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1 INTRODUCTION 1

1 Introduction

F Recall features of elementary (IB) quantum mechanics:

• wave-particle duality. Waves behaving like particles – e.g., light quanta, pho-
tons and vice-versa; interference of electrons passing through crystal grating and
electron microscope. To make this more precise need:

• wavefunction ψ(x) for particle. Probability density |ψ(x)|2; probability is in-
trinsic to the theory.

• 0bservables become (hermitian) operators on wavefunctions. Lack of
commutation limits simultaneous measurement – leads to precise version of un-
certainty principle.

• Schrödinger’s equation specifies dynamics (evolution in time) and determines
energy levels.

This is enough to understand e.g., the hydrogen atom and transcends classical
physics.

F Aim of this course:

• reformulate QM in a more powerful, abstract, flexible and useful form: Dirac
formalism. This allows a simpler analysis of known problems such as the har-
monic oscillator and is also the clearest way to understand lots of more novel
properties, for example:

• the spin of particles;

• symmetries (e.g., translations and rotations) and conservation laws;

• identical particles;

• it provides the framework for quantizing other, more general, systems e.g., EM
field, and ultimately other forces leading to the ‘Standard Model’ of elementary
particles.

F Will not dwell on applications in any detail, but will keep track of what the mathe-
matical formalism is for.

F Assume IB QM and IA Dynamics but no electromagnetism beyond Coulomb’s law
and intuitive ideas about magnetism.

Plan:

1. Dirac formalism.
2. Harmonic oscillator.
3. Pictures of quantization.
4. Composite systems and identical particles.
5. Perturbation theory.
6. Angular momentum.
7. Transformations and symmetries.
8. Time-dependent perturbation theory.
9. Quantum basics.
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2 Dirac Formalism

2.1 States and Operators

A quantum state is described at each instant by a state |ψ〉 which belongs to a complex
vector apace V . Then

|ψ〉, |φ〉 ∈ V =⇒ α|ψ〉+ β|φ〉 ∈ V ∀ α, β ∈ C. (2.1.1)

Physically this is the superposition principle leading to wave-like behaviour (interfer-
ence). However, these states are not wavefunctions but we will see that they carry all
the quantum information that describes the state of the system concerned in a very
general way.

There are also dual or conjugate states 〈φ| which belong to the dual space V †. By
definition, states and duals can be combined/paired to give a complex number:

〈φ|︸︷︷︸
‘bra’

, |ψ〉︸︷︷︸
‘ket’

7→ 〈φ|ψ〉︸ ︷︷ ︸
‘bra(c)ket’

or formally V † × V → C , (2.1.2)

with

〈φ|
(
α1|ψ1〉 + α2|ψ2〉

)
= α1〈φ|ψ1〉 + α2〈φ|ψ2〉 ,(

β1〈φ1| + β2〈φ2|
)
|ψ〉 = β1〈φ1|ψ〉 + β2〈φ2|ψ〉 , (2.1.3)

α, β ∈ C. This is the definition of the dual as a vector space.

The space of states V and the dual V † come with an inner-product which can be
described as a one-to-one correspondence between states and duals:

V ←→ V †

with |ψ〉 ←→ 〈ψ| = ( |ψ〉)† (use same label for corresponding states)
and α|ψ〉+ β|φ〉 ←→ α∗〈ψ| + β∗〈φ| .

(2.1.4)
The inner product is

V × V → C
|φ〉, |ψ〉 7→ 〈φ|ψ〉 = (|φ〉)†|ψ〉 , (2.1.5)

and is assumed to obey

〈φ|ψ〉 = 〈ψ|φ〉∗ hermitian
‖|ψ〉‖2 = 〈ψ|ψ〉 ≥ 0 (real from above)

with ‖|ψ〉‖2 = 0 iffi |ψ〉 = 0.
(2.1.6)

This means that the inner product is positive semidefinite. Note that knowing 〈φ|ψ〉
for all 〈φ| determines |ψ〉 uniquely and vice-versa.

The physical content of any state is unaltered by changing |ψ〉 → α|ψ〉 (α 6= 0). We
shall usually normalize states by ‖|ψ〉‖2 = 1 but still have the freedom to change
|ψ〉 → eiθ|ψ〉. The absolute phase of a single state never has any physical significance,
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but relative phases in combination such as α|φ〉+β|ψ〉 can be significant; for example,
for interference phenomena.

The space V is complete; we assume appropriate sequences or series converge. A
complete inner product space of this kind is a Hilbert space and this term is often
used for the space V in QM. V can be either finite or infinite dimensional and we shall
see examples of both.

