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1 INTRODUCTION 1

1 Introduction

F Recall features of elementary (IB) quantum mechanics:

? wave-particle duality. Waves behaving like particles – e.g., light quanta, pho-
tons and vice-versa; interference of electrons passing through crystal grating and
electron microscope. To make this more precise need:

? wavefunction ψ(x) for particle. Probability density |ψ(x)|2; probability is in-
trinsic to the theory.

? 0bservables become (hermitian) operators on wavefunctions. Lack of
commutation limits simultaneous measurement – leads to precise version of un-
certainty principle.

? Schrödinger’s equation specifies dynamics (evolution in time) and determines
energy levels.

This is enough to understand e.g., the hydrogen atom and transcends classical
physics.

F Aim of this course:

? reformulate QM in a more powerful, abstract, flexible and useful form: Dirac
formalism. This allows a simpler analysis of known problems such as the har-
monic oscillator and is also the clearest way to understand lots of more novel
properties, for example:

? the spin of particles;

? symmetries (e.g., translations and rotations) and conservation laws;

? identical particles;

? it provides the framework for quantizing other, more general, systems e.g., EM
field, and ultimately other forces leading to the ‘Standard Model’ of elementary
particles.

F Will not dwell on applications in any detail, but will keep track of what the mathe-
matical formalism is for.

F Assume IB QM and IA Dynamics but no electromagnetism beyond Coulomb’s law
and intuitive ideas about magnetism.

Plan:

1. Dirac formalism.
2. Harmonic oscillator.
3. Pictures of quantization.
4. Composite systems and identical particles.
5. Perturbation theory.
6. Angular momentum.
7. Transformations and symmetries.
8. Time-dependent perturbation theory.
9. Quantum basics.
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2 Dirac Formalism

2.1 States and Operators

A quantum state is described at each instant by a state |ψ〉 which belongs to a complex
vector apace V . Then

|ψ〉, |φ〉 ∈ V =⇒ α|ψ〉+ β|φ〉 ∈ V ∀ α, β ∈ C. (2.1.1)

Physically this is the superposition principle leading to wave-like behaviour (interfer-
ence). However, these states are not wavefunctions but we will see that they carry all
the quantum information that describes the state of the system concerned in a very
general way.

There are also dual or conjugate states 〈φ| which belong to the dual space V †. By
definition, states and duals can be combined/paired to give a complex number:

〈φ|︸︷︷︸
‘bra’

, |ψ〉︸︷︷︸
‘ket’

7→ 〈φ|ψ〉︸ ︷︷ ︸
‘bra(c)ket’

or formally V † × V → C , (2.1.2)

with

〈φ|
(
α1|ψ1〉 + α2|ψ2〉

)
= α1〈φ|ψ1〉 + α2〈φ|ψ2〉 ,(

β1〈φ1| + β2〈φ2|
)
|ψ〉 = β1〈φ1|ψ〉 + β2〈φ2|ψ〉 , (2.1.3)

α, β ∈ C. This is the definition of the dual as a vector space.

The space of states V and the dual V † come with an inner-product which can be
described as a one-to-one correspondence between states and duals:

V ←→ V †

with |ψ〉 ←→ 〈ψ| = ( |ψ〉)† (use same label for corresponding states)
and α|ψ〉+ β|φ〉 ←→ α∗〈ψ| + β∗〈φ| .

(2.1.4)
The inner product is

V × V → C
|φ〉, |ψ〉 7→ 〈φ|ψ〉 = (|φ〉)†|ψ〉 , (2.1.5)

and is assumed to obey

〈φ|ψ〉 = 〈ψ|φ〉∗ hermitian
‖|ψ〉‖2 = 〈ψ|ψ〉 ≥ 0 (real from above)

with ‖|ψ〉‖2 = 0 iffi |ψ〉 = 0.
(2.1.6)

This means that the inner product is positive semidefinite. Note that knowing 〈φ|ψ〉
for all 〈φ| determines |ψ〉 uniquely and vice-versa.

The physical content of any state is unaltered by changing |ψ〉 → α|ψ〉 (α 6= 0). We
shall usually normalize states by ‖|ψ〉‖2 = 1 but still have the freedom to change
|ψ〉 → eiθ|ψ〉. The absolute phase of a single state never has any physical significance,
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but relative phases in combination such as α|φ〉+β|ψ〉 can be significant; for example,
for interference phenomena.

The space V is complete; we assume appropriate sequences or series converge. A
complete inner product space of this kind is a Hilbert space and this term is often
used for the space V in QM. V can be either finite or infinite dimensional and we shall
see examples of both.

An operator Q is a linear map on states, V → V :

|ψ〉 7→ Q|ψ〉, (2.1.7)

and, by definition

Q
(
α|φ〉+ β|ψ〉

)
= αQ|φ〉+ βQ|ψ〉 . (2.1.8)

The same operator can be regarded as acting ‘to the left’ on dual states, V † → V †:

〈φ| 7→ 〈φ|Q , (2.1.9)(
〈φ|Q

)
|ψ〉 = 〈φ|

(
Q|ψ〉

)
∀ |ψ〉

or simply = 〈φ|Q|ψ〉 .
(2.1.10)

For any Q the hermitian conjugate or adjoint is an operator Q† defined by

〈φ|Q† =
(
Q|φ〉

)†
, (2.1.11)

or, equivalently,

〈φ|Q†|ψ〉 =
(
Q|φ〉

)†
|ψ〉

= 〈ψ|Q|φ〉∗ ∀ |ψ〉, |φ〉 . (2.1.12)

Simple consequences are (
αA+ βB

)†
= α∗A† + β∗B† ,(

AB
)†

= B†A† , (2.1.13)

for any A,B.1

1

〈ψ|(AB)†|φ〉 =
(
(AB)|ψ〉

)†
|φ〉 defn of (AB)†

=
(
A|ψ′〉

)†
|φ〉 |ψ′〉 ≡ B|ψ〉

= 〈ψ′|A†|φ〉 defn of A†

=
(
B|ψ〉

)†(
A†|φ〉

)
= 〈ψ|B†A†|φ〉 defn of B† .

(2.1.14)

True for all |ψ〉, |φ〉 and result follows.
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For any operator Q call |ψ〉 ( 6= 0) an eigenstate of Q with eigenvalue λ if

Q|ψ〉 = λ|ψ〉 . (2.1.15)

Equivalently (taking † of this)

〈ψ|Q† = λ∗〈ψ| . (2.1.16)

For general Q, λ can be complex.

Of particular importance are commutators of operators

[A,B] = AB −BA = − [B,A] . (2.1.17)

We have the identities

[α1A1 + α2A2, B] = α1[A1, B] + α2[A2, B]
[A, β1B1 + β2B2] = β1[A,B1] + β2[A,B2]

linearity (2.1.18)

[A,B1B2] = [A,B1]B2 + B1[A,B2]
[A1A2, B] = [A1, B]A2 + A1[A2, B]

Leibnitz properties (2.1.19)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 Jacobi identity (2.1.20)

2.2 Observables and measurements

An operator Q is hermitian or self-adjoint if

Q† = Q . (2.2.1)

Such operators are called observables because they correspond to physical, measur-
able, quantities e.g., position, momentum, energy, angular momentum. Key results for
any hermitian Q:

(i) All eigenvalues are real.
(ii) Eigenstates with distinct eigenvalues are orthogonal.

(iii) The eigenstates form a complete basis for V (and their duals for V †). So any state
can be expanded in terms of (written as a linear combination of) the eigenstates.

We prove (i) and (ii) and assume (iii).

(i)
Q|ψ〉 = λ|ψ〉

and 〈ψ|Q† = λ∗〈ψ|
⇒ 〈ψ|Q = λ∗〈ψ| since Q is hermitian
⇒ 〈ψ|Q|ψ〉 = λ〈ψ|ψ〉 = λ∗〈ψ|ψ〉 .

(2.2.2)

But ‖|ψ〉‖2 = 〈ψ|ψ〉 6= 0 (|ψ〉 6= 0) and so deduce

λ = λ∗ . (2.2.3)
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(ii) Let |n〉 be eigenstates of Q with eigenvalues λ = qn real, with n a discrete label
possibly of infinite range.

Q|n〉 = qn|n〉
and Q|m〉 = qm|m〉
or 〈m|Q = qm〈m|
⇒ 〈m|Q|n〉 = qn〈m|n〉 = qm〈m|n〉 .

(2.2.4)

So qn 6= qm ⇒ 〈m|n〉 = 0.

Combining these three properties we have

F For any observable Q there is an orthonormal basis of eigenstates {|n〉} for the space
of states V with

Q|n〉 = qn|n〉 ,
〈m|n〉 = δmn . (2.2.5)

We speak of diagonalizing Q by choosing the basis to be the eigenstates |n〉 of Q.
This means that a general state |ψ〉 can be expanded as

|ψ〉 =
∑
n

αn|n〉 , (2.2.6)

where αn = 〈n|ψ〉.

For the state to be properly normalized

‖|ψ〉‖2 = 〈ψ|ψ〉 = 1

⇐⇒
(∑

m

α∗m〈m|
)(∑

n

αn|n〉
)

=
∑
n

|αn|2 = 1 . (2.2.7)

There might be several states with the same eigenvalue λ. Define the eigenspace for
a given eigenvalue by

Vλ = {|ψ〉 : Q|ψ〉 = λ|ψ〉} , (2.2.8)

which has the basis {|n〉 : qn = λ}.
The degeneracy of λ is the number of states in this basis, or dimVλ. We say that λ
is non-degenerate if the degeneracy is 1.

d Note that passing from our three key results to the conclusion (F) is achieved by
choosing an orthonormal basis for each Vλ:

(ii) ensures that these spaces are mutually orthogonal;

(iii) implies that the sum of all the eigenspaces is V , the entire space of states. c
Consider a measurement of Q when the system is in state |ψ〉 immediately before.
Then

• The result is an eigenvalue, λ, say.
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• This value is obtained with the probability

p(λ) =
∑
n:qn=λ

|αn|2. (2.2.9)

• Immediately after the measurement the state is

|φ〉 = c
∑
n:qn=λ

αn|n〉 , (2.2.10)

where c is a normalization constant chosen so that 〈φ|φ〉 = 1.

So measurement projects the system into the eigenspace Vλ.

Example. Consider a system with three orthonormal states: |1〉, |2〉, |3〉 on which Q
has eigenvalues q1 = q2 = 0, q3 = 1. Let the state of the system be

|ψ〉 =
1√
6

(2|1〉+ |2〉+ |3〉) . (2.2.11)

Then

Probability
of measuring



1

∣∣∣∣ 1√
6

∣∣∣∣2 =
1

6
|3〉

0

∣∣∣∣ 2√
6

∣∣∣∣2 +

∣∣∣∣ 1√
6

∣∣∣∣2 =
5

6

1√
5

(2|1〉+ |2〉)

↑
final states

(2.2.12)

In this example we had degeneracy: two states with eigenvalue 0. However, often have
the case with λ non-degenerate with eigenstate |n〉 unique up to a phase. Then

• p(λ) = |αn|2 = |〈n|ψ〉|2.
• αn = 〈n|ψ〉 is called the amplitude.

• The state after measurement is |n〉.

In general, ∑
λ

p(λ) =
∑
n

|αn|2 = 1 , (2.2.13)

as required for a probability distribution.

The expectation value (mean) of Q in state |ψ〉 is

〈Q〉ψ = 〈ψ|Q|ψ〉 =
∑
λ

λp(λ) =
∑
n

qn|αn|2 , (2.2.14)

and the uncertainty (spread or variance) is

(∆Q)2ψ = 〈(Q− 〈Q〉ψ)2〉ψ = 〈Q2〉ψ − 〈Q〉2ψ . (2.2.15)
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In thinking about many repeated measurements we must be careful to prepare the
system in the same state each time.

In the case that |ψ〉 is an eigenstate of Q with eigenvalue λ, say, then

〈Q〉ψ = λ , and (∆Q)ψ = 0 . (2.2.16)

d The process of measurement is still a source of some deep questions about the inter-
pretation of QM c.
Quantum mechanical behaviour arises from the fact that observables do not commute
in general. In any state |ψ〉

〈∆A〉ψ〈∆B〉ψ ≥
1

2
|〈[A,B]〉ψ| , (2.2.17)

so [A,B] 6= 0 means we cannot expect to measure exact values for A and B simultane-
ously. This generalized Uncertainty Principle follows from

‖(A+ iλB)|ψ〉‖2 ≥ 0 ∀ real λ . (2.2.18)

The LHS is a quadratic in λ and the condition implies that the discriminant is ≤ 0;
the stated Uncertainty Principle then follows.

Paradigm example: position, x̂, and momentum, p̂, in one dimension obey

[x̂, p̂] = i~

⇒ ∆x ∆p ≥ ~
2
. (2.2.19)

In D = 3, x̂i and p̂i obey
[x̂i, p̂j] = i~δij , (2.2.20)

and so the uncertainty principle applies to components of position and momentum
which are not orthogonal.

2.3 Time evolution and the Schrödinger Equation

So far our discussion of quantum states has been at a fixed time, even measurement is
assumed to be an instantaneous change of state. The evolution of states |ψ(t)〉 in time
is governed by the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 , (2.3.1)

where H = H† is the Hamiltonian. Equivalently,

−i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H . (2.3.2)

Note that these equations imply

∂

∂t

(
〈ψ(t)|ψ(t)〉

)
= 0 , (2.3.3)
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so that the normalization of |ψ(t)〉, and hence the probabilistic interpretation, is pre-
served in time.

H is an observable: the energy. Consider the eigenstates

H|n〉 = En|n〉 . (2.3.4)

Then the states
e−iEnt/~|n〉 (2.3.5)

are stationary state solutions of the Schrödinger Equation.

