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SUMMARY

The linear and nonlinear evolution of unsta-
ble disturbances in high-Reynolds-number flows is
reviewed from the perspective of asymptotic the-
ory. For non-parallel and/or unsteady flows, quasi-
parallel and quasi-steady approximations can only be
strictly justified by asymptotic expansions based on
the smallness of the inverse Reynolds number. Fur-
ther, such an asymptotic approach allows the inclu-
sion of nonlinear effects in a self-consistent manner.

Attention is focussed primarily on three asymp-
totic regions: (i) the lower-branch Tollmien-
Schlichting (TS) scaling for boundary layers, (ii) the
upper-branch TS scaling for boundary layers, and
(iii) the Rayleigh scaling for (decelerating) boundary
layers, free shear layers, jets and wakes. For fixed-
frequency disturbances in a decelerating boundary
layer, these asymptotic regions occur at increasing
distances from the leading edge. A disturbance prop-
agating downstream from the leading edge will pass
through each region in turn. The larger the initial
disturbance, the further upstream nonlinear effects
must be taken into account.

Weakly nonlinear theory is possible when the
relative growth-rate of disturbances is small, e.g.
near a neutral curve. Close to the lower branch,
it is possible to take into account non-parallelism,
wavetrain modulation (i.e. wavepackets), and three-
dimensional effects such as those that lead to TS-
wave/vortex interactions. A number of different
models are described and critically assessed. Sim-
ilar possibilities are examined on the upper-branch
scaling, where an additional feature is the effect of
nonlinear critical layers. Critical layers play a pre-
eminent rôle on the Rayleigh scaling.

Physical effects explained include (i) the non-
linear saturation of two-dimensional disturbances in
free shear layers and decelerating boundary lay-
ers, (ii) the explosive growth in amplitude of three-
dimensional disturbances, and (iii) the generation of
surprisingly large longitudinal vortices and spanwise-
dependent mean flows.

1. INTRODUCTION

One of the parameters characterising a fluid
flow is its Reynolds number. Low-Reynolds-number
flows† are invariably laminar; the corresponding so-
lutions of the Navier-Stokes (NS) equations are sta-
ble. At moderate or high Reynolds numbers, the
NS equations admit solutions which describe laminar
flow, but such solutions may be unstable to small per-
turbations; this is almost always the case when the
Reynolds number is very large. When instability is
present, the observed flow may be ‘turbulent’. While
it is difficult to give a precise definition of turbulence,
Tennekes & Lumley (1972) list irregularity, ‘diffusiv-
ity’, vorticity fluctuations and ‘dissipation’ among its
characteristics. ‘Hydrodynamic stability theory’ (i.e.
the analysis of the stability of NS solutions) provides
a possible starting-point for an understanding of tur-
bulence. Moreover, such analysis may be directly
relevant to those physical situations where a flow is
observed to change from laminar to turbulent - as
often happens on aircraft wings or turbine blades,
for example. The process by which a laminar flow
becomes turbulent is termed ‘transition’; the reverse
process is usually referred to as ‘relaminarization’.

By its very nature, turbulence is a ‘fully’ non-
linear phenomenon, and hence a complete explana-
tion of transition must also be nonlinear. In many
cases, however, the initial variation from laminar flow
caused by a disturbance can be described by a linear
analysis. Furthermore, if in the transition process
the linear-growth stage is much longer than the non-
linear stage, as often happens in the case of small
initial disturbances, useful ‘engineering’ predictions
of transition can be obtained using the en method
(e.g. Arnal, 1993). However, such an approach makes
many empirical assumptions, and it answers no ques-
tions concerning the nonlinear dynamics.