An operator Q is a linear map on states, V → V :

|ψ〉 7→ Q|ψ〉, (2.1.7)

and, by definition

Q
(
α|φ〉+ β|ψ〉

)
= αQ|φ〉+ βQ|ψ〉 . (2.1.8)

The same operator can be regarded as acting ‘to the left’ on dual states, V † → V †:

〈φ| 7→ 〈φ|Q , (2.1.9)(
〈φ|Q

)
|ψ〉 = 〈φ|

(
Q|ψ〉

)
∀ |ψ〉

or simply = 〈φ|Q|ψ〉 .
(2.1.10)

For any Q the hermitian conjugate or adjoint is an operator Q† defined by

〈φ|Q† =
(
Q|φ〉

)†
, (2.1.11)

or, equivalently,

〈φ|Q†|ψ〉 =
(
Q|φ〉

)†
|ψ〉

= 〈ψ|Q|φ〉∗ ∀ |ψ〉, |φ〉 . (2.1.12)

Simple consequences are (
αA+ βB

)†
= α∗A† + β∗B† ,(

AB
)†

= B†A† , (2.1.13)

for any A,B.1

1

〈ψ|(AB)†|φ〉 =
(
(AB)|ψ〉

)†
|φ〉 defn of (AB)†

=
(
A|ψ′〉

)†
|φ〉 |ψ′〉 ≡ B|ψ〉

= 〈ψ′|A†|φ〉 defn of A†

=
(
B|ψ〉

)†(
A†|φ〉

)
= 〈ψ|B†A†|φ〉 defn of B† .

(2.1.14)

True for all |ψ〉, |φ〉 and result follows.
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For any operator Q call |ψ〉 ( 6= 0) an eigenstate of Q with eigenvalue λ if

Q|ψ〉 = λ|ψ〉 . (2.1.15)

Equivalently (taking † of this)

〈ψ|Q† = λ∗〈ψ| . (2.1.16)

For general Q, λ can be complex.

Of particular importance are commutators of operators

[A,B] = AB −BA = − [B,A] . (2.1.17)

We have the identities

[α1A1 + α2A2, B] = α1[A1, B] + α2[A2, B]
[A, β1B1 + β2B2] = β1[A,B1] + β2[A,B2]

linearity (2.1.18)

[A,B1B2] = [A,B1]B2 + B1[A,B2]
[A1A2, B] = [A1, B]A2 + A1[A2, B]

Leibnitz properties (2.1.19)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 Jacobi identity (2.1.20)

2.2 Observables and measurements

An operator Q is hermitian or self-adjoint if

Q† = Q . (2.2.1)

Such operators are called observables because they correspond to physical, measur-
able, quantities e.g., position, momentum, energy, angular momentum. Key results for
any hermitian Q:

(i) All eigenvalues are real.
(ii) Eigenstates with distinct eigenvalues are orthogonal.

(iii) The eigenstates form a complete basis for V (and their duals for V †). So any state
can be expanded in terms of (written as a linear combination of) the eigenstates.

We prove (i) and (ii) and assume (iii).

(i)
Q|ψ〉 = λ|ψ〉

and 〈ψ|Q† = λ∗〈ψ|
⇒ 〈ψ|Q = λ∗〈ψ| since Q is hermitian
⇒ 〈ψ|Q|ψ〉 = λ〈ψ|ψ〉 = λ∗〈ψ|ψ〉 .

(2.2.2)

But ‖|ψ〉‖2 = 〈ψ|ψ〉 6= 0 (|ψ〉 6= 0) and so deduce

λ = λ∗ . (2.2.3)
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(ii) Let |n〉 be eigenstates of Q with eigenvalues λ = qn real, with n a discrete label
possibly of infinite range.

Q|n〉 = qn|n〉
and Q|m〉 = qm|m〉
or 〈m|Q = qm〈m|
⇒ 〈m|Q|n〉 = qn〈m|n〉 = qm〈m|n〉 .

(2.2.4)

So qn 6= qm ⇒ 〈m|n〉 = 0.

Combining these three properties we have

F For any observable Q there is an orthonormal basis of eigenstates {|n〉} for the space
of states V with

Q|n〉 = qn|n〉 ,
〈m|n〉 = δmn . (2.2.5)

We speak of diagonalizing Q by choosing the basis to be the eigenstates |n〉 of Q.
This means that a general state |ψ〉 can be expanded as

|ψ〉 =
∑
n

αn|n〉 , (2.2.6)

where αn = 〈n|ψ〉.

For the state to be properly normalized

‖|ψ〉‖2 = 〈ψ|ψ〉 = 1

⇐⇒
(∑

m

α∗m〈m|
)(∑

n

αn|n〉
)

=
∑
n

|αn|2 = 1 . (2.2.7)

There might be several states with the same eigenvalue λ. Define the eigenspace for
a given eigenvalue by

Vλ = {|ψ〉 : Q|ψ〉 = λ|ψ〉} , (2.2.8)

which has the basis {|n〉 : qn = λ}.
The degeneracy of λ is the number of states in this basis, or dimVλ. We say that λ
is non-degenerate if the degeneracy is 1.

d Note that passing from our three key results to the conclusion (F) is achieved by
choosing an orthonormal basis for each Vλ:

(ii) ensures that these spaces are mutually orthogonal;

(iii) implies that the sum of all the eigenspaces is V , the entire space of states. c
Consider a measurement of Q when the system is in state |ψ〉 immediately before.
Then

• The result is an eigenvalue, λ, say.
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• This value is obtained with the probability

p(λ) =
∑
n:qn=λ

|αn|2. (2.2.9)

• Immediately after the measurement the state is

|φ〉 = c
∑
n:qn=λ

αn|n〉 , (2.2.10)

where c is a normalization constant chosen so that 〈φ|φ〉 = 1.

So measurement projects the system into the eigenspace Vλ.