The Schrödinger Equation is first-order in t and linear in |ψ(t)〉 and so for an initial
state at t = 0,

|ψ(0)〉 =
∑
n

αn|n〉 , (2.3.6)

we have the unique solution

|ψ(t)〉 =
∑
n

αne
−iEnt/~|n〉 . (2.3.7)

Example. Consider system with two energy eigenstates |1〉, |2〉 with energy eigenvalues
E1, E2, respectively. We are interested in measuring Q defined by

Q|1〉 = |2〉, Q|2〉 = |1〉 ⇒ [Q,H] 6= 0 . (2.3.8)

The eigenstates of Q are easily found to be

|±〉 =
1√
2

(
|1〉 ± |2〉

)
with eigenvalues q± = ±1 . (2.3.9)

Let the initial state, the state at t = 0, be |ψ(0)〉 = |+〉. Then have

|ψ(t)〉 =
1√
2

(
e−iE1t/~|1〉+ e−iE2t/~|2〉

)
. (2.3.10)

The probability of measuring Q at time t and getting ±1 is

|〈±|ψ(t)〉|2 =

∣∣∣∣12(〈1| ± 〈2|)(e−iE1t/~|1〉+ e−iE2t/~|2〉
)∣∣∣∣2

=

∣∣∣∣12(e−iE1t/~ ± e−iE2t/~
)∣∣∣∣2

=


cos 2

(
(E1−E2)t

2~

)
sin 2

(
(E1−E2)t

2~

) (2.3.11)

Note that we are assuming no time-dependence in H. This would become a much
more complex situation.
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2.4 Bases and Representations

Another use of a basis is that we can choose to reduce all states and operators to,
possibility infinite, column/row vectors and to matrices as follows

|ψ〉 =
∑
n

αn|n〉 ⇔ αn = 〈n|ψ〉

|φ〉 =
∑
n

βn|n〉 ⇔ βn = 〈n|φ〉 . (2.4.1)

The inner product is then

〈φ|ψ〉 =
∑
n

β∗nαn . (2.4.2)

The operation of operator A can be written as

A|n〉 =
∑
m

|m〉Amn , (2.4.3)

where Amn = 〈m|A|n〉 are the matrix elements of the complex matrix representing
the operator A in this basis. Note that the entries in this matrix depend on the basis; a
familiar result in linear algebra for any linear map. In contrast, the result of operating
with A on any state is independent of the basis. Check this result

|φ〉 = A|ψ〉︸ ︷︷ ︸
basis-independent

⇔ βm =
∑
n

Amnαn︸ ︷︷ ︸
basis-dependent

. (2.4.4)

Clearly, this representation is multiplication of a vector by a matrix: β = Aα. Also,
have that the Hermitian conjugate has the familiar matrix form:

(A†)mn = A∗nm . (2.4.5)

If B is another operator with matrix B then

(AB)mn =
∑
p

AmpBpn . (2.4.6)

I.e., as expected the usual rules of matrix multiplication apply.

This, by now familiar, way of representing linear maps on a vector space by the linear
algebra of matrices gives the matrix representation of Quantum Mechanics. It is most
useful when the number of basis states is finite, but can also be useful for an ∞
dimensional basis as well (does need care).

We are often interested in a function f(Q) of an operator Q. How should this be
defined? The answer may be obvious if f is a polynomial or a series:

Q +
Q3

3
, eQ , sin (Q) assuming convergence . (2.4.7)

But what about 1/Q or log(Q)?
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For Q an observable and |n〉 an eigenbasis for Q:

Q|n〉 = qn|n〉 〈n|m〉 = δmn , (2.4.8)

setting
f(Q)|n〉 = f(qn)|n〉 (2.4.9)

defines f(Q) provided f(qn) is defined for all n; f(Q) is defined on a basis and so is
defined on any state. This is certainly true if f is a polynomial or a power series that
converges for all qn. If qn 6= 0 ∀ n then can define

Q−1|n〉 =
1

qn
|n〉 , (2.4.10)

and likewise log(Q) is defined if 0 < qn <∞.

A useful way to express that {|n〉} is an orthonormal basis is the completeness re-
lation or resolution of the identity:∑

n

|n〉〈n| = I , the identity operator. (2.4.11)

The notation is (
|n〉〈m|︸ ︷︷ ︸

operator

)
|ψ〉︸︷︷︸

state

= |n〉︸︷︷︸
state

(
〈m|ψ〉︸ ︷︷ ︸

number

)
. (2.4.12)

This is confirmed by applying each side to an arbitrary state∑
n

|n〉〈n|ψ〉 = |ψ〉 = I|ψ〉 . (2.4.13)

In the same way can resolve any operator in a similar fashion:

Q =
∑
n

qn|n〉〈n| ,

f(Q) =
∑
n

f(qn)|n〉〈n| . (2.4.14)

In the case where the eigenvalues are degenerate then we can define a projection oper-
ator onto the subspace of eigenstates with eigenvalue λ by

Pλ =
∑

n: qn=λ

|n〉〈n| . (2.4.15)

The bases considered so far may be infinite but have been assumed discrete which
includes countably infinite bases. However, we can extend the index n to be continuous.
This requires some modifications in all relevant formulas:

∑
n

→
∫
dn


|ψ〉 =

∫
dn αn|n〉

I =
∫
dn |n〉〈n|

Q =
∫
dn q(n)|n〉〈n|

〈n|m〉 = δnm → δ(n−m) (2.4.16)

with |αn|2 = |〈n|ψ〉|2. There is no longer a probability for discrete outcomes but a
probability density for the continuous range of n. We will see this below for position
and momentum operators.
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2.5 Position and momentum basis – wavefunctions

Consider particle motion in one dimension. Position and momentum operators x̂, p̂
obey

[x̂, p̂] = i~ . (2.5.1)

Let |x〉 be position eigenstates
x̂|x〉 = x|x〉 , (2.5.2)

with continuous eigenvalue x and normalization

〈x|x′〉 = δ(x− x′) ,
∫
dx |x〉〈x| = I . (2.5.3)

In this basis, any state can be expanded as

|ψ〉 =

∫
dx ψ(x)|x〉

with ψ(x) = 〈x|ψ〉 a complex function . (2.5.4)

ψ(x) is just the usual position wavefunction and the standard interpretation is the ob-
vious extension of the measurement postulates in section 2.2 to continuous eigenvalues:

|ψ(x)|2 is the probability density for measuring position. (2.5.5)

The inner product in terms of wavefunctions becomes

〈φ|ψ〉 =

(∫
dx φ(x)∗〈x|

)(∫
dx′ ψ(x′)|x′〉

)
=

∫
dx

∫
dx′φ(x)∗ψ(x′) 〈x|x′〉︸ ︷︷ ︸

δ(x− x′)

=

∫
dxφ(x)∗ψ(x) . (2.5.6)

So, in particular,

‖|ψ〉‖2 = 〈ψ|ψ〉 =

∫
dx |ψ(x)|2 = 1 (2.5.7)

for a normalized state.

Define similarly momentum eigenstates |p〉 with

p̂|p〉 = p|p〉 , (2.5.8)

and with

〈p|p′〉 = δ(p− p′) ,
∫
dp |p〉〈p| = I . (2.5.9)

It is very important that the eigenstates of x̂ and p̂ can be chosen so that they are
related by

〈x|p〉 =
1√
2π~

eipx/~ , (2.5.10)

⇒ 〈p|x〉 =
1√
2π~

e−ipx/~ . (2.5.11)
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We justify this later after deducing some consequences. First find action of x̂ and p̂ in
terms of position wavefunctions:

x̂|ψ〉 wavefunction : 〈x|x̂|ψ〉 = x〈x|ψ〉 = xψ(x)

p̂|ψ〉 wavefunction : 〈x|p̂|ψ〉

=

∫
dp 〈x|p̂|p〉〈p|ψ〉 [resolution of identity using p-states]

=

∫
dp p〈x|p〉〈p|ψ〉

=

∫
dp − i~ ∂

∂x

(
〈x|p〉

)
〈p|ψ〉

= −i~ ∂
∂x

∫
dp 〈x|p〉〈p|ψ〉

= −i~ ∂
∂x
〈x|ψ〉 = − i~ ∂

∂x
ψ(x) , (2.5.12)

and so recover familiar results. However, also have new possibility. Can expand states
in momentum basis instead:

|ψ〉 =

∫
dp ψ̃(p)|p〉 ,

with ψ̃(p) = 〈p|ψ〉 , (2.5.13)

which is the momentum space wavefunction where |ψ̃(p)|2 is the probability density for
measurements of momentum. Then have

‖|ψ〉‖2 =

∫
dp 〈ψ|p〉〈p|ψ〉 =

∫
dp |ψ̃(p)|2 = 1 . (2.5.14)

As before, but with x ↔ p:

p̂|ψ〉 −→ pψ̃(p)

x̂|ψ〉 −→ i~
∂

∂p
ψ̃(p)

 momentum space
wavefunctions

(2.5.15)

The relationship between the wavefunctions follows from Eq. (2.5.10):

ψ̃(p) = 〈p|ψ〉 =

∫
dx 〈p|x〉〈x|ψ〉

=
1√
2π~

∫
dx e−ipx/~ ψ(x) Fourier transform,

and ψ(x) =
1√
2π~

∫
dp eipx/~ ψ̃(p) inverse FT. (2.5.16)

Think of these as two different representations of states |ψ〉 and the operators on
them:

ψ(x) ψ̃(p)

x̂ −→ x x̂ −→ i~ ∂
∂p

p̂ −→ −i~ ∂
∂x

p̂ −→ p

(2.5.17)
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d The transforms between x and p space are familiar but here we are deriving all the
results, including the transform inversion theorem, on the assumption that {|x〉} and
{|p〉} are bases. c
The corresponding representations of the Hamiltonian

H(x̂, p̂) =
p̂2

2m
+ V (x̂) (2.5.18)

are

on ψ(x) : H −→ − ~2

2m

∂2

∂x2
+ V (x) ,

on ψ̃(p) : H −→ − p2

2m
+ V

(
i~
∂

∂p

)
. (2.5.19)

It may be easy to interpret the potential term in momentum space. E.g., V (x) =
λxn ⇒

V

(
i~
∂

∂p

)
= λ(i~)n

∂n

∂pn
, (2.5.20)

but more generally need to use first principles.

〈p|V (x̂)|ψ〉 =

∫
dx 〈p|V (x̂)|x〉〈x|ψ〉

=

∫
dx V (x)〈p|x〉

∫
dp′〈x|p′〉〈p′|ψ〉

=

∫
dp′

(
1

2π~

∫
dx V (x) e−i(p−p

′)x/~
)
ψ̃(p′)

=
1√
2π~

∫
dp′ Ṽ (p− p′)ψ̃(p′) . (2.5.21)

Thus H|ψ〉 = E|ψ〉 becomes

− ~2

2m

∂2ψ

∂x2
+ V (x) ψ(x) = E ψ(x) in position space ,

p2

2mψ̃(p) + 1√
2π~

∫
dp′ Ṽ (p− p′) ψ̃(p′) = E ψ̃(p) in momentum space .

(2.5.22)
d Note that the convolution theorem derived here. c
Now return to the key condition in Eq. (2.5.10) and justify it:

〈x|p〉 =
1√
2π~

eipx/~ . (2.5.23)

The point is that eigenstates are only ever unique up to a phase, even if normalized,
so we need to show there is a way to choose |x〉 and |p〉 which makes this result true.
Doing this will involve an approach to translations to which we return later. Claim
that

|x0 + a〉 = e−iap̂/~|x0〉 , (2.5.24)
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which involves the operator

U(a) ≡ e−iap̂/~ =
∞∑
n=0

1

n!

(
−ia
~

)n
p̂n , (2.5.25)

defines position eigenstates |x〉 ∀ x given one with x = x0. To check this first note
that

[x̂, p̂] = i~ ⇒ [x̂, p̂n] = i~n p̂n−1 . (2.5.26)

d Note that x̂ acts like “ i~ d/dp̂ ” inside a commutator. c Thus find

[x̂, U(a)] =
∞∑
n=1

1

n!

(
−ia
~

)n
n p̂n−1 = aU(a) . (2.5.27)

So

x̂ U(a)|x0〉 = ([x̂, U(a)] + U(a)x̂)|x0〉
= (aU(a) + U(a)x0)|x0〉
= (x0 + a)U(a)|x0〉 as required. (2.5.28)

Similarly,
|p0 + b〉 = eibx̂/~|p0〉 , (2.5.29)

defines momentum eigenstates |p〉 ∀ p given one with p = p0. But then

〈x0 + a|p0 + b〉 = 〈x0| eiap̂/~|p0 + b〉

= eia(p0+b)/~〈x0|eibx̂/~|p0〉

= ei(ab+ap0+bx0)/~〈x0|p0〉 . (2.5.30)

Choosing 〈x0|p0〉 = 1/
√

2π~ for reference values x0 = p0 = 0, then gives (relabelling
a, b as x, p, repectively)

〈x|p〉 =
1√
2π~

eipx/~ . (2.5.31)

Actually, need justification for this last step.

• Since {|x〉} is a basis we cannot have 〈x|p0〉 = 0 for every x, and then Eq. (2.5.24)
implies 〈x0|p0〉 6= 0, the required result, since

|x0〉 = |x+ (x0 − x)〉 = e−i(x0−x)p̂/~|x〉
⇒ 〈x0|p0〉 = ei(x0−x)p0/~〈x|p0〉 6= 0 . (2.5.32)

• Now, the phase of 〈x0|p0〉 is a matter of convention but the modulus must be con-
sistent with

〈p|p′〉 = δ(p− p′) , (2.5.33)

which is the desired normalization for the {|p〉} basis. To check:

〈p|p′〉 =

∫
dx 〈p|x〉〈x|p′〉

=

∫
dx

1

2π~
ei(p

′−p)x/~ = δ(p− p′) as required. (2.5.34)
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• Similarly,

〈x|x′〉 =

∫
dp 〈x|p〉〈p|x′〉

=

∫
dp

1

2π~
eip(x−x

′)/~ = δ(x− x′) as expected. (2.5.35)

Note that the operator U(a) implements translation by a on the position states.