† The term ‘low Reynolds number’ means R � 1.
We note that in certain circles ‘low Reynolds number’
is sometimes used synonymously with ‘laminar’.
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Transition from laminar to turbulent flow has
been a subject of intensive study for many decades
and has been frequently reviewed. Recent reviews
include those by Herbert (1988), Bayly & Orszag
(1988), Kleiser & Zang (1992) and Huerre & Monke-
witz (1990). The aim of the current review is to
survey some of the methods by which nonlinear ef-
fects in transition can be taken into account with-
out resort either to empirical modelling or to di-
rect numerical solution of the NS equations. While
such direct Navier–Stokes (DNS) simulations can of-
ten model specific flows, it is sometimes difficult to
extract from them the underlying physical mecha-
nisms causing transition. Analytically-based mod-
els, on the other hand, do highlight the underlying
physics. In addition the influence of changes in dis-
turbance amplitude, frequency, etc. are often more
self-evident in such models.

The models we shall examine are systematic
mathematical approximations based on asymptotic
expansions. Terms in the governing equations will
not be arbitrarily included or excluded to fit experi-
mental data. This makes the underlying assumptions
somewhat clearer than in some other models. On the
other hand, since there are few empirical parame-
ters, outstanding quantitative agreement with exper-
iment is difficult to achieve – although not unattain-
able (e.g. Hultgren, 1992). Another advantage of the
asymptotic approach is that once an effective model
has been found, its application to different flows is
not necessarily accompanied by a need to retune pa-
rameters.

1.1 The parallel-flow approximation

In order to illustrate the differences between, and
relative merits of, ad hoc and systematic asymptotic
approximations, let us consider the derivation of the
well-known Orr–Sommerfeld (OS) equation. This
equation is widely used to test the linear stability
of both parallel flows (when it is exact) and almost
parallel flows (when it is empirical). In particular,
consider an incompressible unidirectional flow with
a dimensional † velocity distribution

(ÛB(ŷ), 0, 0) , (1.1)

where (x̂, ŷ, ẑ) are Cartesian coordinates. Suppose
that a typical lengthscale in the ŷ-direction is δ̂,
and that a typical velocity is Ûe. We may define
a Reynolds number, R, by

R =
Ûeδ̂

ν̂
, (1.2)

† Dimensional quantities will be denoted by symbols
with a caret over them.

where ν̂ is the kinematic viscosity of the fluid. As is
well known, a velocity profile of the form of (1.1) is
only an exact solution of the NS equations for certain
very specific configurations, e.g. Couette flow, plane
Poiseuille flow (PPF). However, at large Reynolds
numbers,

R � 1 , (1.3)

many boundary-layer and shear-layer flows have ve-
locity profiles of the form of (1.1) to leading order in
an expansion in inverse powers of R, i.e. such shear
flows are ‘quasi-parallel’ in that limit. The stability
of such flows is often studied by performing a per-
turbation analysis about the basic flow. To this end
we write

U = (UB + ũ, ṽ, w̃) , (1.4)

where lengths, velocities and time have been non-
dimensionalised by δ̂, Ûe and δ̂Û−1

e respectively, and
variables with a tilde represent perturbation quanti-
ties. Next (1.4) is substituted into the NS equations,
which are then linearised on the basis that:

(a) (1.1) is an exact solution to the NS equations
(the ‘parallel-flow assumption’), and

(b) |ũ| � 1.

The resulting linear equations for ũ have coefficients
that, according to the parallel flow assumption, are
independent of x, z and t. Hence solutions propor-
tional to

E = exp(iαx + iβz − iωt) , (1.5)

can be sought. The final equation for ṽ is

(iαR)−1
(
D2 − α2 − β2

)2
ṽ + UByy ṽ

− (UB − c)
(
D2 − α2 − β2

)
ṽ = 0 , (1.6)

where c = ωα−1 and D ≡ d
dy . Equation (1.6) is

the OS equation. Together with suitable boundary
conditions it yields a dispersion relation

f(α, β, ω;R) = 0 . (1.7)

A key point in the derivation of the OS equation has
been assumption (a), which is untrue in general.