Example. Consider a system with three orthonormal states: |1〉, |2〉, |3〉 on which Q
has eigenvalues q1 = q2 = 0, q3 = 1. Let the state of the system be

|ψ〉 =
1√
6

(2|1〉+ |2〉+ |3〉) . (2.2.11)

Then

Probability
of measuring



1

∣∣∣∣ 1√
6

∣∣∣∣2 =
1

6
|3〉

0

∣∣∣∣ 2√
6

∣∣∣∣2 +

∣∣∣∣ 1√
6

∣∣∣∣2 =
5

6

1√
5

(2|1〉+ |2〉)

↑
final states

(2.2.12)

In this example we had degeneracy: two states with eigenvalue 0. However, often have
the case with λ non-degenerate with eigenstate |n〉 unique up to a phase. Then

• p(λ) = |αn|2 = |〈n|ψ〉|2.
• αn = 〈n|ψ〉 is called the amplitude.

• The state after measurement is |n〉.

In general, ∑
λ

p(λ) =
∑
n

|αn|2 = 1 , (2.2.13)

as required for a probability distribution.

The expectation value (mean) of Q in state |ψ〉 is

〈Q〉ψ = 〈ψ|Q|ψ〉 =
∑
λ

λp(λ) =
∑
n

qn|αn|2 , (2.2.14)

and the uncertainty (spread or variance) is

(∆Q)2ψ = 〈(Q− 〈Q〉ψ)2〉ψ = 〈Q2〉ψ − 〈Q〉2ψ . (2.2.15)
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In thinking about many repeated measurements we must be careful to prepare the
system in the same state each time.

In the case that |ψ〉 is an eigenstate of Q with eigenvalue λ, say, then

〈Q〉ψ = λ , and (∆Q)ψ = 0 . (2.2.16)

d The process of measurement is still a source of some deep questions about the inter-
pretation of QM c.
Quantum mechanical behaviour arises from the fact that observables do not commute
in general. In any state |ψ〉

〈∆A〉ψ〈∆B〉ψ ≥
1

2
|〈[A,B]〉ψ| , (2.2.17)

so [A,B] 6= 0 means we cannot expect to measure exact values for A and B simultane-
ously. This generalized Uncertainty Principle follows from

‖(A+ iλB)|ψ〉‖2 ≥ 0 ∀ real λ . (2.2.18)

The LHS is a quadratic in λ and the condition implies that the discriminant is ≤ 0;
the stated Uncertainty Principle then follows.

Paradigm example: position, x̂, and momentum, p̂, in one dimension obey

[x̂, p̂] = i~

⇒ ∆x ∆p ≥ ~
2
. (2.2.19)

In D = 3, x̂i and p̂i obey
[x̂i, p̂j] = i~δij , (2.2.20)

and so the uncertainty principle applies to components of position and momentum
which are not orthogonal.

2.3 Time evolution and the Schrödinger Equation

So far our discussion of quantum states has been at a fixed time, even measurement is
assumed to be an instantaneous change of state. The evolution of states |ψ(t)〉 in time
is governed by the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 , (2.3.1)

where H = H† is the Hamiltonian. Equivalently,

−i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H . (2.3.2)

Note that these equations imply

∂

∂t

(
〈ψ(t)|ψ(t)〉

)
= 0 , (2.3.3)
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so that the normalization of |ψ(t)〉, and hence the probabilistic interpretation, is pre-
served in time.

H is an observable: the energy. Consider the eigenstates

H|n〉 = En|n〉 . (2.3.4)

Then the states
e−iEnt/~|n〉 (2.3.5)

are stationary state solutions of the Schrödinger Equation.

The Schrödinger Equation is first-order in t and linear in |ψ(t)〉 and so for an initial
state at t = 0,

|ψ(0)〉 =
∑
n

αn|n〉 , (2.3.6)

we have the unique solution

|ψ(t)〉 =
∑
n

αne
−iEnt/~|n〉 . (2.3.7)

Example. Consider system with two energy eigenstates |1〉, |2〉 with energy eigenvalues
E1, E2, respectively. We are interested in measuring Q defined by

Q|1〉 = |2〉, Q|2〉 = |1〉 ⇒ [Q,H] 6= 0 . (2.3.8)

The eigenstates of Q are easily found to be

|±〉 =
1√
2

(
|1〉 ± |2〉

)
with eigenvalues q± = ±1 . (2.3.9)

Let the initial state, the state at t = 0, be |ψ(0)〉 = |+〉. Then have

|ψ(t)〉 =
1√
2

(
e−iE1t/~|1〉+ e−iE2t/~|2〉

)
. (2.3.10)

The probability of measuring Q at time t and getting ±1 is

|〈±|ψ(t)〉|2 =

∣∣∣∣12(〈1| ± 〈2|)(e−iE1t/~|1〉+ e−iE2t/~|2〉
)∣∣∣∣2

=

∣∣∣∣12(e−iE1t/~ ± e−iE2t/~
)∣∣∣∣2

=


cos 2

(
(E1−E2)t

2~

)
sin 2

(
(E1−E2)t

2~

) (2.3.11)

Note that we are assuming no time-dependence in H. This would become a much
more complex situation.