2.6 Simultaneous Measurements and Complete Commuting
Sets

Return to idea of labelling basis states by eigenvalues of observables. If this cannot
uniquely be done with eigenvalues λ of some observable Q because some eigenvalues are
degenerate, then need at least one more observable Q′ to distinguish the corresponding
degenerate states.

Physically, we must be able to measure Q and Q′ simultaneously or

• first measure Q with result λ,

• then immediately measure Q′ with result λ′.

• This second measurement must not change the value for Q and so still get result λ
if it is measured again immediately.

Mathematically, this requires a basis of joint eigenstates which simultaneously
diagonalize Q and Q′:

Q|λ, λ′〉 = λ|λ, λ′〉
Q′|λ, λ′〉 = λ′|λ, λ′〉 , (2.6.1)

which is only possible iffi
[Q,Q′] = 0 , (2.6.2)

as we now show.

• If there is a basis of joint eigenstates as above then

QQ′|λ, λ′〉 = Q′Q|λ, λ′〉 = λλ′|λ, λ′〉 , (2.6.3)

soQQ′ = Q′Q on these basis states and hence on all states since they can be expanded
on this basis.

• Conversely, if [Q,Q′] = 0 and |ψ〉 belongs to the eigenspace Vλ of Q then

Q
(
Q′|ψ〉

)
= Q′

(
Q|ψ〉

)
= λ

(
Q′|ψ〉

)
, (2.6.4)

and so Q′|ψ〉 also belongs to Vλ.
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• The definition of a hermitian operator that

〈φ|Q′|ψ〉 = 〈ψ|Q′|φ〉∗ ∀ |ψ〉, |φ〉 ∈ V (2.6.5)

holds for the restriction |ψ〉, |φ〉 ∈ Vλ. Hence, ∃ a basis for Vλ consisting of
eigenstates of Q′. Call these |λ, λ′〉.

• Doing this for each Vλ gives a basis of such joint eigenstates for V .

d Note that if dim Vλ = 1 (no degeneracy) then any state in Vλ is automatically an
eigenstate of Q′ since Q′ maps Vλ → Vλ. c
Now can extend to any number of hermitian operators. Observables {Q1, Q2, Q3. . . .}
are said to be a complete commuting set if any pair commute. Then there is a basis
of joint eigenstates with members

|λ1, λ2, λ3, . . .〉 . (2.6.6)

An equivalent way to characterize a complete commuting set is as follows. If A is any
other observable with [A,Qi] = 0 ∀ Qi then

A = f(Q1, Q2, Q3, . . .) (2.6.7)

for some function f . This means that

A|λ1, λ2, λ3, . . .〉 = f(λ1, λ2, λ3, . . .)|λ1, λ2, λ3, . . .〉 . (2.6.8)

An example is the generalization from one to three dimensions of the position and
momentum operators (x̂, p̂). These obey the commutation relations defined in terms
of their Cartesian component operators in usual notation

[x̂i, p̂j] = i~δij . (2.6.9)

One complete commuting set is

x̂ = (x̂1, x̂2, x̂3) (2.6.10)

with joint eigenstates:

x̂i|x〉 = xi|x〉
orthonormality: 〈x|x′〉 = δ(3)(x− x′)
basis: |ψ〉 =

∫
d3x ψ(x)|x〉

position space wavefunction ψ(x) = 〈x|ψ〉 .

An alternative complete commuting set is

p̂ = (p̂1, p̂2, p̂3) (2.6.11)

with joint eigenstates
p̂i|p〉 = pi|p〉 (2.6.12)

and momentum space wavefunction ψ̃(p) = 〈p|ψ〉.
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The relationship between these eigenstates is

〈x|p〉 =
1

(2π~)3/2
eip·x/~ ⇒

ψ̃(p) =
1

(2π~)3/2

∫
d3x e−ip·x/~ψ(x)

ψ(x) =
1

(2π~)3/2

∫
d3p eip·x/~ψ̃(p) . (2.6.13)

There are other possibilities such as {x̂1, x̂2, p̂3} leading to mixed position and momen-
tum space wavefunctions.

3 The Harmonic Oscillator

A one-dimensional harmonic oscillator of mass m and frequency ω is defined by the
Hamiltonian

H =
1

2m
p̂2 +

1

2
mω2x̂2 . (3.1)

We will derive the energy levels and construct eigenstates using operator methods and
then also see how to find the wavefunctions.

3.1 Analysis using annihilation, creation and number opera-
tors

Define

a =
(mω

2~

)1/2(
x̂+

ip̂

mω

)
,

a† =
(mω

2~

)1/2(
x̂− ip̂

mω

)
. (3.1.1)

Note that these are dimensionless. Equivalently,

x̂ =

(
~

2mω

)1/2 (
a+ a†

)
,

p̂ =

(
~mω

2

)1/2

i
(
a† − a

)
. (3.1.2)

It is easy to check that

[x̂, p̂] = i~ ⇔ [a, a†] = 1 . (3.1.3)
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Also have

aa† =
mω

2~
x̂2 +

1

2mω~
p̂2 − i

2~
(x̂p̂− p̂x̂)

=
1

~ω
H +

1

2
,

and similarly

a†a =
1

~ω
H − 1

2
(opposite sign for commutator),

(3.1.4)

which confirms the commutation relations and also gives

H = ~ω
(
N +

1

2

)
, (3.1.5)

where N = a†a is the number operator. N † = N and finding its eigenstates and
eigenvalues is equivalent to doing this for H:

N |λ〉 = λ|λ〉 ⇔ H|λ〉 = E|λ〉 with E = ~ω
(
λ+

1

2

)
. (3.1.6)

Let |λ〉 be any such eigenstate normalized s.t. ‖|λ〉‖2 = 1. Then

λ = 〈λ|N |λ〉 = 〈λ|a†a|λ〉 = ‖a|λ〉‖2 ≥ 0 . (3.1.7)

Thus,
λ ≥ 0 all eigenvalues non-negative

= 0 iffi a|λ〉 = 0 .
(3.1.8)

Next consider commutators

[N, a†] = [a†a, a†] = a†[a, a†] = a† ,
[N, a] = [a†a, a] = [a†, a]a = −a . (3.1.9)

These relations imply that a† and a act on eigenstates by respectively raising and
lowering the eigenvalues by 1, provided the new states are non-zero and so actually are
eigenstates.

N(a†|λ〉) = ([N, a†] + a†N)|λ〉
= (a† + a†λ)|λ〉
= (λ+ 1)(a†|λ〉) ,

N(a|λ〉) = ([N, a] + aN)|λ〉
= (−a+ aλ)|λ〉
= (λ− 1)(a|λ〉) . (3.1.10)

To find whether the new states are non-zero we compute their norms.

‖a|λ〉‖2 = λ (already done above) (3.1.11)



3 THE HARMONIC OSCILLATOR 19

which is only ever zero if λ = 0.

‖a†|λ〉‖2 = 〈λ|aa†|λ〉
= 〈λ|a†a+ 1|λ〉
= λ+ 1 , (3.1.12)

which is never zero since λ ≥ 0. Because of these properties a† and a are called,
respectively, creation and annihilation operators.

Suppose there is an eigenstate |λ〉 with λ not an integer. Then

a|λ〉, a2|λ〉, . . . , am|λ〉, . . . are all non-zero.
eigenvalues: λ− 1, λ− 2, . . . , λ−m . . . .

(3.1.13)
But for m sufficiently large λ − m < 0 which is a contradiction since all eigenvalues
are non-negative. By contrast if λ = n = 0, 1, 2, . . . then the contradiction is avoided
because

a|n〉, a2|n〉, . . . , an|n〉, are non-zero states
eigenvalues: n− 1, n− 2, . . . , 0 ,

(3.1.14)
but am|n〉 = 0, m > n and so the sequence terminates. Furthermore, have additional
eigenstates

a†|n〉, (a†)2|n〉, . . . ,
eigenvalues: n+ 1, n+ 2, . . . .

(3.1.15)

The eigenvalues of N are therefore precisely the non-negative integers and the oscil-
lator energy levels are

En = ~
(
n+

1

2

)
n = 0, 1, 2, 3, . . . . (3.1.16)

From calculations of norms above, we can choose normalized eigenstates |n〉, 〈n|n〉 = 1
which are then related by

a†|n〉 =
√
n+ 1 |n+ 1〉

a|n〉 =
√
n |n− 1〉

}
ladder operators (3.1.17)

Starting from one state reach others by
operating with a and a†. In particular,
starting from the ground state, |0〉,
characterized by

a|0〉 = 0 , (3.1.18)

have normalized eigenstates

|n〉 =
1√
n!

(a†)n|0〉 . (3.1.19)
0 state0 state

00

11

22

33

aa aa

nn



3 THE HARMONIC OSCILLATOR 20

In the absence of any internal structure can take {x̂} or {p̂} or {N} as a complete
commuting set. Then the energy levels are non-degenerate (eigenvalues of N label
them uniquely) and, in particular, |0〉 is completely specified by

a|0〉 = 0 . (3.1.20)

If there is some internal structure then all states can carry an additional label i as-
sociated with some observable Q (or its eigenvalues) commuting with x̂, p̂, a, a†, N .
All energy levels have the same degeneracy with states |n; i〉 related by a, a† without
affecting i.

The analysis above is convenient for finding wavefunctions. In the position represen-
tation

|0〉  ψ0(x) = 〈x|0〉

a =
(
mω
2~
)1/2 (

x̂+ i
mω p̂

)
 

(
mω
2~
)1/2 (

x+ ~
mω

∂
∂x

)
a|0〉 = 0  

(
x+ ~

mω
∂
∂x

)
ψ0(x) = 0

=⇒ ψ0(x) = N e
−mωx

2

2~

(3.1.21)

with normalization factor N =
(
mω
π~
)1/4

.

Can also find wavefunctions for higher energy states by using Eq. (3.1.19). E.g.,

|1〉 = a†|0〉  ψ1(x) =
(
mω
2~
)1/2 (

x− ~
mω

∂
∂x

)
ψ0(x)

=
(

2mω
~
)1/2

xψ0(x) .

(3.1.22)

The correct normalization is guaranteed.

3.2 Importance of the oscillator – applications in outline

“Physics is that subset of human experience that can be reduced to coupled harmonic
oscillators.”

M. Peskin

• The oscillator is the simplest QM model beyond steps, wells etc. that can be solved
exactly; the hydrogen atom with a Coulomb potential is also special in this respect. It
is a very useful example to use as test case for new ideas, approaches and techniques.

• More importantly, many physical systems can be described, exactly or approximately,
in terms of oscillators.
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• Consider a smooth potential V (x) with equilibrium point x0 (V ′(x0) = 0). For
displacements x from equilibrium

V (x0 + x) = V (x0) +
1

2
V ′′(x0)x

2 +O(x3) , (3.2.1)

and so if the displacements are not too large neglecting the O(x3) contribution may
be a good approximation. Indeed, can include the effects of these anharmonic cor-
rections systematically using perturbation theory (see later). The point is that we
start with a soluble model. E.g., diatomic molecules where the quantization of vibra-
tional energies is important in understanding the internal energy and hence the heat
capacity of the gas – has macroscopic consequences. In other systems this approach
can breakdown, though.

• More complicated systems can be analyzed in terms of normal modes: each mode is
a coherent motion in which all degrees of freedom oscillate with common frequency ω.
This is common classically and can now quantize this motion. The general solution
for the classical oscillator is

x(t) = A e−iωt + A∗ eiωt A a complex constant. (3.2.2)

Normal modes for a system with variables xn, n = 1 . . . N are of the form

xn(t) = Aun e
−iωt + A∗u∗n e

iωt , (3.2.3)

with un, n = 1 . . . N a complex vector specific to each allowed normal frequency ω.
The general solution is a superposition of normal modes. To quantize treat normal
modes as independent oscillators. E.g.,

• Benzene ring with 6 CH units which oscillate around the “clock face” of the ring.
They are treated as if joined by identical springs. Actually, analyzed by discrete
group theory based on the symmetries of the ring.

• Crystal with # atoms N ∼ 1023. The forces between the atoms are approximately
elastic and in 3D there are N = 3N independent coordinates. Each of the 3N modes
is a collective motion of the atoms and if the approximation of elastic forces is good
then interaction between normal modes is small. If you excite just a single mode then
no other mode starts up – no energy transfer between modes; they are effectively
independent oscillators.

• Electromagnetic field – normal mode oscillations of electric and magnetic fields at
each point in space

E(x, t) = Au(x) e−iωt + A∗u(x)∗ eiωt . (3.2.4)

In fact,

u(x) = ε eik·x with polarization ε ⊥ k and |k| =
ω

c
. (3.2.5)

This gives a wave solution with behaviour e±i(k·x−ωt). General solution is a linear
combination of normal modes for various ω, ε,k – exact for EM field.
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• Quantization of normal modes as independent oscillators. For each normal mode
have a(ω) and a(ω)† (ω and other labels as necessary). Then

Ground state |0〉 with a(ω)|0〉 = 0 ∀ modes .

a†(ω)|0〉
{

state carrying energy but also mo-
mentum ~k – like a particle.

a destroy
a† create

}
particles

{
phonons in a crystal
photons in EM field .

(3.2.6)

Phonon modes with long wavelength are sound waves (see AQM course in Lent).
Macroscopic consequences: heat capacity of crystals, blackbody radiation.

• In summary, the EM field, a relativistically invariant theory, can be understood
exactly as a collection of oscillators with quantization producing photons.

The modern view of all elementary particles is that they arise by quantizing some
field (though not classically observable like the EM field) but also with interactions
between the modes causing energy transfer between them. This give rise to particle
decay etc. This is the way to build special relativity into QM and allows particles
to be created and destroyed by the action of appropriate combinations of a and a†

on the initial state. This give Quantum Field Theory and the Standard Model of
quarks, leptons, gluons, photons, W±, Z, . . ..

4 Pictures and Operators

4.1 Unitary operators

Physical predictions in QM are given by probability amplitudes, eigenvalues, expecta-
tion values, etc., and hence by expressions of the form 〈φ|ψ〉, 〈φ|A|ψ〉, etc.