In effect the Reynolds number has been assumed
to be asymptotically large for (1.1) to be a leading-
order approximation, but then it has been assumed
to be finite when substituting (1.4) into the NS equa-
tions. This is inconsistent (e.g. Smith, 1979a). To
this extent the OS equation is an ad hoc approx-
imation. Despite this rather shaky mathematical
foundation linear stability results based on the OS
equation can yield respectable agreement with exper-
iment. To illustrate this consider solutions to (1.7)
for which α, β and ω are all real. Under these condi-
tions disturbances are pure travelling waves, i.e. they
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neither grow nor decay. If β is known, then these so-
lutions define a ‘neutral curve’ in the R − α plane;
equivalently a neutral curve can be defined in the
R−ω plane. Conventionally, the former/latter plane
is used in the case of temporal/spatial stability anal-
yses in which the wavelength/frequency is assumed
to be real. The neutral curve for two-dimensional
(β = 0) disturbances to the Blasius boundary-layer
profile is plotted in figure 1; superimposed are exper-
imental results. It can be seen that the agreement
between the OS theory and the experiments is rea-
sonably good at moderate Reynolds numbers, and
improves at higher Reynolds numbers. This was to
be expected since the quasi-parallel assumption is
better justified at large Reynolds numbers; indeed
it is then a valid leading-order approximation (see
below).

The OS equation, in conjunction with the en

method, has proved to be a useful engineering tool.
On strict mathematical grounds, however, a stability
analysis of boundary-layer flows at finite Reynolds
numbers requires solution of the full linearised NS
equations; even the (linear) parabolised stability
equations (PSE) are an ad hoc approximation. Thus
it might be argued that the agreement between OS
theory and experiment is fortuitous. Indeed, there
are a number of other instances where the quasi-
parallel approximation (or a close relative) has been
used to much less effect. For example:

• Nonparallelism is a leading-order effect for
Görtler instability in a boundary layer in the
sense that the linear equations describing the in-
stability have x-dependent coefficients (e.g. Hall
1983); this is so even if the Reynolds number
of the boundary layer is large. At high Görtler
numbers a quasi-parallel systematic approxima-
tion can be made (e.g. Hall, 1982), but this is not
so at finite Görtler numbers. As in OS theory,
an ad hoc quasi-parallel approximation can be
tried. However, the agreement with experiment
is not particularly good, and spurious results for
the existence of very short wavelength Görtler
vortices are easily obtained (see Hall (1990) and
references therein).

• Quasi-parallel theory for cross-flow instability
has had mixed success. For flow over a rotating
disk, reasonable agreement with experiment has
only been obtained by arbitrarily including and
excluding certain terms in the generalised OS
equation (e.g. see comments by Spalart, 1990).

• There is a close relation between the stability
of unsteady shear layers and non-parallel shear
layers. At finite Reynolds numbers the stabil-

ity analysis of unsteady flows involves the so-
lution of the linearised NS equations with time-
dependent coefficients (e.g. von Kerczek & Davis
1974, Hall 1978). A quasi-steady approxima-
tion, in which the velocity profiles are frozen
in time, is the equivalent of the quasi-parallel
approximation for spatially-developing bound-
ary layers. For Stokes layers, such an approach
yields Reynolds numbers for instantaneous in-
stability far below those at which Stokes layers
are observed to become unstable for even part of
their period (e.g. Cowley (1987) and references
therein). The quasi-steady approximation can
be mathematically justified, but again only at
large Reynolds numbers.

We conclude that many linear theories of transition
based on OS theory at finite Reynolds numbers can-
not be justified rigorously. Of course, thirty or more
years ago, such simplifications were often necessary
in order to make progress; indeed a number of these
approaches resulted in exceptionally useful tools for
design and development. However, because of their
ad hoc nature, it is often mathematically difficult to
extend such theories into the nonlinear régime. For
example, if certain terms have been arbitrarily omit-
ted in the linear theory, when should they be reintro-
duced in the nonlinear theory? Such difficulties can
be avoided by taking the Reynolds number (or other
appropriate parameter) to be large throughout the
analysis. Furthermore, such an asymptotic approach
identifies the dominant terms in the NS equations, so
enabling improved finite-Reynolds-number approxi-
mations to be proposed (e.g. Smith, Papageorgiou &
Elliott 1984).