2 DIRAC FORMALISM 9

2.4 Bases and Representations

Another use of a basis is that we can choose to reduce all states and operators to,
possibility infinite, column/row vectors and to matrices as follows

|ψ〉 =
∑
n

αn|n〉 ⇔ αn = 〈n|ψ〉

|φ〉 =
∑
n

βn|n〉 ⇔ βn = 〈n|φ〉 . (2.4.1)

The inner product is then

〈φ|ψ〉 =
∑
n

β∗nαn . (2.4.2)

The operation of operator A can be written as

A|n〉 =
∑
m

|m〉Amn , (2.4.3)

where Amn = 〈m|A|n〉 are the matrix elements of the complex matrix representing
the operator A in this basis. Note that the entries in this matrix depend on the basis; a
familiar result in linear algebra for any linear map. In contrast, the result of operating
with A on any state is independent of the basis. Check this result

|φ〉 = A|ψ〉︸ ︷︷ ︸
basis-independent

⇔ βm =
∑
n

Amnαn︸ ︷︷ ︸
basis-dependent

. (2.4.4)

Clearly, this representation is multiplication of a vector by a matrix: β = Aα. Also,
have that the Hermitian conjugate has the familiar matrix form:

(A†)mn = A∗nm . (2.4.5)

If B is another operator with matrix B then

(AB)mn =
∑
p

AmpBpn . (2.4.6)

I.e., as expected the usual rules of matrix multiplication apply.

This, by now familiar, way of representing linear maps on a vector space by the linear
algebra of matrices gives the matrix representation of Quantum Mechanics. It is most
useful when the number of basis states is finite, but can also be useful for an ∞
dimensional basis as well (does need care).

We are often interested in a function f(Q) of an operator Q. How should this be
defined? The answer may be obvious if f is a polynomial or a series:

Q +
Q3

3
, eQ , sin (Q) assuming convergence . (2.4.7)

But what about 1/Q or log(Q)?
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For Q an observable and |n〉 an eigenbasis for Q:

Q|n〉 = qn|n〉 〈n|m〉 = δmn , (2.4.8)

setting
f(Q)|n〉 = f(qn)|n〉 (2.4.9)

defines f(Q) provided f(qn) is defined for all n; f(Q) is defined on a basis and so is
defined on any state. This is certainly true if f is a polynomial or a power series that
converges for all qn. If qn 6= 0 ∀ n then can define

Q−1|n〉 =
1

qn
|n〉 , (2.4.10)

and likewise log(Q) is defined if 0 < qn <∞.

A useful way to express that {|n〉} is an orthonormal basis is the completeness re-
lation or resolution of the identity:∑

n

|n〉〈n| = I , the identity operator. (2.4.11)

The notation is (
|n〉〈m|︸ ︷︷ ︸

operator

)
|ψ〉︸︷︷︸

state

= |n〉︸︷︷︸
state

(
〈m|ψ〉︸ ︷︷ ︸

number

)
. (2.4.12)

This is confirmed by applying each side to an arbitrary state∑
n

|n〉〈n|ψ〉 = |ψ〉 = I|ψ〉 . (2.4.13)

In the same way can resolve any operator in a similar fashion:

Q =
∑
n

qn|n〉〈n| ,

f(Q) =
∑
n

f(qn)|n〉〈n| . (2.4.14)

In the case where the eigenvalues are degenerate then we can define a projection oper-
ator onto the subspace of eigenstates with eigenvalue λ by

Pλ =
∑

n: qn=λ

|n〉〈n| . (2.4.15)

The bases considered so far may be infinite but have been assumed discrete which
includes countably infinite bases. However, we can extend the index n to be continuous.
This requires some modifications in all relevant formulas:

∑
n

→
∫
dn


|ψ〉 =

∫
dn αn|n〉

I =
∫
dn |n〉〈n|

Q =
∫
dn q(n)|n〉〈n|

〈n|m〉 = δnm → δ(n−m) (2.4.16)

with |αn|2 = |〈n|ψ〉|2. There is no longer a probability for discrete outcomes but a
probability density for the continuous range of n. We will see this below for position
and momentum operators.
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2.5 Position and momentum basis – wavefunctions

Consider particle motion in one dimension. Position and momentum operators x̂, p̂
obey

[x̂, p̂] = i~ . (2.5.1)

Let |x〉 be position eigenstates
x̂|x〉 = x|x〉 , (2.5.2)

with continuous eigenvalue x and normalization

〈x|x′〉 = δ(x− x′) ,
∫
dx |x〉〈x| = I . (2.5.3)

In this basis, any state can be expanded as

|ψ〉 =

∫
dx ψ(x)|x〉

with ψ(x) = 〈x|ψ〉 a complex function . (2.5.4)

ψ(x) is just the usual position wavefunction and the standard interpretation is the ob-
vious extension of the measurement postulates in section 2.2 to continuous eigenvalues:

|ψ(x)|2 is the probability density for measuring position. (2.5.5)

The inner product in terms of wavefunctions becomes

〈φ|ψ〉 =

(∫
dx φ(x)∗〈x|

)(∫
dx′ ψ(x′)|x′〉

)
=

∫
dx

∫
dx′φ(x)∗ψ(x′) 〈x|x′〉︸ ︷︷ ︸

δ(x− x′)

=

∫
dxφ(x)∗ψ(x) . (2.5.6)

So, in particular,

‖|ψ〉‖2 = 〈ψ|ψ〉 =

∫
dx |ψ(x)|2 = 1 (2.5.7)

for a normalized state.