An operator U is called unitary if

UU † = U †U = 1 or U † = U−1 . (4.1.1)

Given such an operator we can define a map on states

|ψ〉 7→ |ψ′〉 = U |ψ〉
〈ψ| 7→ 〈ψ′| = 〈ψ|U † , (4.1.2)

and on operators
A 7→ A′ = UAU † , (4.1.3)

under which all physical properties are unchanged:

〈φ|ψ〉 7→ 〈φ′|ψ′〉 = 〈φ|U †U |ψ〉 = 〈φ|ψ〉 ,
〈φ|A|ψ〉 7→ 〈φ′|A′|ψ′〉 = 〈φ|U †UAU †U |ψ〉 = 〈φ|A|ψ〉 . (4.1.4)
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Furthermore

C = AB 7→ C ′ = A′B′

C = [A,B] 7→ C ′ = [A′, B′] for any operators.

Q hermitian ⇒ Q′ = UQU † also hermitian ,

Q|ψ〉 = λ|ψ〉 ⇒ Q′|ψ′〉 = λ|ψ′〉 same eigenvalue . (4.1.5)

General results for unitary operators (compare with those for hermitian operators)

(i) Eigenvalues are complex numbers of unit modulus.
(ii) Eigenstates corresponding to distinct eigenvalues are orthogonal.

(iii) Any state can be expanded as a linear combination of eigenstates.

Summary: given U there is a basis {|n〉} of orthonormal eigenstates for which

U |n〉 = eiθn|n〉 , 〈n|m〉 = δnm . (4.1.6)

We prove (i) and (ii) and assume (iii).

(i)
U |ψ〉 = λ|ψ〉

⇒ 〈ψ|U † = λ∗〈ψ|
⇒ 〈ψ|U †U |ψ〉 = ‖|ψ〉‖2 = |λ|2‖|ψ〉‖2 ,
and hence |λ| = 1 (|ψ〉 6= 0) .

(4.1.7)

(ii)
U |n〉 = λn|n〉

and U |m〉 = λm|m〉
or 〈m|U † = λ∗m〈m| = λ−1m 〈m|
⇒ 〈m|U †U |n〉 = 〈m|n〉 = λnλ

−1
m 〈m|n〉 .

(4.1.8)

So λn 6= λm ⇒ 〈m|n〉 = 0.

4.2 Schrödinger and Heisenberg Pictures

The solution of the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (4.2.1)

can be written
|ψ(t)〉 = U(t)|ψ(0)〉, (4.2.2)

where the time evolution operator is

U(t) = exp

(
−itH
~

)
=

∞∑
n=0

1

n!

(
−it
~

)n
Hn . (4.2.3)
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This works because

i~
∂

∂t
U(t) = HU(t) , (4.2.4)

which is shown by differentiating the power series term by term (we assume H is
independent of t). Note that

U(t)† = U(−t) = U(t)−1 unitary (H = H†)

and U(t1)U(t2) = U(t1 + t2) . (4.2.5)

Thus far we have worked in the Schrödinger picture where states depend on time
and operators do not. We can use U(t) to pass to the Heisenberg picture where the
time dependence is shifted from states to operators as follows (subscript denotes the
picture)

Schrödinger Heisenberg

states |ψ(t)〉S |ψ〉H = eitH/~|ψ(t)〉S = |ψ(0)〉S

operators AS AH(t) = eitH/~AS e
−itH/~, AH(0) = AS

(4.2.6)
Because the transformation is unitary,

S〈φ(t)|AS|ψ(t)〉S = H〈φ|AH(t)|ψ〉H , (4.2.7)

all physical predictions are the same in either picture. Note that HH = HS = H.

The Heisenberg picture makes QM look a little more like classical mechanics where
position, momentum etc. are the variables that evolve in time. To specify the dynamics
in the H-picture we now need an equation to tell us how operators evolve in time. In
the S-picture the Schrödinger equation tells us how states evolve. Now

d

dt
AH(t) =

d

dt

(
eitH/~AS e

−itH/~)
=

iH

~
eitH/~AS e

−itH/~ − eitH/~AS e
−itH/~ iH

~
=

i

~
[H,AH(t)] . (4.2.8)

or

i~ d
dt
AH(t) = [AH(t), H] Heisenberg equation of motion.

E.g., a particle in one dimension x̂(t), p̂(t) in Heisenberg picture (drop H subscripts).
We have that

[x̂(t), p̂(t)] = i~. (4.2.9)
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I.e., the commutator at equal times is unchanged. Consider

H =
p̂2

2m + V (x̂)

d
dt
x̂(t) = 1

i~ [x̂(t), H] = 1
mp̂(t) ,

d
dt
p̂(t) = 1

i~ [p̂(t), H] = −V ′(x̂(t)) .


Heisenberg equations of motion

(4.2.10)
Taking expectation values in any state |ψ〉 (now independent of time in the Heisenberg
picture) gives

d
dt
〈x̂〉 = 1

m〈p̂〉 ,

d
dt
〈p̂〉 = −〈V ′(x̂)〉 .

 Ehrenfest’s Theorem, true in all pictures (4.2.11)

Note the similarity to classical equations of motion. For some potentials can solve
Heisenberg’s equations.

• V = 0, the free particle.

d

dt
p̂(t) = 0 ⇒ p̂(t) = p̂(0) constant operator

d

dt
x̂(t) =

1

m
p̂(0) ⇒ x̂(t) = x̂(0) +

p̂(0)

m
t . (4.2.12)

A solution just like in classical dynamics but with appearance of constant operators.

• V (x) = 1
2mω

2x2, the oscillator.

d
dt
x̂(t) = 1

mp̂(t)

d
dt
p̂(t) = −mω2x̂(t)

 ⇒

d2

dt2
x̂+ ω2 x̂ = 0

d2

dt2
p̂+ ω2 p̂ = 0 .

(4.2.13)

The solution is

x̂(t) = x̂(0) cosωt +
p̂(0)

mω
sinωt

p̂(t) = p̂(0) cosωt − mω x̂(0) sinωt . (4.2.14)

Can check that the equal-time commutation relation [x̂(t), p̂(t)] = i~ holds ∀ t.
Alternatively, can write these as

x̂(t) =

(
~

2mω

)1/2

(a e−iωt + a† eiωt)

p̂(t) =

(
~mω

2

)1/2
1

i
(a e−iωt − a† eiωt) , (4.2.15)

with a, a† defined from the Schrödinger picture operators x̂(0), p̂(0).
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4.3 Canonical Quantization

F START OF NON-EXAMINABLE MATERIAL

The final step in Dirac’s systematic approach to QM: have seen how to incorporate
position and momentum wavefunctions and S and H pictures in a single logical frame-
work. But how do we pass from general classical system to its quantum version? In
particular, what are the fundamental quantum commutation relations between observ-
ables ; why [x̂, p̂] = i~?

Any classical system can be described by a set of generalized positions xi(t) and mo-
menta pi(t) with 1 ≤ i ≤ N (may include angles, angular momentum etc.) and a
Hamiltonian H(xi, pi).

In classical dynamics a fundamental idea is that of the Poisson bracket of any two
functions f(xi, pi) and g(xi, pi), say, which is defined to be

{f, g} =
∑
i

(
∂f

∂xi

∂g

∂pi
− ∂g

∂xi

∂f

∂pi

)
, (4.3.1)

which is a new function of xi and pi. ((xi, pi) are coordinates on phase space and PB
is a symplectic structure.) In particular,

{xi, pj} = δij . (4.3.2)

Properties of the PB include antisymmetry, bilinearity and Jacobi identity. In this
formulation classical dynamics is given by Hamilton’s equation

df

dt
= {f,H} . (4.3.3)

Check this for various choices for H and see that you derive Newton’s third law in a
first order formalism (i.e. first-order in time derivative).

In canonical quantization define quantum theory by

•
classical
functions f, g −→ quantum

operators f̂ , ĝ (4.3.4)

• Poisson brackets become commutators

[f̂ , ĝ] = i~{̂f, g} . (4.3.5)

In particular, get
[x̂i, p̂j] = i~δij (4.3.6)

which are the canonical commutation relations.

• Moreover, Hamilton’s equations then become Heisenberg’s equations

i~
d

dt
f̂ = [f̂ , Ĥ] . (4.3.7)
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For those taking IIC Classical Dynamics this relationship between classical and quan-
tum mechanics should be mentioned near the end of the course.

All this provides a sound basis for understanding classical mechanics as a limit of quan-
tum mechanics with ~→ 0. Going the other way, turning ~ “on” is more problematic
and not guaranteed to be either unique or, in some cases, even consistent. For exam-
ple, if we carry out the procedure above it is correct to O(~) but there may be O(~2)
ambiguities related to how operators are ordered in defining functions like f(xi, pj):
does xi multiply pi on left or right?

Alternative approach to quantization is to use path integrals which are sums of contri-
butions from all possible trajectories or paths between initial and final configurations
in phase space.

One of these is the classical trajectory, but the quantum amplitude involves contri-
butions from all. This approach has its advantages but, in principle, is equivalent to
canonical quantization. In general need both, especially for complicated systems where
there are constraints amongst the variables.

F END OF NON-EXAMINABLE MATERIAL

5 Composite Systems and Identical Particles

5.1 Tensor products

This is a general way of constructing quantum systems from simpler subsystems. Sup-
pose

|ψ〉 ∈ V1 , |φ〉 ∈ V2 , (5.1.1)

i.e., states in the spaces for two systems. The tensor product space

V = V1 ⊗ V2 (5.1.2)

consists of all linear combinations of tensor product states |ψ〉 ⊗ |φ〉 (duals 〈ψ| ⊗ 〈φ|)
subject to (

|ψ〉+ |ψ′〉
)
⊗ |φ〉 = |ψ〉 ⊗ |φ〉+ |ψ′〉 ⊗ |φ〉

|ψ〉 ⊗
(
|φ〉+ |φ′〉

)
= |ψ〉 ⊗ |φ〉+ |ψ〉 ⊗ |φ′〉(

α|ψ〉
)
⊗ |φ〉 = α|ψ〉 ⊗

(
|φ〉
)

= α
(
|ψ〉 ⊗ |φ〉

)
, (5.1.3)
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and similarly for duals. The inner product is(
〈ψ′| ⊗ 〈φ′|

)(
|ψ〉 ⊗ |φ〉

)
= 〈ψ′|ψ〉 〈φ′|φ〉 , (5.1.4)

and extend to all of V by linearity.

If we have bases {|n〉} for V1 and {|m〉} for V2, then {|n〉} ⊗ {|m〉} is a basis for V . If
the bases are finite, then

dimV = dimV1 × dimV2 . (5.1.5)

Given operators A and B on V1 and V2, respectively, define an operator A ⊗ B on V
by (

A⊗B
)(
|ψ〉 ⊗ |φ〉

)
=
(
A|ψ〉

)
⊗
(
B|φ〉

)
and extend by linearity. In particular,

A ←→ A⊗ I acting just on V1

B ←→ I⊗B acting just on V2 . (5.1.6)

Operators of this form commute for any A & B.

Common abuses of notation:

(i) |ψ〉 ⊗ |φ〉 written as |ψ〉|φ〉.
(ii) Leave out ⊗I or I⊗ for operators acting on just one subsystem.

Consider a particle in two dimensions with position operators x̂1, x̂2. Basis of joint
eigenstates can be constructed as

|x1, x2〉 = |x1〉 ⊗ |x2〉
x̂1 ↔ x̂1 ⊗ I
x̂2 ↔ I⊗ x̂2 . (5.1.7)

This is the V = V1⊗V2 tensor product of states for two one-dimensional particles. The
wavefunction for |ψ〉 ⊗ |φ〉 is(

〈x1| ⊗ 〈x2|
)(
|ψ〉 ⊗ |φ〉

)
= 〈x1|ψ〉〈x2|φ〉

= ψ(x1)φ(x2) . (5.1.8)

tensor product
states

←→ separable wavefunctions:
product of 1D wavefunctions

tensor product
space

←→ all linear combinations
of such wavefunctions

(5.1.9)

Example: two-dimensional oscillator.

H =
1

2m
(p̂21 + p̂22) +

1

2
mω2(x̂21 + x̂22)

= H1 + H2 , (5.1.10)
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with

Hi =
1

2m
p̂2i +

1

2
mω2x̂2i = ~ω

(
Ni +

1

2

)
,

Ni = a†iai, [ai, a
†
j] = δij . (5.1.11)

Simultaneous eigenstates of N1, N2 constructed by

|n1, n2〉 = |n1〉 ⊗ |n2〉

with H|n1, n2〉 =
(
H1|n1〉

)
⊗ |n2〉+ |n1〉 ⊗

(
H2|n2〉

)
= En1n2|n1, n2〉 , (5.1.12)

where En1n2 = ~ω(n1 + n2 + 1).

5.2 Spin

Experiment shows that particles generally carry an internal degree of freedom called
spin or intrinsic angular momentum. Even if the particle appears ‘elementary’ or
pointlike, its space of states will be of the form V = Vspace ⊗ Vspin with basis

|x, r〉 = |x〉|r〉 , (5.2.1)

where r takes a finite set of values: the quantum numbers associated with spin. The
particle is not ‘structureless’: the position operators, x̂, are not a complete commut-
ing set by themselves – there are additional observables Q acting just on Vspin with

[x̂i, Q] = 0. We will understand these operators later in the study of angular momen-
tum but for now concentrate on the states.