In the last twenty-five years there has been a
rapid increase in the number of papers published that
have adopted a high-Reynolds-number asymptotic
approach. As such this review cannot be exhaustive.
For the most part we will concentrate on incompress-
ible flows. The extension to subsonic flows often just
requires a rescaling based on Mach number. How-
ever, a number of the asymptotic scalings change
significantly for transonic, supersonic and hypersonic
flows, and there a number of new phenomenon (e.g.
Smith & Bowles 1993, Smith 1989, Cowley & Hall
1990). Only passing references to such flows will be
made. We also do not review asymptotic approaches
to receptivity (e.g. see the review by Goldstein &
Hultgren 1989), Görtler instability (e.g. see the re-
view by Hall 1990), crossflow instability (e.g. Bassom
& Gajjar 1988) or vortex breakdown (e.g. Leibovich
& Stewartson 1983). We are also aware that we make
inadequate reference to the Russian literature.
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This review is organised as follows. In §2, we
outline the scalings governing the linear TS insta-
bility in the lower- and upper- branch régimes. In
§3, we survey some of the major ideas behind weakly
nonlinear analysis, upon which much modern asymp-
totic theory, in one way or another, is based. In §4,
we concentrate on nonlinear instability in the lower
branch régime. The flow here is, in general, governed
by the fully nonlinear triple-deck equations. However
depending on the nature of the disturbance, different
scalings can be derived, leading to different [weakly]
nonlinear interactions. In §5 we turn to nonlinear
instability in the upper-branch régime. Two distinct
features which differ from the lower-branch régime
are the rôle of nonlinear interactions within criti-
cal layers, and resonant-triad interactions. In §6, we
summarise recent work on the nonlinear development
of Rayleigh instability waves in shear layers. Much
of this analysis involves nonlinear, nonequilibrium,
viscous critical layer effects. While nonlinear inter-
actions in different scaling régimes exhibit different
features, the connections that exist are indicated.

2. ASYMPTOTIC LINEAR THEORY

Before the prevalence of modern computers,
asymptotic methods were one of the principle means
of solving the OS equation. To this end, uniform
asymptotic approximations were derived on the as-
sumption that αR � 1 (for a review see Drazin &
Reid, 1981). Since codes to solve differential equa-
tions numerically are now widespread, such approxi-
mations have diminished in importance as far as ob-
taining quantitatively accurate solutions to the OS
equation. However, asymptotic methods still have an
important rôle to play in understanding transition.
In particular, for large Reynolds numbers they can
be used to obtain consistent solutions to the full NS
equations, rather than just the OS equation. In this
way non-parallelism, unsteadiness, and nonlinearity
can be incorporated in a mathematically consistent
manner (e.g. Smith 1979a).

2.1 Plane Poiseuille flow

In order to illustrate the high-Reynolds-number
asymptotic approach, we begin by considering PPF.
This flow has the advantage that it is exactly par-
allel. Hence, the OS equation can be derived
without approximation, and linear high-Reynolds-
number asymptotic solutions can be sought from ei-
ther the OS equation or the NS equations. The
structure of the modes depends on whether they are
‘nearer’ the lower or upper branch of the neutral

curve. † These different structures reflect the fact
that there are different physical balances within the
flow close to the upper and lower branches. Each
of the branches can be said to represent a ‘distin-
guished’ asymptotic scaling. In many asymptotic
analyses, a major aim/difficulty is to identify the
appropriate distinguished scaling. As illustrated be-
low, one approach to deriving such scalings is based
on seeking ‘maximal-interactions’ between compet-
ing processes. Once derived, the asymptotic scal-
ing can include rather exotic powers of the expan-
sion parameter. However, the advantage of seeking
a distinguished scaling is that a much wider range
of parameter space can then be described by taking
appropriate limits.