Define similarly momentum eigenstates |p〉 with

p̂|p〉 = p|p〉 , (2.5.8)

and with

〈p|p′〉 = δ(p− p′) ,
∫
dp |p〉〈p| = I . (2.5.9)

It is very important that the eigenstates of x̂ and p̂ can be chosen so that they are
related by

〈x|p〉 =
1√
2π~

eipx/~ , (2.5.10)

⇒ 〈p|x〉 =
1√
2π~

e−ipx/~ . (2.5.11)
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We justify this later after deducing some consequences. First find action of x̂ and p̂ in
terms of position wavefunctions:

x̂|ψ〉 wavefunction : 〈x|x̂|ψ〉 = x〈x|ψ〉 = xψ(x)

p̂|ψ〉 wavefunction : 〈x|p̂|ψ〉

=

∫
dp 〈x|p̂|p〉〈p|ψ〉 [resolution of identity using p-states]

=

∫
dp p〈x|p〉〈p|ψ〉

=

∫
dp − i~ ∂

∂x

(
〈x|p〉

)
〈p|ψ〉

= −i~ ∂
∂x

∫
dp 〈x|p〉〈p|ψ〉

= −i~ ∂
∂x
〈x|ψ〉 = − i~ ∂

∂x
ψ(x) , (2.5.12)

and so recover familiar results. However, also have new possibility. Can expand states
in momentum basis instead:

|ψ〉 =

∫
dp ψ̃(p)|p〉 ,

with ψ̃(p) = 〈p|ψ〉 , (2.5.13)

which is the momentum space wavefunction where |ψ̃(p)|2 is the probability density for
measurements of momentum. Then have

‖|ψ〉‖2 =

∫
dp 〈ψ|p〉〈p|ψ〉 =

∫
dp |ψ̃(p)|2 = 1 . (2.5.14)

As before, but with x ↔ p:

p̂|ψ〉 −→ pψ̃(p)

x̂|ψ〉 −→ i~
∂

∂p
ψ̃(p)

 momentum space
wavefunctions

(2.5.15)

The relationship between the wavefunctions follows from Eq. (2.5.10):

ψ̃(p) = 〈p|ψ〉 =

∫
dx 〈p|x〉〈x|ψ〉

=
1√
2π~

∫
dx e−ipx/~ ψ(x) Fourier transform,

and ψ(x) =
1√
2π~

∫
dp eipx/~ ψ̃(p) inverse FT. (2.5.16)

Think of these as two different representations of states |ψ〉 and the operators on
them:

ψ(x) ψ̃(p)

x̂ −→ x x̂ −→ i~ ∂
∂p

p̂ −→ −i~ ∂
∂x

p̂ −→ p

(2.5.17)
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d The transforms between x and p space are familiar but here we are deriving all the
results, including the transform inversion theorem, on the assumption that {|x〉} and
{|p〉} are bases. c
The corresponding representations of the Hamiltonian

H(x̂, p̂) =
p̂2

2m
+ V (x̂) (2.5.18)

are

on ψ(x) : H −→ − ~2

2m

∂2

∂x2
+ V (x) ,

on ψ̃(p) : H −→ − p2

2m
+ V

(
i~
∂

∂p

)
. (2.5.19)

It may be easy to interpret the potential term in momentum space. E.g., V (x) =
λxn ⇒

V

(
i~
∂

∂p

)
= λ(i~)n

∂n

∂pn
, (2.5.20)

but more generally need to use first principles.

〈p|V (x̂)|ψ〉 =

∫
dx 〈p|V (x̂)|x〉〈x|ψ〉

=

∫
dx V (x)〈p|x〉

∫
dp′〈x|p′〉〈p′|ψ〉

=

∫
dp′

(
1

2π~

∫
dx V (x) e−i(p−p

′)x/~
)
ψ̃(p′)

=
1√
2π~

∫
dp′ Ṽ (p− p′)ψ̃(p′) . (2.5.21)

Thus H|ψ〉 = E|ψ〉 becomes

− ~2

2m

∂2ψ

∂x2
+ V (x) ψ(x) = E ψ(x) in position space ,

p2

2mψ̃(p) + 1√
2π~

∫
dp′ Ṽ (p− p′) ψ̃(p′) = E ψ̃(p) in momentum space .

(2.5.22)
d Note that the convolution theorem derived here. c
Now return to the key condition in Eq. (2.5.10) and justify it:

〈x|p〉 =
1√
2π~

eipx/~ . (2.5.23)

The point is that eigenstates are only ever unique up to a phase, even if normalized,
so we need to show there is a way to choose |x〉 and |p〉 which makes this result true.
Doing this will involve an approach to translations to which we return later. Claim
that

|x0 + a〉 = e−iap̂/~|x0〉 , (2.5.24)
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which involves the operator

U(a) ≡ e−iap̂/~ =
∞∑
n=0

1

n!

(
−ia
~

)n
p̂n , (2.5.25)

defines position eigenstates |x〉 ∀ x given one with x = x0. To check this first note
that

[x̂, p̂] = i~ ⇒ [x̂, p̂n] = i~n p̂n−1 . (2.5.26)

d Note that x̂ acts like “ i~ d/dp̂ ” inside a commutator. c Thus find

[x̂, U(a)] =
∞∑
n=0

1

n!