Each kind of particle has a definite total spin S which is a half-integer 0, 1
2
, 1, 3

2
, . . .;

this is a basic characteristic like its mass or charge. For a spin S particle of non-zero
mass there are 2S+1 basis states in Vspin labelled by convention r = S, S−1, . . . ,−S.
E.g.,

S basis states
0 |0〉

1
2

|1
2
〉, | − 1

2
〉 also written | ↑〉︸︷︷︸

up

, | ↓〉︸︷︷︸
down

1 |1〉, |0〉, | − 1〉

(5.2.2)

The existence of spin states is revealed by e.g. the Stern-Gerlach experiment
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 magnet producing
inhomogeneous field

splits beam in two:
s = 1/2 in this case

different force on 
different spin states

beam of

particles

The general state |ψ〉 in V has a (2S + 1)-component wavefunction

ψ(x, r) = 〈x, r|ψ〉 . (5.2.3)

It is also useful to write the state in mixed, or hybrid, notation as∑
r

ψ(x, r)|r〉 . (5.2.4)

5.3 Multiparticle states: bosons and fermions

Consider particles labelled by a = 1, 2, . . . , N . Let Va be the space of states for each
particle with basis {|xa, ra〉} - position and spin labels. The general multiparticle states
belong to

V1 ⊗ V2 ⊗ . . .⊗ VN , (5.3.1)

with basis states

|x1, r1;x2, r2; . . . ;xN , rN〉 = |x1, r1〉 ⊗ |x2, r2〉 ⊗ . . .⊗ |xN , rN〉

constructed from single particle states. If the particles are identical, Va u V , some-
thing interesting can be added.

Consider the simplest case N = 2. Define an operator W which exchanges particles by
its action on basis states:

W |x1, r1;x2, r2〉 = |x2, r2;x1, r1〉 . (5.3.2)

When the two particles are identical its action on a general 2-particle state is

W |Ψ〉 = η|Ψ〉 , (5.3.3)

because |Ψ〉 and W |Ψ〉 must be physically equivalent if the particles are indistin-
guishable. But, given its action on the basis states

W 2 = 1 ⇒ η2 = 1 or η = ± 1 . (5.3.4)
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Thus, 2-particle states do not belong merely to

V ⊗ V spanned by |ψ〉 ⊗ |φ〉 ,

but to (V ⊗ V )S spanned by |ψ〉 ⊗ |φ〉+ |φ〉 ⊗ |ψ〉 ,
η = 1 symm under W

or to (V ⊗ V )A spanned by |ψ〉 ⊗ |φ〉 − |φ〉 ⊗ |ψ〉 .
η = −1 antisymm under W

(5.3.5)

Similarly, for multiparticle states with N ≥ 2 we can define W(a,b) which exchanges
(xa, ra) ↔ (xb, rb) by this action on the basis states. Then for a general N -particle
state

W(a,b)|Ψ〉 = η(a,b)|Ψ〉 (5.3.6)

with, again, η(a,b) = ±1 because W 2
(a,b) = 1.

For any permutation π of {1, 2, . . . , N} define

W |x1, r1;x2, r2;. . . ;xN , rN〉
= |xπ(1), rπ(1);xπ(2), rπ(2); . . . ;xπ(N), rπ(N)〉 (5.3.7)

on the basis states. On a general state

Wπ|Ψ〉 = ηπ|Ψ〉 for some ηπ . (5.3.8)

But algebra of swaps or transpositions implies η(a,b) = ± 1 with the same value for
all pairs (a, b) since any two swaps are conjugate. This makes physical sense since the
particle are identical and the initial choice for the labelling is not unique. Then, since
any π can be obtained as a sequence of swaps, we have alternative outcomes

ηπ =

{
1

sgn(π) = (−1)(# swaps needed for π) ,
(5.3.9)

with the same alternative for all π. These correspond to two inequivalent 1-D repre-
sentations of the permutation group.

Hence, there are two fundamentally different kinds of particles:

• Bosons obeying Bose-Einstein statistics:

(i) interchange of identical bosons leaves the state unchanged: η = 1;
(ii) multiparticle states in (V ⊗ V ⊗ . . .⊗ V )S.

• Fermions obeying Fermi-Dirac statistics:

(i) interchange of identical fermions changes the state by a sign: η = −1;
(ii) multiparticle states in (V ⊗ V ⊗ . . .⊗ V )A.

Note that this applies only to identical particles. Indistinguishability has a different
character in QM from classical physics. It is the consequence of saying that you cannot
attach a label to a given particle and uniquely identify it from any other. You can no
longer follow individual particles because of the uncertainly principle.

In addition have the remarkable F Spin-statistics relation. F
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5.4 Spin and statistics

Integral spin particles (S = 0, 1, 2, . . .) are bosons.
1
2
-integral spin particles (S = 1

2
, 3
2
, . . .) are fermions.

This is confirmed by experiment and can be derived in relativistic QM or QFT (quan-
tum field theory) so becomes the spin-statistics theorem; no derivation is know within
non-relativistic QM. The derivation relies, in particular, on Lorentz symmetry (sym-
metry under Lorentz transformations and rotations) and causality (no (space-time)
event can influence a future event if they are separated by a space-like space-time
interval; no light signal can connect them).

• Most common elementary particles are fermions: electrons, protons, neutrons, neu-
trinos, quarks, muons, τ – all spin 1

2
.

• Particles associated with forces are bosons: photons (EM), W±, Z (weak nuclear),
gluons (strong nuclear) – all spin 1.

• Other particles such as mesons are bosons e.g., π,K are spin 0, the ρ is spin 1, and
many more have been observed with higher spin.

• The recently discovered Higgs boson (LHC experiments) has almost certainly spin 0
although this is still to be confirmed.

• The graviton has spin 2 but is yet to be observed - not likely in the near future (if
ever).

• The spin-statistics theorem applies even if the particles are not ‘elementary’. Indeed,
nucleons (proton etc) and mesons are made of quarks. Atoms obey the theorem, too.

5.5 Two-particle examples

Now know that the states of two identical particles belong to

(V ⊗ V )S or (V ⊗ V )A where V = Vspace ⊗ Vspin . (5.5.1)

It is convenient to construct these spaces by first taking

( Vspace ⊗ Vspace)S,A and ( Vspin ⊗ Vspin)S,A (5.5.2)

separately, and then combining to get the correct overall symmetry.

Consider the single particle HamiltonianH(x̂, p̂) independent of spin with non-degenerate
energies E0 < E1 < E2 < . . ., and wavefunctions ψ0(x), ψ1(x), ψ2(x), . . . for states in
Vspace. For two such non-interacting particles the Hamiltonian is

H(x̂1, p̂1) +H(x̂2, p̂2) , (5.5.3)

with the wavefunctions for the basis of energy eigenfunctions for Vspace ⊗ Vspace

ψi(x1)ψj(x2) E = Ei + Ej . (5.5.4)
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• Ground state, E = 2E0:

ΨS
0 (x1,x2) = ψ0(x1)ψ0(x2) , (5.5.5)

which is automatically (S)ymmetric.

• 1st excited states, E = E0 + E1:

ψ0(x1)ψ1(x2) , ψ1(x1)ψ0(x2) . (5.5.6)

These have no definite symmetry but the following linear combinations do:

ΨS
1 (x1,x2) =

1√
2

(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)) , (5.5.7)

ΨA
1 (x1,x2) =

1√
2

(ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)) , (5.5.8)

which are (S)ymmetric and (A)ntisymmetric, respectively. They are the S and A
1-D representations of the two-particle permutation group S2.

Spin 0: Vspin is just one state so can ignore. Spin-statistics ⇒ the particles are

bosons, and states are in (V ⊗ V )S which in this case is (Vspace ⊗ Vspace)S. The
allowed states are then

Ground state ΨS
0 (x1,x2) 2E0

1st excited state ΨS
1 (x1,x2) E0 + E1

}
both non-
degenerate (5.5.9)

Note that only one of the two possible 1st excited states is allowed.

Spin 1
2 : Vspin has basis {| ↑〉, | ↓〉} for each particle. Vspin ⊗ Vspin therefore has

the basis
{| ↑〉| ↑〉, | ↑〉| ↓〉, | ↓〉| ↑〉, | ↓〉| ↓〉} , (5.5.10)

or normalized combinations with definite symmetry are

| ↑〉| ↑〉

1√
2

(
| ↑〉| ↓〉+ | ↓〉| ↑〉

)
1√
2

(
| ↑〉| ↓〉 − | ↓〉| ↑〉

)
| ↓〉| ↓〉

(Vspin ⊗ Vspin)S (Vspin ⊗ Vspin)A

(5.5.11)

We would expect these two kinds of states, S and A, to be associated with a definite
spin quantum number. We can see what this is simply by counting since the degen-
eracy for spin S is 2S + 1. We see that the S-states have S = 1 and the A-state has
S = 0. Note how state multiplets with a definite spin also have a definite symmetry.
This is no accident.

Spin-statistics ⇒ the particles are fermions, and the states belong to

(V ⊗ V )A = (Vspace ⊗ Vspace)A ⊗ (Vspin ⊗ Vspin)S

+ (Vspace ⊗ Vspace)S ⊗ (Vspin ⊗ Vspin)A (5.5.12)

The allowed states are (in hybrid notation, see Eq. (5.2.4))
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? Ground state, E = 2E0:

ΨS
0 (x1,x2)

1√
2

(
| ↑〉| ↓〉 − | ↓〉| ↑〉

)
(5.5.13)

and there is just one state. (Note that, in general, the ground state of a system
is usually non-degenerate.)

? 1st excited states, E = E0 + E1:

ΨS
1 (x1,x2)

1√
2

(
| ↑〉| ↓〉 − | ↓〉| ↑〉

)
(5.5.14)

ΨA
1 (x1,x2)

 | ↑〉| ↑〉
1√
2

(
| ↑〉| ↓〉+ | ↓〉| ↑〉

)
| ↓〉| ↓〉

 (5.5.15)

There are four states in all made up of 1 + 3 = 4. The spin quantum numbers
associated with these are S = 0 and S = 1, respectively.

We can see that representations of the two-particle permutation group, S2, are used
extensively in the analysis. The general analysis for N identical particles is based on
the representation theory of SN , the permutation group for N particles.

5.6 Pauli Exclusion Principle and Atomic Structure

A state ofN identical fermions can be specified by takingN distinct one-particle states
(each in V ) and antisymmetrizing to ensure Fermi statistics; this produces a state in
(V ⊗ . . .⊗V )A. The condition that the one-particle states must all be different, else the
result is zero, is the Paul Exclusion Principle. The complete set of such N -particle
antisymmetric states from (V ⊗ . . . ⊗ V )A forms a basis for the most general state of
N fermions.

The original application was to atomic structure. Consider N electrons bound to a
nucleus with Z protons. Ignoring electron-electron interactions, the Hamiltonian is

H(x̂1, p̂1) + . . . +H(x̂N , p̂N) , (5.6.1)

where a single electron Hamiltonian is

H(x̂, p̂) =
1

2m
p̂2 − Ze2

4πε0|x̂|
. (5.6.2)

Single electron states in Vspace are similar to hydrogen atom states (for which Z = 1)

|n, l,m〉 which are joint eigenstates of


evals

H En
L2 ~2l(l + 1)
L3 ~m

(5.6.3)
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where

En = −m
2

(
Ze2

4πε0~

)2
1

n2
= − α2 Z

2

2n2
mc2 ,

n = 1, 2, . . . principal quantum number ,

l = 0, 1, . . . , n− 1 m = 0,±1,±2, . . . ,±l︸ ︷︷ ︸
2l + 1 states

, (5.6.4)

where α = e2/(4πε0~c) ≈ 1/137 is the fine-structure constant. So degeneracy (exclud-
ing spin!) is

1 + 3 + . . .+ (2n− 1) = n2 for level En. (5.6.5)

Now, including Vspin basis {| ↑〉, | ↓〉}, each electron has 2n2 states at energy En.

Structure of electrically neutral atoms with N = Z:

• Fill up energy levels, starting with the lowest, using Pauli Principle.

• This gives a rough picture of the periodic table with some qualitative insights into
chemical properties.

• The states that belong to a given energy En is called a shell. Atoms with completely
filled shells are unreactive/stable elements chemically. E.g.

E1 filled for Z = 2 → He

E1 & E2 filled for Z = 10 → Ne (5.6.6)

• Chemical reactivity is controlled by the valency which is given by the number of
electrons in an almost empty outer shell (Ca2+) or the number of unoccupied states
in a nearly filled outer shell (F−).

• In real life there are many interactions which perturb the energies of the individual
levels and spread the energies within a shell even to the extent that shells can overlap.

• Each electron has a magnetic moment because it is a spinning charge – it acts
like a bar magnet (indeed an iron magnet is simply the sum of all these small elec-
tron magnets). Should include electron-electron interactions, the interactions of the
electron magnetic moments with each other and also with magnetic fields due to the
orbiting electric charge (see later section 7).

atomic n 1 2 3 4
no. element s s p s p d s p d f

1 H 1
2 He 2
6 C 2 2 2
9 F 2 2 5
10 Ne 2 2 6
11 Na 2 2 6 1
19 K 2 2 6 2 6 1
20 Ca 2 2 6 2 6 2
26 Fe 2 2 6 2 6 6 2
28 Ni 2 2 6 2 6 8 2
29 Cu 2 2 6 2 6 10 2
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Table shows some electron configurations. s,p,d,f → l = 0, 1, 2, 3. Above atomic
number 18 the states are not always filled in naive order because of interactions between
electrons. Can use Aufbau or Madelung rule to get better sequencing. For these see
(http://en.wikipedia.org/wiki/Electron configuration.)

The eigenstate of the fully interaction N -electron Hamiltonian must be expressed as a
linear combination of the basis states in {V ⊗ . . . ⊗ V )A constructed here. The most
general problem is still a subject of active research.

In the next section we discuss perturbation theory and how we may systematically
calculate the effect of adding new interactions to a solved system if they are sufficiently
weak.

6 Perturbation Theory

Few quantum mechanical systems can be solved exactly. In perturbation theory we
start from a known, soluble, system

H|n〉 = En|n〉 , (6.1)

with {|n〉} an orthonormal basis of energy eigenstates, and calculate the energies and
eigenstates for a new perturbed Hamiltonian

(H + µV )|ψ〉 = E|ψ〉 , (6.2)

order-by-order in parameter µ which is supposed, in some sense, to be small. V is
some hermitian operator and we assume that E and |ψ〉 depend smoothly on µ. The
discussion here is for perturbations to H but the technique applies to any observable.

d Note that methods of perturbation theory are not just applicable in QM but to the
solution of perturbed PDEs in general. c

6.1 The non-degenerate case

Suppose that as µ→ 0

|ψ〉 → |r〉
E → Er

{
unique eigenstate with this en-
ergy, i.e., level is non-degenerate.