As an example of the derivation of a distin-
guished scaling, consider modes with a scaling near
the lower branch of PPF. Since the Reynolds number
is large, we begin by hypothesising that the modes
have a three-zone asymptotic structure, i.e. a cen-
tral inviscid core region, and two viscous layers of
width ∆ immediately adjacent to the walls (see figure
2a). Within the viscous layers we assume that there
is a ‘maximal-interaction’ balance between the un-
steady inertia (ũt), convective inertia (UBũx), pres-
sure gradient (p̃x) and viscous (R−1ũyy) terms in the
x-momentum equation. Since UB ∼ ∆ in these lay-
ers, it follows that

∆ ∼ (αR)−
1
3 , ω ∼ (α2R−1)

1
3 , p̃ ∼ (αR)−

1
3 ũ .

(2.1a)
Since the two types of inertia term balance, these vis-
cous wall layers are sometimes referred to as ‘critical’
layers, i.e. regions where the phase speed of the mode
approximately equals the velocity of the undisturbed
flow.

The flow in the viscous wall layers interacts with
that in the core region through pressure variations.
Hence we assume that the magnitude of the pressure
variation is of the same order both in the core and the
viscous layers (by analogy with classical boundary-
layer theory there is almost no pressure variation
across the viscous layers). Also, since the core is
inviscid, the slip-velocity at the walls has the same
magnitude as ũ in the viscous layers. Normal modes,
known as Tollmien–Schlichting (TS) waves, can be
supported when there is a pressure variation across
the core. This occurs when the UB ṽx and p̃y terms
in the y-momentum equation balance. Hence

p̃ ∼ αṽ ∼ α2ũ , (2.1b)

† Note that the lower and upper branches are some-
times referred to as branches 1 and 2 respectively.
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where the latter relation follows from the continuity
equation. A comparison of the two expressions for p̃
in (2.1a) and (2.1b) yields

α ∼ R−
1
7 . (2.2)

Based on this three-layer scaling, † governing equa-
tions can be derived from the linearised NS equa-
tions and solved. Three-dimensional effects can be
accounted for by assuming that β ∼ R−

1
7 . For a

non-dimensionalisation based on the centreline ve-
locity and half the channel width, the lower branch
for two-dimensional modes is given by

αl ≡ αR
1
7 ≈ 2.15 (2.3)

(Lin 1946). For both temporal and spatial sta-
bility problems, the fastest-growing mode is two-
dimensional and occurs for finite values of αl and
ωl ≡ ωR

3
7 .

Solutions of the dispersion relation
fl(αl, βl, ωl) = 0 show that

• for the temporal problem, i.e. for αl = O(1) and
βl ≡ βR

1
7 = O(1), the scaled growth-rate =(ωl)

is neither significantly smaller nor larger than
the scaled frequency <(ωl); similarly

• for the spatial problem, i.e. for ωl = O(1) and
βl = O(1), the scaled growth-rate =(−αl) is sim-
ilar in size to the scaled real wavenumber <(αl).

However, near the neutral curve specified by
(2.3), the growth-rate is much smaller than the
frequency/real-wavenumber for the temporal/spatial
case respectively. This is a key observation, since a
relatively small growth-rate is a central assumption
for much weakly nonlinear theory.

For this ‘lower-branch’ scaling there is another
region of parameter space where the growth rate
is relatively small and weakly nonlinear theory can
be exploited; namely when |αl| � 1 and |ωl| �
1 (e.g. Smith & Burggraf, 1985). In this high-
frequency/large-wavenumber limit the viscous wall
regions in figure 2a each split into three subregions
(see figure 2b):

• a thin viscous region (the ‘Stokes layer’) of thick-
ness ω

− 1
2

l adjacent to the wall,

• an inviscid region of thickness ωlα
−1
l further

from the wall, and

• a thin viscous critical layer of thickness α
− 1

3
l sited

within the inviscid region at the level where the

† In some sense this is the equivalent scaling for PPF
to the famous ‘triple-deck’ scaling for boundary-layer flow
(Stewartson 1969, Messiter 1970, Neiland 1969, Smith
1979a,c,d, Smith 1976a,b). See also the next subsection.

phase speed of the wave equals the velocity of
the undisturbed flow.