(
−ia
~

)n
n p̂n−1 = aU(a) . (2.5.27)

So

x̂ U(a)|x0〉 = ([x̂, U(a)] + U(a)x̂)|x0〉
= (aU(a) + U(a)x0)|x0〉
= (x0 + a)U(a)|x0〉 as required. (2.5.28)

Similarly,
|p0 + b〉 = eibx̂/~|p0〉 , (2.5.29)

defines momentum eigenstates |p〉 ∀ p given one with p = p0. But then

〈x0 + a|p0 + b〉 = 〈x0| eiap̂/~|p0 + b〉

= eia(p0+b)/~〈x0|eibx̂/~|p0〉

= ei(ab+ap0+bx0)/~〈x0|p0〉 . (2.5.30)

Choosing 〈x0|p0〉 = 1/
√

2π~ for reference values x0 = p0 = 0, then gives (relabelling
a, b as x, p, repectively)

〈x|p〉 =
1√
2π~

eipx/~ . (2.5.31)

Actually, need justification for this last step.

• The definitions in Eqs. (2.5.24, 2.5.29) ensure

〈x+ a|x′ + a〉 = 〈x|x′〉 and 〈p+ b|p′ + b〉 = 〈p|p′〉 , (2.5.32)

so that if |x0〉 is correctly normalized we will have

〈x|x′〉 = δ(x− x′) . (2.5.33)

• Since {|x〉} is a basis we cannot have 〈x|p0〉 = 0 for every x, and then Eq. (2.5.24)
implies 〈x0|p0〉 6= 0, the required result, since

|x0〉 = |x+ (x0 − x)〉 = e−i(x0−x)p̂/~|x〉
⇒ 〈x0|p0〉 = ei(x0−x)p0/~〈x|p0〉 6= 0 . (2.5.34)
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• Now, the phase of 〈x0|p0〉 is a matter of convention but the modulus must be con-
sistent with

〈p|p′〉 = δ(p− p′) , (2.5.35)

which is the desired normalization for the {|p〉} basis. To check:

〈p|p′〉 =

∫
dx 〈p|x〉〈x|p′〉

=

∫
dx

1

2π~
ei(p

′−p)/~ = δ(p− p′) as required. (2.5.36)

Note that the operator U(a) implements translation by a on the position states.

2.6 Simultaneous Measurements and Complete Commuting
Sets

Return to idea of labelling basis states by eigenvalues of observables. If this cannot
uniquely be done with eigenvalues λ of some observable Q because some eigenvalues are
degenerate, then need at least one more observable Q′ to distinguish the corresponding
degenerate states.

Physically, we must be able to measure Q and Q′ simultaneously or

• first measure Q with result λ,

• then immediately measure Q′ with result λ′.

• This second measurement must not change the value for Q and so still get result λ
if it is measured again immediately.

Mathematically, this requires a basis of joint eigenstates which simultaneously
diagonalize Q and Q′:

Q|λ, λ′〉 = λ|λ, λ′〉
Q′|λ, λ′〉 = λ′|λ, λ′〉 , (2.6.1)

which is only possible iffi
[Q,Q′] = 0 , (2.6.2)

as we now show.

• If there is a basis of joint eigenstates as above then

QQ′|λ, λ′〉 = Q′Q|λ, λ′〉 = λλ′|λ, λ′〉 , (2.6.3)

soQQ′ = Q′Q on these basis states and hence on all states since they can be expanded
on this basis.

• Conversely, if [Q,Q′] = 0 and |ψ〉 belongs to the eigenspace Vλ of Q then

Q
(
Q′|ψ〉

)
= Q′

(
Q|ψ〉

)
= λ

(
Q′|ψ〉

)
, (2.6.4)

and so Q′|ψ〉 also belongs to Vλ.
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• The definition of a hermitian operator that

〈φ|Q′|ψ〉 = 〈ψ|Q′|φ〉∗ ∀ |ψ〉, |φ〉 ∈ V (2.6.5)

holds for the restriction |ψ〉, |φ〉 ∈ Vλ. Hence, ∃ a basis for Vλ consisting of
eigenstates of Q′. Call these |λ, λ′〉.

• Doing this for each Vλ gives a basis of such joint eigenstates for V .

d Note that if dim Vλ = 1 (no degeneracy) then any state in Vλ is automatically an
eigenstate of Q′ since Q′ maps Vλ → Vλ. c
Now can extend to any number of hermitian operators. Observables {Q1, Q2, Q3. . . .}
are said to be a complete commuting set if any pair commute. Then there is a basis
of joint eigenstates with members

|λ1, λ2, λ3, . . .〉 . (2.6.6)

An equivalent way to characterize a complete commuting set is as follows. If A is any
other observable with [A,Qi] = 0 ∀ Qi then

A = f(Q1, Q2, Q3, . . .) (2.6.7)

for some function f . This means that

A|λ1, λ2, λ3, . . .〉 = f(λ, λ1, λ2, . . .)|λ1, λ2, λ3, . . .〉 . (2.6.8)

An example is the generalization from one to three dimensions of the position and
momentum operators (x̂, p̂). These obey the commutation relations defined in terms
of their Cartesian component operators in usual notation

[x̂i, p̂j] = i~δij . (2.6.9)

One complete commuting set is

x̂ = (x̂1, x̂2, x̂3) (2.6.10)

with joint eigenstates:

x̂i|x〉 = xi|x〉
orthonormality: 〈x|x′〉 = δ(3)(x− x′)
basis: |ψ〉 =

∫
d3x ψ(x)|x〉

position space wavefunction ψ(x) = 〈x|ψ〉 .