(6.1.1)

States {|n〉} are still a basis when µ 6= 0, and so we can always write

|ψ〉 = α|r〉+
∑
j 6=r

βj|j〉

= α(|r〉+
∑
j 6=r

γj|j〉) , (6.1.2)

where α, βj, γj = βj/αj are power series in µ such that

α→ 1, βj, γj → 0 as µ→ 0 . (6.1.3)
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Aim is to calculate the coefficients in these expansions

E = Er + E
(1)
r µ + E

(2)
r µ2 + . . .

α = 1 + a1µ + a2µ
2 + . . .

γj = cj1µ + cj2µ
2 + . . .

(6.1.4)

First just substitute the expression for |ψ〉 into Eq. (6.2):

(Er + µV )|r〉+
∑
j 6=r

γj(Ej + µV )|j〉 = E(|r〉+
∑
j 6=r

γj|j〉) , (6.1.5)

cancelling overall factor of α. Rewrite as

(E − Er)|r〉+
∑
j 6=r

γj(E − Ej)|j〉 = µV |r〉+ µ
∑
j 6=r

γjV |j〉 . (∗∗) (6.1.6)

Then taking inner product of 〈r| with (∗∗) gives

E − Er = µ〈r|V |r〉 + µ
∑
j 6=r

γj〈r|V |j〉 , (6.1.7)

and, so far, this is still exact (all orders in µ). Substituting in the series expansions
from Eq. (6.1.4) and keeping terms to O(µ2) gives

µE(1)
r + µ2E(2)

r + . . . = µ〈r|V |r〉+ µ2
∑
j 6=r

cj1〈r|V |j〉+ . . . . (6.1.8)

Thus, already know first-order energy shift

E(1)
r = 〈r|V |r〉 . (6.1.9)

To find second-order shift we need to know cj1. The inner product of 〈i| with (∗∗)
(i 6= r) gives

γi(E − Ei) = µ〈i|V |r〉+ µ
∑
j 6=r

γj〈i|V |j〉 . (6.1.10)

Again this is exact but the 2nd term on RHS is O(µ2), and so to leading order in µ

µ ci1(Er − Ei) = µ〈i|V |r〉

⇒ ci1 =
〈i|V |r〉
Er − Ei

(note Ei 6= Er since states non-degenerate)

(6.1.11)

and so substituting in Eq. (6.1.8) we find

E(2)
r =

∑
j 6=r

〈r|V |j〉〈j|V |r〉
Er − Ej

=
∑
j 6=r

|〈j|V |r〉|2

Er − Ej
. (6.1.12)

In summary,

E = Er + µ〈r|V |r〉 + µ2
∑
j 6=r

|〈j|V |r〉|2

Er − Ej
+ . . . , (6.1.13)

|ψ〉 = α

(
|r〉+ µ

∑
j 6=r

|j〉 〈j|V |r〉
Er − Ej

+ . . .

)
, (6.1.14)
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where α is chosen so that |ψ〉 has unit norm. This is second order perturbation theory.

Example:

H =
p̂2

2m + 1
2mω

2x̂2 = ~ω
(
a†a+ 1

2

)
states |n〉, En = ~ω

(
n+ 1

2

)
.

(6.1.15)

Perturb with V = mω2x̂2 = ��mω�2
~

2��m�ω
(a2 + a†

2
+ 2a†a+ 1). (6.1.16)

Have

〈n|V |n〉 = 1
2
~ω(2n+ 1)

〈n+ 2|V |n〉 = 1
2
~ω
√
n+ 1

√
n+ 2

〈n− 2|V |n〉 = 1
2
~ω
√
n
√
n− 1

〈m|V |n〉 = 0 all other m (6.1.17)

Perturbed energy of nth level to O(µ2):

En + µ〈n|V |n〉 + µ2
∑
m 6=n

|〈m|V |n〉|2
En − Em

= ~ω(n+ 1
2
) + µ~ω(n+ 1

2
) + µ2

(
~ω
2

)2((n+ 1)(n+ 2)
−2~ω +

n(n− 1)
2~ω

)
m = n+ 2 m = n− 2

= ~ω
(
n+ 1

2

) (
1 + µ− 1

2
µ2
)
. (6.1.18)

But this problem can be solved exactly:

H → H + µV equivalent to ω → ω′ = ω
√

1 + 2µ . (6.1.19)

New energies are exactly

~ω′(n+ 1
2
) = ~ω(n+ 1

2
)(1 + 2µ)

1
2

= ~ω(n+ 1
2
)(1 + µ− 1

2
µ2 +O(µ3)) . (6.1.20)

Validity/usefulness of perturbation theory

If µ dimensionless might expect µ � 1 enough to ensure rapid convergence such as
in above example. However, this may not be enough since we still require a non-zero
radius of convergence. Really have an expansion in∣∣∣∣µ 〈i|V |j〉Ei − Ej

∣∣∣∣ i 6= j , (6.1.21)

and similar quantities. Condition for accuracy is therefore qualitatively

|energy shifts| � |original energy differences| . (6.1.22)
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H evals H+:V evals

Indeed, it may be that the series is only asymptotic and more sophisticated methods
are needed to estimate the energy shifts within a given accuracy.

Example. Ground state energy for Helium.

The unperturbed problem is two non-interacting electrons, charge −e orbiting nucleus
with charge +2e. The Hamiltonian is

H(x̂1, p̂1) +H(x̂2, p̂2) with H(x̂, p̂) =
p̂2

2m
− 2e2

4πε0|x̂|
. (6.1.23)

Single electron states and energies are

|n lm〉
wavefn ψnlm(x)

En = −1

2
m

(
2e2

4πε0~

)2
1

n2
≡ −2α2

n2
mc2 , (6.1.24)

where α = e2

4πε0~c is the dimensionless fine structure constant: α ≈ 1/137. The lowest

energy eigenstate for two electrons is

|Ψ〉 = |1 0 0〉 ⊗ |1 0 0〉 ⊗ |χ〉

with |χ〉 =
1√
2

(
| ↑〉| ↓〉 − | ↓〉| ↑〉

)
the spin state . (6.1.25)

This state is totally antisymmetric since constrained by Fermi statistics. The two
electron wavefunction is then

Ψ(x1,x2) = ψ100(x1)ψ100(x2)

ψ100(x) =
1√
π

(
2

a2

) 3
2

e−|x|/a2

with (Z = 2) a2 = 1
2

(
1

α

~
mc

)
= 1

2
∗ (Bohr radius) (6.1.26)

The two-electron unperturbed energy is

2E1 = − 4α2mc2 ≈ − 108.8 eV . (6.1.27)

Compare with -13.6 eV for the hydrogen atom. (Note: mc2 ≈ 500 KeV.)

Experimentally, the ground state for He is -79.0 eV. However, have neglected the
electron-electron interaction:

e2

4πε0

1

|x̂1 − x̂2|
. (6.1.28)



6 PERTURBATION THEORY 40

Treat this as a perturbation and write as µV (x̂1, x̂2) with

µ = α, V (x̂1, x̂2) =
~c

|x̂1 − x̂2|
. (6.1.29)

Then µ is dimensionless and V has energy dimensions. The first-order correction to
the energy is then

α〈Ψ|V |Ψ〉 = α

∫
d3x1

∫
d3x2 Ψ∗(x1,x2)V (x1,x2)Ψ(x1,x2)

= α

∫
d3x1

∫
d3x2 |ψ100(x1)|2|ψ100(x2)|2

~c
|x1 − x2|

=
5

4
α2mc2 ≈ 34.0 eV . (6.1.30)

The corrected ground state energy is then −108.8 eV + 34.0 eV ≈ −74.8 eV; in much
better agreement with experiment. Note that the variational principle is more efficient
(see AQM) at this level but does not help with higher-order corrections.

We might naively expect that the perturbation series is an expansion in α but we see
that E1 and the first-order correction E

(1)
1 are both ∝ α2. In fact, all corrections are

∝ α2, so what is the expansion parameter? Including the 2nd-order correction the
energy can be written

E = − Z2α2mc2
(

1− 5

8

1

Z
+

25

256

1

Z2
+ . . .

)∣∣∣∣
Z=2

. (6.1.31)

So the expansion is in 1/Z for Z = 2. The series “looks” convergent and gives an
answer close to experiment but to my knowledge it is not known if it actually converges.
However, treated as an asymptotic series it does give a believable answer. This is typical
of many problems in bound state systems.

In scattering theory (Quantum Electrodynamics) the expansion parameter is α but
convergence is still not provable.

6.2 Degenerate case

Consider the perturbed Hamiltonian in Eq. (6.2) but now with the possibility that
H has degenerate eigenstates. Let the degeneracy of states in Vλ be N with common
eigenvalue λ. Then use notation

E1 = . . . = Er = Es = . . . = EN = λ degenerate states
|1〉, . . . |r〉, |s〉, . . . |N〉 reserve r, s to label these only

(6.2.1)

and suppose that as µ→ 0

E → λ, |ψ〉 →
∑
r

ar|r〉 . (6.2.2)

Denote other states, not in this degenerate set, by |j〉 and reserve j to label these only.
Then, for general µ, expand the eigenfunction of the perturbed Hamiltonian as

E = λ + µE(1) + µ2E(2) + . . . ,

|ψ〉 =
∑
r

αr|r〉 +
∑
j

βj|j〉 .

with αr = ar +O(µ), βj = O(µ) . (6.2.3)
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Note that for µ → 0, |ψ〉 → |ψ0〉 ∈ Vλ but we do not yet know the values of the ar
which determine it uniquely in this limit. We shall see that the possible choices for the
ar are determined by the perturbation itself. Substitute into Eq. (6.2) and find

∑
r

αr(Er + µV )|r〉+
∑
j

βj(Ej + µV )|j〉 = E

(∑
r

αr|r〉 +
∑
j

βj|j〉

)
. (6.2.4)

Rearranging gives∑
r

αr(E − Er)|r〉+
∑
j

βj(E − Ej)|j〉︸ ︷︷ ︸
terms containing energy shifts

= µ
∑
r

αrV |r〉+ µ
∑
j

βjV |j〉︸ ︷︷ ︸
terms containing V

. (∗∗)

(6.2.5)
Look for energy shift E = λ+ µE(1) +O(µ2) and note that the correction is no longer
associated with a single state of the unperturbed problem but with all N states in Vλ.

Take the inner product of 〈s| with (∗∗) to get (remember Er = . . . = Es . . . = EN = λ)

(E − Es)αs = µ
∑
r

αr〈s|V |r〉+ µ
∑
j

βj〈s|V |r〉 , (6.2.6)

but the second term on RHS is O(µ2) and αr = ar + O(µ), and so hence to leading
order ∑

r

〈s|V |r〉ar = E(1)as . (6.2.7)

Thus, E(1) is an eigenvalue of the matrix 〈s|V |r〉 and the ar are the components of
the corresponding eigenvector. Since there are N degenerate states this is an N × N
matrix and so have N solutions for E(1) with associated eigenvectors giving the ar in
each case.

We should expect something like this:

• We started with N degenerate states and we end up with N perturbed states.

• The degeneracy of H is a reflection of some symmetry (e.g., rotational symmetry ⇒
L2, L3 are good quantum numbers) and the perturbed Hamiltonian H+µV generally
has less symmetry and so the full degeneracy is broken, although some degeneracy
amongst a subset of states can remain. The effect is to spilt apart some, or all, levels.

• Raising the degeneracy in this way is important in many physical phenomena. For
example, band structure for the electron levels in a crystal giving rise to delocalization
of electrons originally bound in each atom and so leading to electrical conduction
(see AQM).
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Example. Particle in a box in two dimensions, 0 ≤ x, y ≤ a. The unperturbed
problem is the free particle with states |p, q〉 and

wavefns ψpq(x, y) =
2

a
sin

pπx

a
sin

qπy

a

energies Epq =
~2π2

2ma2
(p2 + q2) p, q = 1, 2, . . . . (6.2.8)

• Lowest level, E11 = ~2π2

ma2
, is non-degenerate.

• Next level has E12 = E21 = 5~2π2

2ma2
and so has degeneracy 2.

Consider the perturbation V (x, y) =
xy
a2

, and then µ has dimensions of energy.

• The shift in the lowest energy level is given by

〈11|V |11〉 =

∫ a

0

dx

∫ a

0

dy
xy

a2
|ψ11(x, y)|2

=

(
2

a

)2
1

a2

∫ a

0

dx x
(

sin
πx

a

)2 ∫ a

0

dy y
(

sin
πy

a

)2
=

1

4
. (6.2.9)

(6.2.10)[∫ a

0

dx x
(

sin
πx

a

)2
=

a2

4

]
• Shifts in next level given by eigenvalues of(

〈12|V |12〉 〈12|V |21〉
〈21|V |12〉 〈21|V |21〉

)
=

(
α β
β α

)
, (6.2.11)

with

α =

∫ a

0

dx

∫ a

0

dy
xy

a2
|ψ12(x, y)|2

=

(
2

a

)2
1

a2

∫ a

0

dx x
(

sin
πx

a

)2 ∫ a

0

dy y

(
sin

2πy

a

)2

=
1

4
. (6.2.12)

β =

∫ a

0

dx

∫ a

0

dy
xy

a2
ψ∗12(x, y)ψ21(x, y)

=

(
2

a

)2
1

a2

(∫ a

0

dx x sin
πx

a
sin

2πx

a

)2

=

(
16

9π2

)2

. (6.2.13)

(6.2.14)[∫ a

0

dx x sin
πx

a
sin

2πx

a
=

∫ a

0

dx x
1

2

(
cos

πx

a
− cos

3πx

a

)
= −8a2

9π2

]
.
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The eigenvalues of the matrix are α± β with respective eigenvectors

a ≡ (a12, a21) =
1√
2

(1, 1),
1√
2

(1,−1) (6.2.15)

Collecting results:

• New ground state energy ~2π2

ma2
+
µ
4 .