Detailed consideration of this asymptotic limit shows
that to leading order the (real) phase speed of the
modes is fixed by inviscid dynamics. However, the
small non-zero growth-rate is a viscous effect and
arises from a phase shift in the velocity due to the
Stokes layer near the wall.

The upper branch of the linear neutral curve
cannot be found from an analysis based on scal-
ing (2.2). However, the high-frequency/large-
wavenumber limit indicates how the analysis
should be modified. In particular, in the high-
frequency/large-wavenumber limit described above,
the critical layer plays a passive rôle in determining
the leading-order (linear) growth-rate; this is not so
once the (scaled) frequency and wavenumber are suf-
ficiently large. Specifically, when (αl, βl) = O(R

4
77 )

and ωl = O(R
12
77 ), i.e. when

R
1
11 (α, β) = (αu, βu) = O(1) , R

3
11 ω = ωu = O(1) ,

the curvature UByy in the velocity profile leads to
a velocity jump in ũ across the critical layer that
modifies the leading-order growth-rate (e.g. Lin 1955,
Reid 1965). The upper branch neutral curve for two-
dimensional modes is given by αu ≈ 1.79 (Lin 1946).

Since R−
1
11 � R−

1
7 , the seven-layer upper-

branch scaling covers a larger region of parameter
space than the three-layer lower-branch scaling. This
makes it an attractive scaling to study, especially
since the relatively small growth-rates allow for an
approach based on weakly nonlinear theory. On the
other hand the fastest-growing modes occur on the
lower-branch scaling.

2.2 The Blasius boundary layer

In the case of the Blasius boundary layer, asymp-
totic solutions of the OS equation similar to those
described above can be sought when the Reynolds
number is large. The lower-branch neutral curve for
two-dimensional disturbances is given by

α ∼ 0.25Re−
1
8 , (2.4)

where Re = ÛeL̂ν̂−1, Ûe is the freestream velocity, L̂
is the distance from the leading edge and, as is con-
ventional, we have introduced the Reynolds number
Re based on distance from the leading edge. In or-
der to facilitate comparison with the above results
for PPF, the scale of the flow in the ŷ-direction may
be taken to be δ̂ = Re−

1
2 L, in which case R=Re

1
2 . ‡

Since the Blasius boundary layer develops over a

‡ The displacement thickness, δ̂1, is sometimes used as
the scale normal to the wall. It is then conventional to
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non-dimensional length of order R, it follows that the
O(R

1
4 ) wavelength of ‘lower-branch’ TS waves (see

(2.4)) is much less than the lengthscale over which
non-parallelism is noticeable. In other words, at large
Reynolds numbers the quasi-parallel approximation
is asymptotically valid to leading order.

For boundary-layer flows, non-parallel effects
can be taken into account by means of an asymp-
totic solution based on the triple-deck structure il-
lustrated in figure 3a. Smith (1979a) solved the
linearised NS equations by seeking solutions of
WKBJLG/multiple-scales form, e.g. in the ‘lower
deck’, where ŷ = O(Re−

5
8 L), he wrote

p̃ = Re−
1
4 (p̄0(x) + Re−

1
8 p̄1(x) + . . .)E , (2.5a)

where

E = exp
(

iRe
3
8

∫
αl(x)dx + iβlZ − iωlT

)
, (2.5b)

and the independent coordinates have been non-
dimensionalised according to

x̂ = L̂x , ẑ = L̂Re−
3
8 Z , t̂ = Re−

1
4 L̂Û−1

e T .
(2.6)

In the analysis, the scaled frequency ωl and span-
wise wavenumber βl are taken as known, while αl is
expanded in powers of Re−

1
8 and log Re. †

One of the major quantities of interest in such
a calculation is the growth-rate; in the case of the
pressure perturbation at the wall this is given by

p̃x

p̃
= iRe

3
8 αl(x) +

p̄0x

p̄0
+ . . . . (2.7)

In a non-parallel flow, the growth-rate depends on
the quantity being measured (e.g. Bouthier 1973), i.e.
while the leading-order term in (2.7) is universal, the
second term clearly depends on the physical quantity
in question. Further, we see that non-parallel effects
enter the calculation at O(Re−

3
8 ) – as might be ex-

pected since this is the ratio of the TS wavelength to
the development length of the boundary layer.