An alternative complete commuting set is

p̂ = (p̂1, p̂2, p̂3) (2.6.11)

with joint eigenstates
p̂i|p〉 = pi|p〉 (2.6.12)

and momentum space wavefunction ψ̃(p) = 〈p|ψ〉.
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The relationship between these eigenstates is

〈x|p〉 =
1

(2π~)3/2
eip·x/~ ⇒

ψ̃(p) =
1

(2π~)3/2

∫
d3x e−ip·x/~ψ(x)

ψ(x) =
1

(2π~)3/2

∫
d3p eip·x/~ψ̃(p) . (2.6.13)

There are other possibilities such as {x̂1, x̂2, p̂3} leading to mixed position and momen-
tum space wavefunctions.

3 The Harmonic Oscillator

A one-dimensional harmonic oscillator of mass m and frequency ω is defined by the
Hamiltonian

H =
1

2m
p̂2 +

1

2
mω2x̂2 . (3.1)

We will derive the energy levels and construct eigenstates using operator methods and
then also see how to find the wavefunctions.

3.1 Analysis using annihilation, creation and number opera-
tors

Define

a =
(mω

2~

)1/2(
x̂+

ip̂

mω

)
,

a† =
(mω

2~

)1/2(
x̂− ip̂

mω

)
. (3.1.1)

Note that these are dimensionless. Equivalently,

x̂ =

(
~

2mω

)1/2 (
a+ a†

)
,

p̂ =

(
~mω

2

)1/2

i
(
a† − a

)
. (3.1.2)

It is easy to check that

[x̂, p̂] = i~ ⇔ [a, a†] = 1 . (3.1.3)
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Also have

aa† =
mω

2~
x̂2 +

1

2mω~
p̂2 − i

2~
(x̂p̂− p̂x̂)

=
1

~ω
H +

1

2
,

and similarly

a†a =
1

~ω
H − 1

2
(opposite sign for commutator),

(3.1.4)

which confirms the commutation relations and also gives

H = ~ω
(
N +

1

2

)
, (3.1.5)

where N = a†a is the number operator. N † = N and finding its eigenstates and
eigenvalues is equivalent to doing this for H:

N |λ〉 = λ|λ〉 ⇔ H|λ〉 = E|λ〉 with E = ~ω
(
λ+

1

2

)
. (3.1.6)

Let |λ〉 be any such eigenstate normalized s.t. ‖|λ〉‖2 = 1. Then

λ = 〈λ|N |λ〉 = 〈λ|a†a|λ〉 = ‖a|λ〉‖2 ≥ 0 . (3.1.7)

Thus,
λ ≥ 0 all eigenvalues non-negative

= 0 iffi a|λ〉 = 0 .
(3.1.8)

Next consider commutators

[N, a†] = [a†a, a†] = a†[a, a†] = a† ,
[N, a] = [a†a, a] = [a†, a]a = −a . (3.1.9)

These relations imply that a† and a act on eigenstates by respectively raising and
lowering the eigenvalues by 1, provided the new states are non-zero and so actually are
eigenstates.

N(a†|λ〉) = ([N, a†] + a†N)|λ〉
= (a† + a†λ)|λ〉
= (λ+ 1)(a†|λ〉) ,

N(a|λ〉) = ([N, a] + aN)|λ〉
= (−a+ aλ)|λ〉
= (λ− 1)(a|λ〉) . (3.1.10)

To find whether the new states are non-zero we compute their norms.

‖a|λ〉‖2 = λ (already done above) (3.1.11)
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which is only ever zero if λ = 0.

‖a†|λ〉‖2 = 〈λ|aa†|λ〉
= 〈λ|a†a+ 1|λ〉
= λ+ 1 , (3.1.12)

which is never zero since λ ≥ 0. Because of these properties a† and a are called,
respectively, creation and annihilation operators.

Suppose there is an eigenstate |λ〉 with λ not an integer. Then

a|λ〉, a2|λ〉, . . . , am|λ〉, . . . are all non-zero.
eigenvalues: λ− 1, λ− 2, . . . , λ−m . . . .

(3.1.13)
But for m sufficiently large λ − m < 0 which is a contradiction since all eigenvalues
are non-negative. By contrast if λ = n = 0, 1, 2, . . . then the contradiction is avoided
because

a|n〉, a2|n〉, . . . , an|n〉, are non-zero states
eigenvalues: n− 1, n− 2, . . . , 0 ,

(3.1.14)
but am|n〉 = 0, m > n and so the sequence terminates. Furthermore, have additional
eigenstates

a†|n〉, (a†)2|n〉, . . . ,
eigenvalues: n+ 1, n+ 2, . . . .

(3.1.15)

The eigenvalues of N are therefore precisely the non-negative integers and the oscil-
lator energy levels are

En = ~
(
n+

1

2

)
n = 0, 1, 2, 3, . . . . (3.1.16)

From calculations of norms above, we can choose normalized eigenstates |n〉, 〈n|n〉 = 1
which are then related by

a†|n〉 =
√
n+ 1 |n+ 1〉

a|n〉 =
√
n |n− 1〉

}
ladder operators (3.1.17)

Starting from one state reach others by
operating with a and a†. In particular,
starting from the ground state, |0〉,
characterized by

a|0〉 = 0 , (3.1.18)

have normalized eigenstates

|n〉 =
1√
n!