• Next two levels

energies
5~2π2

2ma2
+
µ

4
± µ 256

81π4

states |ψ〉 =
1√
2

(
|12〉 ± |21〉

)
. (6.2.16)

Note that the state is unperturbed at first order in µ but the perturbation does
determine the choice of basis in Vλ in order that the perturbation can be carried
out systematically. This basis is the eigenstates of the matrix with elements 〈s|V |r〉.

7 Angular Momentum

7.1 Recap of orbital angular momentum

Mainly to set the analysis to follow in some sort of context but also a few points of
special importance.

L = x̂ ∧ p̂ or Li = εijk x̂j p̂k L2 = LiLi. (7.1.1)

Then
[x̂i, p̂j] = i~δij ⇒ [Li, Lj] = i~ εijk Lk, [L2, Li] = 0 . (7.1.2)

In addition to these fundamental commutation relations we have

[Li, x̂j] = i~ εijk x̂k, [Li, p̂j] = i~ εijk p̂k . (7.1.3)

Consider the action of all these operators on wavefunctions. Using spherical polar
coordinates (r, θ, φ), the operators Li only involve angular derivatives and

∇2 =
1

r

∂2

∂r2
r︸ ︷︷ ︸

radial

− 1

r2~2
L2︸ ︷︷ ︸

angular

. (7.1.4)

The joint eigenstates of L2 and L3 are the spherical harmonics Ylm(θ, φ):

L2 Ylm = ~2l(l + 1)Ylm

L3 Ylm = ~mYlm

with Ylm = clme
imφP

|m|
l ( cos θ)

where Pm
l (u) = (1− u2)m/2 d

m

dum
Pl(u) , m ≥ 0 . (7.1.5)
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Pl(u) is a Legendre polynomial

Pm
l (u) is an associated Legendre function .

Only well-behaved solutions of eigenvalue problems for solving differential equations
arise for

l = 0, 1, 2, 3, . . . and m = 0,±1,±2, . . . ,±l . (7.1.6)

If the Schrödinger equation has a spherically symmetric potential, V (x) = V (r) then
we can look for separable solutions

ψlm(x) = Rl(r)Ylm(θ, φ) , (7.1.7)

where

− ~2

2m

1

r

∂2

∂r2
(rRl) +

(
~2

2mr2
l(l + 1) + V (r)

)
Rl = ERl . (7.1.8)

Of particular importance is the behaviour of such solutions under parity: x 7→ −x.
This is equivalent to

r 7→ r, θ 7→ π − θ, φ 7→ φ+ π . (7.1.9)

Then, under parity map have

Ylm(π − θ, φ+ π) = (−1)lYlm(θ, φ)

⇒ ψlm(−x) = (−1)lψlm(x) . (7.1.10)

A very important example of everything above is a system of two particles interacting
through a potential which depends only on their relative separation

H =
p̂21

2m1

+
p̂22

2m2

+ V (|x̂1 − x̂2|)

=
P̂

2

2M
+
p̂2

2m
+ V (|x̂|) , (7.1.11)

where

X̂ = m1x̂1 +m2x̂2
M x̂ = x̂1 − x̂2

P̂ = p̂1 + p̂2 p̂ =
m2p̂1 −m1p̂2

M

M = m1 +m2 m = m1m2
M reduced mass

CoM degrees of freedom relative degrees of freedom

(7.1.12)

CoM dynamics essentially trivial and relative motion is governed by a spherically sym-
metric potential. The total wavefunction is then

Ψ(X,x) = eik·Xψlm(x) w.r.t L = x̂ ∧ p̂ . (7.1.13)

I.e., plane wave solution in the CoM variables and effective single particle dynamics in
potential V (|x̂|) with reduced mass m.

Under x 7→ −x have Ψ 7→ (−1)lΨ. This is particularly important if the two particles
are identical.
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7.2 General analysis of angular momentum eigenstates

Consider J = (J1, J2, J3) J†i = Ji
obeying [Ji, Jj] = i~εijkJk
Define J2 = JiJi hermitian

then [J2, Ji] = 0

(7.2.1)

We want to find all possible eigenstates of J2 and J3 (say) assuming just the commuta-
tion relations above. Use J rather than L because there will turn out to be additional
possibilities beyond those allowed for orbital angular momentum. First observe that

J2|ψ〉 = λ|ψ〉 ⇒
λ = 〈ψ|J2|ψ〉 = ‖J1|ψ〉‖2 + ‖J2|ψ〉‖2 + ‖J3|ψ〉‖2 ≥ 0 . (7.2.2)

It is convenient to set λ = ~2j(j + 1) with j ≥ 0 without loss of generality (note: λ
unchanged if j → −(j + 1)). So label the states |j,m〉 where

J2|j,m〉 = ~2j(j + 1)|j,m〉 J3|j,m〉 = m|j,m〉 . (7.2.3)

So far all we know is that m and j ≥ 0 are real numbers. To analyze the allowed
eigenvalues we define

J± = J1 ± iJ2 , J†± = J∓ , (7.2.4)

and work with these new combinations. It is easy to check that

[J3, J±] = ±~J±
[J+, J−] = 2~J3
[J2, J±] = 0 . (7.2.5)

Furthermore, we find

J+J− = J2 − J2
3 + ~J3

J−J+ = J2 − J2
3 − ~J3 (7.2.6)

and also find that

J±|j,m〉 is an eigenstate of

{
J2 with j unchanged

J3 with m→ m± 1
(7.2.7)

and, strictly, provided that the new states do not vanish. These statements follow from
the commutation relations because

J3

(
J±|j,m〉

)
=

(
[J3, J±] + J±J3

)
|j,m〉

=
(
± ~J± + J±~m

)
|j,m〉

= ~(m± 1)J±|j,m〉 . (7.2.8)

Compare with the harmonic oscillator where

[N, a†] = a† and [N, a] = −a ⇒ a†|n〉, a|n〉 have eigenvalues n± 1 . (7.2.9)
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To find out whether the new states vanish we compute

‖J+|j,m〉‖2 = 〈j,m|J−J+|j,m〉
= 〈j,m|J2 − J2

3 − ~J3|j,m〉

= ~2
(
j(j + 1)−m(m+ 1)

)
= ~2(j −m)(j +m+ 1)

≥ 0 , (7.2.10)

and

‖J−|j,m〉‖2 = 〈j,m|J+J−|j,m〉
= 〈j,m|J2 − J2

3 + ~J3|j,m〉

= ~2
(
j(j + 1)−m(m− 1)

)
= ~2(j +m)(j −m+ 1)

≥ 0 . (7.2.11)

These inequalities, which follow just because the inner-product is positive-semidefinite,
imply (remember j ≥ 0)

j ≥ m ≥ −(j + 1)

j + 1 ≥ m ≥ −j (7.2.12)

and the states vanish only when equality occurs. Hence, from these bounds, we deduce

j ≥ m ≥ −j
J+|j,m〉 = 0 iffi m = j ,

J−|j,m〉 = 0 iffi m = −j .
(7.2.13)

These results tell us all we need to know about the possible values of both j and m.
Remember, so far only know that m and j ≥ 0 are real. Start from any given state
|j,m〉.

• If the states Jn+|j,m〉 are non-vanishing, they
have J3 eigenvalues ~(m+ n) but subject to the
bound j ≥ m+ n from above.

• To avoid a contradiction there must be an inte-
ger k with j = m+ k and hence

Jn+|j,m〉 = 0 ∀ n > k. (7.2.14)

Only then will the sequence terminate at m = j.

• Similarly, if the states Jn−|j,m〉 are non-
vanishing, they have J3 eigenvalues ~(m − n)
but subject to the bound m− n ≥ −j .

• In this case must have an integer k′ with −j =
m− k′ so that

Jn−|j,m〉 = 0 ∀ n > k′. (7.2.15)

j

-j

k

k'

m
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Thus,

j = m+ k and j = −m+ k′ , k, k′ integer

⇒ 2j = k + k′ , an integer. (7.2.16)

Furthermore, for a given value of j we have states

|j,m〉 with m = j, j − 1, . . . ,−j + 1,−j , a total of 2j + 1 states. (7.2.17)

This general analysis has revealed two possibilities:

j integral m = 0 ,±1,±2, . . . , ±j odd # states,

j half-integral m = ±1
2
, ±3

2
, . . . , ±j even # states.

(7.2.18)

j integral. This possibility is realized in orbital angular momentum. The states |j,m〉
correspond to wavefunctions ψjm(x) or Yjm(θ, φ).

j half-integral. This possibility cannot arise for orbital angular momentum since
there are no solutions of the differential equations which are well-behaved in this case.
Such states must correspond to intrinsic angular momentum or spin as introduced
earlier.

We usually write J = S for spin. Our analysis shows that we must have j = S integral
or half-integral for spin. Previously, we wrote |r〉 with S ≥ r ≥ −S for spin-states.
Now we see that by this was meant

|r〉 ≡ |j,m〉 with j = S, m = r. (7.2.19)

Analysis reveals mathematically that spin is possible with these quantum numbers but
still need to give (very brief) indication of experimental verification.

The set of states {|j,m〉} for fixed j is often called an angular momentum multiplet
or representation. From the analysis above (Eqns. (7.2.10, 7.2.11)) it is clear we can
choose normalized states |j,m〉 with

J+|j,m〉 = ~
√

(j −m)(j +m+ 1)|j,m+ 1〉 , (7.2.20)

J−|j,m〉 = ~
√

(j +m)(j −m+ 1)|j,m− 1〉 , (7.2.21)

which are key relations between the states. The whole multiplet can be defined by

• taking the top state, the one with maximum J3 eigenvalue: J+|j, j〉 = 0,

• and applying Jn−:
|j, j − n〉 = CjnJ

n
−|j, j〉 , (7.2.22)

where Cjn is a constant computable using Eq. (7.2.21).

• Alternatively, can start with the bottom state, |j,−j〉 and determine the others by
applying Jn+.

Note that the choice of J3 as the member of the commuting set along with J2 is a
convention. We could have chosen n ·J instead. n ·J has the same possible eigenvalues
as J3 but the eigenstates are linear combinations of the basis states {|j,m〉}. This will
be relevant when we discuss rotations.
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7.3 Matrix representations

Recall from section 2.4 that given an orthonormal basis {|n〉} we can regard states as
column vectors |ψ〉 αn = 〈n|ψ〉, and operators as matrices A Amn = 〈m|A|n〉 with
the action of operators on states to be that of matrix multiplication. This is particularly
useful when the space of states is finite-dimensional, as with angular momentum states
{|j,m〉} with fixed j.

For example, with j = 1 (3-dim state space)

|1, 1〉  

1
0
0

 , |1, 0〉  

0
1
0

 , |1,−1〉  

0
0
1

 (7.3.1)

J3  ~

1 0 0
0 0 0
0 0 −1

 , J+  ~
√

2

0 1 0
0 0 1
0 0 0

 , J−  ~
√

2

0 0 0
1 0 0
0 1 0


(7.3.2)

These follow from the formulas

J3|1, 1〉 = ~|1, 1〉 J±|1,∓1〉 = ~
√

2|1, 0〉
J3|1,−1〉 = −~|1,−1〉 J±|1, 0〉 = ~

√
2|1,±1〉

(7.3.3)

as the only non-zero results.

This is used very widely for the case of spin-1
2

(now use S rather than J) with just two
states.

|1
2
, 1
2
〉  

(
1
0

)
, |1

2
,−1

2
〉  

(
0
1

)
previously: | ↑〉 | ↓〉

(7.3.4)

S3  1
2
~
(

1 0
0 −1

)
, S+  1

2
~
(

0 1
0 0

)
, S−  1

2
~
(

0 0
1 0

)
. (7.3.5)

Moreover, we also write si  1
2
~σi where

σ1  

(
0 1
1 0

)
, σ2  

(
0 −i
i 0

)
, σ3  

(
1 0
0 −1

)
, (7.3.6)

are called the Pauli matrices. Other combinations are

σ+ = σ1 + iσ2 =

(
0 2
0 0

)
, σ− =

(
0 0
2 0

)
. (7.3.7)

The Pauli matrices are hermitian, traceless matrices obeying

σ2
1 = σ2

2 = σ2
3 = I , (7.3.8)

σ1σ2 = −σ2σ1 = iσ3 and cyclic. (7.3.9)

These properties are conveniently summarized by

σiσj = δij + iεijkσk . (7.3.10)
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Note that the antisymmetric part (in i, j) of this equation is

[σi, σj] = 2iεijkσk , (7.3.11)

and corresponds to the fundamental commutation relation

[Si, Sj] = i~εijkSk , (7.3.12)

but the remaining, symmetric part, is special to spin-1
2
.

The Pauli matrices are components of a vector

S  1
2
~σ , σ = (σ1, σ2, σ3) . (7.3.13)

If a and b are constant vectors (or at most operators which commute with S) then we
can contract ai and bj with both sides of Eqn. (7.3.10) to obtain

(a · σ)(b · σ) = (a · b)I + i(a ∧ b) · σ . (7.3.14)

As a special case
(n · σ)2 = I , (7.3.15)

where n is any unit vector. Note that this is equivalent to (n · S)2 = 1
4
~2I, which

agrees with the fact that the eigenstates of n · S are ±1
2
~; these are the only possible

results for measurement of spin along some direction n.

One last example of matrix properties corresponding to known properties of operators:

σ2 = σ2
1 + σ2

2 + σ2
3 = 3 I , (7.3.16)

to be compared with

S2 = ~2
(
1
2

) (
1
2

+ 1
)
I = 3

~2

4
I (7.3.17)

which has eigenvalue 3
~2

4
on any state.

