with J = 0.35 and
(d) J = 0.6. The amplitudes colored in red correspond to the
frustrated spins as in (b); (e) Ground state probability for
HT, CIM-I, CIM-II, CIM-III, and quantum annealing (QA)
for the Möbius ladder graph with N = 8. For CIM-III, for
each value of J , the optimum value of 0 < δ < 1 is chosen
based on a set of preliminary runs in which δ is varied. Two
thousand runs are used to calculate the probability of finding
the ground state PGS for each value of J . For QA, B = 5 and
∆t = 0.1. Inset to (e) shows the same plots but forN = 100; (f)
Ground state probability of target Hamiltonian with J = 0.35
and B = 5 for quantum annealing (QA), single-spin simulated
annealing (SA), classical annealing (CA) and corresponding
probabilities expected for adiabatic simulated (SA-ad) and
adiabatic quantum (QA-ad) annealing. Insets show Bloch
vector for single-spin and magnitude of Bloch vector ∣u∣; (g)
similar results as (f) but with symmetry-breaking terms of the
form hi = 0.05∣ξ⟩S0 + 0.05∣ξ⟩S1 added to Hamiltonian; Bloch
sphere shows typical trajectories of two neighbouring spins.

correct ground states of the system. In contrast, quan-
tum and classical annealing recover the correct ground
states even though our value of J lies within the range
Je < J < Jcrit. Although the convergence of SA can be en-
hanced with different annealing schedules, in general, the
success probabilities are lower than the other algorithms
we have investigated over a range of annealing schedules
(see Supp. Inf. and Ref. [43]).

To compare the quantum annealing and semi-classical
soft-spin simulations, we computed the single-spin re-
duced density matrix ρ̂1,i from the pure state ∣Ψ(t)⟩. In
general, the single-spin density matrix will correspond to
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entangled states. This is illustrated by recovering the
Bloch vector from ρ̂1,i(t) (see Supp. Inf. for details).
In the inset of Fig. (2)f, we show the evolution of the
Bloch vector with time for one of the spins (other spins
show similar behaviour). We see that the spin is initially
aligned along the equator (consistent with the form of
∣ψ→⟩) but shrinks towards the origin as the state evolves.
The departure of the Bloch vector from the surface of
the Bloch sphere is indicative of quantum entanglement
while its dynamics towards the origin signals a spin state
that is maximally entangled with the rest of the system.
A definite state emerges only upon measurement, which
then subsequently collapses the corresponding wavefunc-
tion to one specific configuration.

For direct comparison with the deterministic semi-
classical simulations, we removed the ground state de-
generacy in our quantum annealing simulations by intro-
ducing the symmetry-breaking term Ĥ1 in Eq.(4). We
set hi to correspond to 0.05∣ξ⟩S0 + 0.05∣ξ⟩S1 where ∣ξ⟩S0

and ∣ξ⟩S1 correspond to the S0 or S1 state, respectively.
This enforces the evolution towards a specific ground
state without the final state being in a quantum su-
perposition. The resulting Bloch vector for J = 0.35 is
shown in the inset of Fig. 2g and now indicates evolution
that ends at the surface of the Bloch sphere, reaching
either the ∣↑⟩ or ∣↓⟩ state. This evolution clearly demon-
strates that though individual spins converge towards a
non-correlated value, their evolution bears the imprint of
inter-spin correlations. Unlike the semi-classical models,
our quantum annealing algorithm consistently identifies
the correct ground state in the Je < J < Jcrit range; (see
Fig. 2e) and demonstrates that correlations play a key
role in facilitating the system to converge to the true
ground state. However, its performance appears to de-
grade near Jcrit. In contrast, the gain-based algorithm
based on the CIM is less sensitive near Jcrit and indicates
one of the potential advantages of gain-based algorithms.

The corresponding time-dependent probability of find-
ing each spin, i, in the ∣↑⟩ state is presented in Fig. 2c for
J = 0.35 (and for J = 0.6 in Fig. 2d). We see that even
though we have strongly perturbed the system towards
the S1 state for J = 0.35, the results emphasize the quan-
tum annealing algorithm’s capacity to find the correct
ground state during gradual γ(t) quenches, leveraging
the quantum system’s expanded phase space.

In summary, we analysed the optimization of Ising
Hamiltonians, contrasting the classical dynamics of semi-
classical soft-spin models with quantum annealing. We
discussed the challenges for semi-classical models due to
a broadening dimensionality landscape, especially when
the models’ global minimum maps to the Ising Hamil-
tonian’s excited state. A solution, termed ‘manifold re-
duction’, is presented, constraining the soft-spin ampli-
tudes and restricting the dimensionality landscape. On
the other hand, we showed that quantum annealing in-
herently can traverse the Ising Hamiltonian’s energy ter-

rain but is more sensitive near quantum critical points.
The findings highlight the importance of understanding
the influence of dimensionality and the energy landscape
overall on optimising physical systems. Furthermore,
they demonstrate how extensions of semi-classical mod-
els to include quantum effects has the potential to assist
the annealing in navigating the system towards the true
ground state by leveraging the advantages of both gain-
based and quantum algorithms.
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