(a†)n|0〉 . (3.1.19)
0 state0 state

00

11

22

33

aa aa

nn
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In the absence of any internal structure can take {x̂} or {p̂} or {N} as a complete
commuting set. Then the energy levels are non-degenerate (eigenvalues of N label
them uniquely) and, in particular, |0〉 is completely specified by

a|0〉 = 0 . (3.1.20)

If there is some internal structure then all states can carry an additional label i as-
sociated with some observable Q (or its eigenvalues) commuting with x̂, p̂, a, a†, N .
All energy levels have the same degeneracy with states |n; i〉 related by a, a† without
affecting i.

The analysis above is convenient for finding wavefunctions. In the position represen-
tation

|0〉  ψ0(x) = 〈x|0〉

a =
(
mω
2~
)1/2 (

x̂+ i
mω p̂

)
 

(
mω
2~
)1/2 (

x+ ~
mω

∂
∂x

)
a|0〉 = 0  

(
x+ ~

mω
∂
∂x

)
ψ0(x) = 0

=⇒ ψ0(x) = N e
−mωx

2

2~

(3.1.21)

with normalization factor N =
(
mω
π~
)1/4

.

Can also find wavefunctions for higher energy states by using Eq. (3.1.19). E.g.,

|1〉 = a†|0〉  ψ1(x) =
(
mω
2~
)1/2 (

x− ~
mω

∂
∂x

)
ψ0(x)

=
(

2mω
~
)1/2

xψ0(x) .

(3.1.22)

The correct normalization is guaranteed.

3.2 Importance of the oscillator – applications in outline

“Physics is that subset of human experience that can be reduced to coupled harmonic
oscillators.”

M. Peskin

• The oscillator is the simplest QM model beyond steps, wells etc. that can be solved
exactly; the hydrogen atom with a Coulomb potential is also special in this respect. It
is a very useful example to use as test case for new ideas, approaches and techniques.

• More importantly, many physical systems can be described, exactly or approximately,
in terms of oscillators.
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• Consider a smooth potential V (x) with equilibrium point x0 (V ′(x0) = 0). For
displacements x from equilibrium

V (x0 + x) = V (x0) +
1

2
V ′′(x0)x

2 +O(x3) , (3.2.1)

and so if the displacements are not too large neglecting the O(x3) contribution may
be a good approximation. Indeed, can include the effects of these anharmonic cor-
rections systematically using perturbation theory (see later). The point is that we
start with a soluble model. E.g., diatomic molecules where the quantization of vibra-
tional energies is important in understanding the internal energy and hence the heat
capacity of the gas – has macroscopic consequences. In other systems this approach
can breakdown, though.

• More complicated systems can be analyzed in terms of normal modes: each mode is
a coherent motion in which all degrees of freedom oscillate with common frequency ω.
This is common classically and can now quantize this motion. The general solution
for the classical oscillator is

x(t) = A e−iωt + A∗ eiωt A a complex constant. (3.2.2)

Normal modes for a system with variables xn, n = 1 . . . N are of the form

xn(t) = Aun e
−iωt + A∗u∗n e

iωt , (3.2.3)

with un, n = 1 . . . N a complex vector specific to each allowed normal frequency ω.
The general solution is a superposition of normal modes. To quantize treat normal
modes as independent oscillators. E.g.,

• Benzene ring with 6 CH units which oscillate around the “clock face” of the ring.
They are treated as if joined by identical springs. Actually, analyzed by discrete
group theory based on the symmetries of the ring.

• Crystal with # atoms N ∼ 1023. The forces between the atoms are approximately
elastic and in 3D there are N = 3N independent coordinates. Each of the 3N modes
is a collective motion of the atoms and if the approximation of elastic forces is good
then interaction between normal modes is small. If you excite just a single mode then
no other mode starts up – no energy transfer between modes; they are effectively
independent oscillators.

• Electromagnetic field – normal mode oscillations of electric and magnetic fields at
each point in space

E(x, t) = Au(x) e−iωt + A∗u(x)∗ eiωt . (3.2.4)

In fact,

u(x) = ε eik·x with polarization ε ⊥ k and |k| =
ω

c
. (3.2.5)

This gives a wave solution with behaviour e±i(k·x−ωt). General solution is a linear
combination of normal modes for various ω, ε,k – exact for EM field.
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• Quantization of normal modes as independent oscillators. For each normal mode
have a(ω) and a(ω)† (ω and other labels as necessary). Then

Ground state |0〉 with a(ω)|0〉 = 0 ∀ modes .

a†(ω)|0〉
{

state carrying energy but also mo-
mentum ~k – like a particle.

a destroy
a† create

}
particles

{
phonons in a crystal
photons in EM field .

(3.2.6)

Phonon modes with long wavelength are sound waves (see AQM course in Lent).
Macroscopic consequences: heat capacity of crystals, blackbody radiation.

• In summary, the EM field, a relativistically invariant theory, can be understood
exactly as a collection of oscillators with quantization producing photons.

The modern view of all elementary particles is that they arise by quantizing some
field (though not classically observable like the EM field) but also with interactions
between the modes causing energy transfer between them. This give rise to particle
decay etc. This is the way to build special relativity into QM and allows particles
to be created and destroyed by the action of appropriate combinations of a and a†

on the initial state. This give Quantum Field Theory and the Standard Model of
quarks, leptons, gluons, photons, W±, Z, . . ..