7.4 Some physical aspects of angular momentum and spin

Our analysis of angular momentum states in section 7.2 has revealed the mathematical
possibility of half-integral spin. As asserted earlier, this is realized in nature as previ-
ously stated that each particle carries an internal space of states |r〉 with −S ≤ r ≤ S.
Now identify these with |j = S,m = r〉 angular momentum states. The spin operators
obey

[Si, x̂j] = [Si, p̂j] = 0 , (7.4.1)

which should be contrasted with the commutators for L given in section 7.1. This is
consistent with our earlier use of basis states |x〉 ⊗ |r〉 (fixed S) because x̂,S, S3 are a
commuting set.

In general, then, a given particle will have both orbital angular momentum L and spin
angular momentum S, giving a total angular momentum

J = L+ S . (7.4.2)
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Note that [Si, Lj] = 0 and hence

[Li, Lj] = i~εijkLk [Si, Sj] = i~εijkSk (7.4.3)

together imply
[Ji, Jj] = i~εijkJk . (7.4.4)

How do we know the world works this way? Results of many experiments confirm it.
Here just mention the theoretical ideas underlying a few of them. The key idea is how
spin and angular momentum degrees of freedom enter into the Hamiltonian.

Main example for us is interaction with a background magnetic field. From classical
EM (no previous knowledge required) a moving distribution of electric charge interacts
with magnetic field B(x) to produce energy

−µ ·B , (7.4.5)

where µ is the magnetic dipole moment of the distribution. Think of µ as being a
small magnet which does not disturb B. For instance, a single charge q in an orbit
with angular momentum L can be shown to have

µ =
q

2m
L . (7.4.6)

Hence, the interaction energy is of the form

−γL ·B , γ some constant. (7.4.7)

This final result is all that is important for us. Now pass to quantum theory and
consider the effect of including such a term in the Hamiltonian for the electron in the
hydrogen atom (works for any spherically symmetric potential).

(i) Before we turn on any magnetic field have ψnlm(x) joint eigenstates of H,L2, L3 with
degenerate energies E independent of m (as discussed in section 7.1).

Add a weak magnetic field along the 3-direction, B = (0, 0, B) and so

H → H − γBL3 , (7.4.8)

but ψnlm(x) are still eigenstates and energies now split

E → E − γB~m −l ≤ m ≤ l︸ ︷︷ ︸
2l + 1 levels

. (7.4.9)

This is observed: spectral lines split into distinct lines. This is the Zeeman effect.

(ii) Replacing L by S we have an interaction energy of the form

−γ′ S ·B , γ′ constant 6= γ in general. (7.4.10)

For a spin-1
2

particle originally in eigenstate of a spin-independent Hamiltonian,
adding this term splits the energy states by

±γ′B~
2

B weak and constant. (7.4.11)

Also observed and also called the Zeeman effect. Get appearance of two distinct
levels – direct experimental evidence for spin-1

2
.
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(iii) An electron in the atom has both an orbital magnetic moment µL ∝ L and a
spin magnetic moment µS ∝ S. Like two bar magnets near each other there is an
interaction energy

µL · µS ∝ L · S . (7.4.12)

This is called spin-orbit coupling and when included in the atomic Hamiltonian it
leads to splitting of spectral lines into doublets because of the spin-1

2
of the electron.

The two yellow sodium D lines are a famous outcome. This is called atomic fine
structure.

(iv) Unlike orbital angular momentum, it is sometimes appropriate to consider spin to-
tally divorced from any space degrees of freedom. E.g., electron somehow confined
to one atomic site in a crystal. Then

H = − γS ·B (7.4.13)

can be the complete Hamiltonian. If allow B(z) = (0, 0, B(z)) to vary in space
rather than just separating energies can instead physically separate atoms according
to whether their spin states are ↑ or ↓. This is due to

force in z-dirn = − d

dz
(−γS ·B(z)) = − γS3

dB

dz
= ∓ γ~

2

dB

dz
(7.4.14)

This is the Stern-Gerlach experiment.

(Source: en.wikipedia.org (Theresa Knott))

(v) The proton is spin-1
2

and has a magnetic moment. Even if l = 0 for the electron in
the H atom and no external field there is a weak interaction between the proton spin
I and electron spin S ∝ I ·S. There are two narrowly spaced levels and transitions
give radiation with wavelength ≈ 21cm which is observed from interstellar hydrogen.

(vi) In water the proton magnetic moments of the hydrogen nuclei interact with an
external B-field, ∝ −I · B to produce two levels where the transition absorbs or
radiates microwaves. This forms the basis of MRI scanners.
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Essential idea is that spin or angular momentum behaves like a magnet/dipole. Actu-
ally, an iron bar magnet is magnetized because of the sum of the microscopic electron
spin magnetic dipoles in the atoms which, below the Curie temperature (TC), prefer to
align and produce the macroscopic magnetic dipole. (For T > TC the magnetization
vanishes; at T = TC there is a second-order phase transition.)

The existence of an atomic magnetic moment in iron and also the preference for them
to align and produce a macroscopic magnetization are due to the Pauli Exclusion
Principle (spin-statistics theorem) – a quantum effect. Look up Hund’s rule.

7.5 Addition of angular momentum

Set ~ = 1 in this section. Standard relations are

J2|j,m〉 = j(j + 1)|j,m〉
J3|j,m〉 = m|j,m〉
J±|j,m〉 =

√
(j ∓m)(j ±m+ 1)|j,m± 1〉 . (7.5.1)

Consider two independent systems with angular momentum operators J (1), J (2) acting
on spaces of states V (1), V (2) each with standard basis {|ji,mi〉} consisting of joint

eigenstates of (J (i))2, J
(i)
3 for i = 1, 2.

Construct space of states for the combined system as V = V (1) ⊗ V (2) with basis
(shorthand)

|m1;m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉 ≡ |m1〉|m2〉 j1, j2 fixed. (7.5.2)

Sum of angular momentum operators is the total angular momentum operator

J = J (1) ⊗ I + I⊗ J (2)

or simply = J (1) + J (2) .
(7.5.3)

Recall ji ≥ mi ≥ −ji for i = 1, 2 and so have total of (2j1 + 1)(2j2 + 1) basis states for
V .

Our aim is to find a new basis for V which consists of joint eigenstates |J,M〉 of J2

and J3. Since
J3 = J

(1)
3 + J

(2)
3 , (7.5.4)

we have

J3|m1;m2〉 =
(
J
(1)
3 |m1〉

)
|m2〉+ |m1〉

(
J
(2)
3 |m2〉

)
= M |m1;m2〉 with M = m1 +m2 . (7.5.5)

So the product states are eigenstates of J3 already and its eigenvalues have range

j1 + j2 ≥M ≥ −(j1 + j2) . (7.5.6)

Note that this means that J ≤ j1 + j2 since the maximum value of M available must
be the largest value J allowed. We shall see how this works now.
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It is less obvious how to find eigenstates of J2. Since {|m1;m2〉} is a basis, we must
have

|J,M〉 =
∑

m1+m2=M

CJ
m1m2
|m1;m2〉 . (7.5.7)

(Remember j1, j2 fixed.) We want to find

(i) which values of J are allowed;

(ii) what are the Clebsch-Gordan (CG) coefficients for addition of j1, j2:

CJ
m1m2

= 〈m1;m2|J,M〉 . (7.5.8)

So we are seeking a change of basis for V from states with definite m1,m2 to states
with definite J,M (= m1 + m2). Of course, either basis will do since they are both
complete, and it is usually the physics application that determines which basis is the
most appropriate to use. These bases correspond to classification by the alternative
complete commuting sets:

J (1), J
(1)
3 ,J (2), J

(2)
3︸ ︷︷ ︸

|j1,m1, j2,m2〉
≡ |j1,m1〉|j2,m2〉

or J , J3,J
(1),J (2)︸ ︷︷ ︸

|J,M, j1, j2〉

. (7.5.9)

We now suppress the j1, j2 labels as they are common to all states.

The key idea is to find the top state for a given total angular momentum with

J+|J,M〉 = 0 ⇔ J = M . (7.5.10)

Given M , which is easy to determine, we therefore know J for this state. Then the
others with the same J are found by applying J−.

• To begin the process consider the largest value of M : M = j1 + j2. There is a
unique state |j1〉|j2〉 with this eigenvalue, and so it must be a top state (can check
by applying J+). Hence,

|
J

j1 + j2,
M

j1 + j2〉 = |j1〉|j2〉 , (7.5.11)

This is called the highest weight state since it is the state with the largest value
of M possible for given J . (This terminology arises in the group theory approach.)
The phase of the state on RHS (∈ V (1) ⊗ V (2)) is chosen by convention to be +1.

• Apply J− = J
(1)
− + J

(2)
− to this state on LHS and RHS, respectively. We get

J− J
(1)
− + J

(2)
−√

2(j1 + j2) |j1 + j2, j1 + j2 − 1〉 =
√

2j1 |j1 − 1〉|j2〉 +
√

2j2 |j1〉|j2 − 1〉
(7.5.12)

using standard formulas for V on LHS and for V (1), V (2) on RHS. The normalized
state is then

|j1 + j2, j1 + j2 − 1〉 =

√
j1

j1 + j2
|j1 − 1〉|j2〉 +

√
j2

j1 + j2
|j1〉|j2 − 1〉 . (7.5.13)
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• Continuing to apply J− generates an entire multiplet of states |j1 + j2,M〉 with
j1 + j2 ≥ M ≥ −(j1 + j2). From these expressions we read off the CG coefficients.
E.g.,

Cj1+j2
j1,j2

= 1 , Cj1+j2
j1−1,j2 =

√
j1

j1 + j2
, Cj1+j2

j1,j2−1 =

√
j2

j1 + j2
, . . . (7.5.14)

• But we have not yet found all |J,M〉 states. We started from a unique state with
M = j1 + j2. At the next level down, with M = j1 + j2 − 1, there are two states:

|j1 − 1〉|j2〉 and |j1〉|j2 − 1〉 . (7.5.15)

One combination is identified above as |j1 + j2, j1 + j2− 1〉. The other combination
(unique up to a constant) must be a new top state

|
J

j1 + j2 − 1,
M

j1 + j2 − 1〉 =

√
j1

j1 + j2
|j1〉|j2−1〉 −

√
j2

j1 + j2
|j1−1〉|j2〉 . (7.5.16)

The overall phase on the RHS is chosen by convention.

• Now proceed as before:

(i) generate the multiplet with J = j1 + j2 − 1 by applying J−;
(ii) look for a possible new top state at level M = j1 + j2 − 2;

(iii) repeat until all states exhausted.

The general pattern can be depicted as follows.

J
M j +j1 2 j +j -11 2 |j -j |1 2j +j -21 2

j +j1 2

j +j -11 2

j +j -21 2

-(j +j )+11 2

-(j +j )1 2
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where e top states ↓ apply J−

u other states → unique state ⊥ others
with same M value

(7.5.17)

Can check that top states |ψ〉 with J3 eigenvalue M are annihilated by J+ directly.
This is also guaranteed by

|ψ〉 ⊥ J−|J,M + 1〉 ∀ J > M by our construction. (7.5.18)

Thus,
〈J,M + 1|J+|ψ〉 = 0 ∀ J > M ⇔ J+|ψ〉 = 0 . (7.5.19)

The whole process stops with J = |j1 − j2| by counting. The number of states in the
alternative bases must be the same.

j1+j2∑
j=|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1) . (7.5.20)

We now have the answers to our original questions:

(i) j1 + j2 ≥ J ≥ |j1 − j2| in integer steps. E.g.,

j1=
1
2
, j2=

1
2
⇒ J=1, 0

j1=1, j2=
1
2
⇒ J=3

2
, 1
2

j1=1, j2=1 ⇒ J=2, 1, 0

(7.5.21)

The range of J values matches bounds for addition of classical vectors J = J (1)+J (2)

with lengths of J, j1, j2.

(ii) Clebsch-Gordan coefficients are found by explicit calculation of states for given j1
and j2.

Simplest example is for

j1 = j2 = 1
2
, |m1〉|m2〉 mi = ±1

2
, 4 states. (7.5.22)

|1, 1〉 = |1
2
〉|1

2
〉 top state with M = 1

J− = J
(1)
− + J

(2)
− gives

√
2|1, 0〉 = |−1

2
〉|1

2
〉+ |1

2
〉|−1

2
〉 ⇒

|1, 0〉 = 1√
2

(
|−1

2
〉|1

2
〉+ |1

2
〉|−1

2
〉
)

√
2|1,−1〉 = 1√

2

(
|−1

2
〉|−1

2
〉+ |−1

2
〉|−1

2
〉
)

⇒

|1,−1〉 = |−1
2
〉|−1

2
〉 completes J = 1 multiplet

(7.5.23)
Then

|0, 0〉 =
1√
2

(
|−1

2
〉|1

2
〉 − |1

2
〉|−1

2
〉
)

(7.5.24)
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with M = 0 and ⊥ |1, 0〉. Need a phase convention to decide overall sign of top states.

J
M

1 0

1

0

-1

Compare this results with the combination
of spin states in Eqns. (5.5.14) and (5.5.15)
with |1

2
〉 = | ↑〉, |−1

2
〉 = | ↓〉 which were

found previously by demanding definite sym-
metry; they are precisely the same.

Have
3 (triplet) J = 1 states symmetric

1 (singlet) J = 0 state antisymmetric
(7.5.25)

Indeed, the permutation group and its representations are often central to constructing
multiplets in this way.

Tables for CG coefficients can be found in the Particle Data Group (PDG) Tables
( http://pdg.lbl.gov/2013/reviews/rpp2012-rev-clebsch-gordan-coefs.pdf). The PDG
collate all reviews and tables for properties of elementary particles.

The table for 2⊗ 1 giving states with M = 1 is

J 3 2 1
m1 m2 M +1 +1 +1

2 -1 1/15 1/3 3/5
1 0 8/15 1/6 -3/10
0 1 2/5 -1/2 1/10

Take
√

but keep the sign. E.g., −3/10→ −
√

3/10.