The lower-branch neutral curve for the Blasius
boundary layer as calculated by Smith (1979a) is
illustrated in figure 3b; also plotted is the neutral
curve as calculated by the successive approxima-
tion method of Bouthier (1973) and Gaster (1974).
The advantage of the latter method is that a ‘full’
neutral curve can be calculated; its disadvantage is
that the Reynolds number again has to be assumed

define a Reynolds number

Rδ = Ûeδ̂1ν̂−1 ≈ 1.72R .

† If the neutral frequency is sought then ωl must also
be expanded.

schizophrenic (i.e. finite at certain points in the anal-
ysis, but asymptotically large elsewhere).

As for the case of PPF, at large frequencies and
wavenumbers the viscous wall region splits into three
sub-layers (cf. figure 2b), and the TS waves described
by the scaling (2.5) and (2.6) become almost neu-
tral. The existence of a small parameter, i.e. the
(relative) growth-rate, again makes this parameter
régime amenable to asymptotic analysis. For exam-
ple, Smith & Burggraf (1985) and Stewart & Smith
(1987) have examined the linear stability of non-
parallel flows such as separating boundary layers.
In particular, Stewart & Smith (1987) find that for
disturbances of given frequency the mode with the
largest spatial growth-rate in a non-parallel flow may
be three-dimensional.

The upper branch of the neutral curve again
occurs for asymptotically large values of ωl, i.e.
ωl = O(Re

3
20 ). As before, the curvature of the un-

perturbed velocity profile results in a velocity jump
across the critical layer; it is this velocity jump
which is responsible for the stabilisation. In a steady
boundary layer above a stationary wall, the curva-
ture of the unperturbed velocity profile at the wall is
proportional to the pressure gradient (i.e. from the
x̂-momentum equation, µ̂ÛBŷŷ = p̂x̂ on ŷ = 0, where
µ̂ is the fluid viscosity). Since there is no pressure
gradient in the Blasius boundary layer, the curvature
of the velocity profile near the wall is therefore very
small. As a result the upper-branch scaling is differ-
ent from that for a boundary layer in a favourable
pressure gradient (see §2.3 and Bodonyi & Smith,
1981).

For the upper-branch scaling, (2.5b) is replaced
by

E = exp
(

iRe
9
20

∫
αu(x)dx + iβuZ − iωuT

)
,

(2.8a)
where

x̂ = L̂x , ẑ = L̂Re−
9
20 Z , t̂ = Re−

2
5 L̂Û−1

e T .
(2.8b)

Solutions can be obtained in each of the five regions
illustrated in figure 4a in terms of asymptotic expan-
sions in powers of Re−

1
20 and log Re. Non-parallel ef-

fects are found to be of relative order Re−
3
10 log Re;

this is much larger than the O(Re−
9
20 ) correction

that might have been anticipated from the ratio of
the TS wavelength to the development length of the
boundary layer (Bodonyi & Smith 1981).

A comparison between the asymptotic theory,
OS theory, and experiment is illustrated in figure
4b for the upper-branch neutral frequency of two-
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dimensional disturbances. The agreement between
the raw four-term asymptotic expansion and exper-
iment is distinctly worse than OS theory. Bodonyi
& Smith (1981) observe that agreement can be im-
proved either by an ‘origin’ shift of 300 in Rδ =
1.720R, or by adding the leading-order non-parallel
effect to a solution of the OS equation. Unfortu-
nately, most (weakly) nonlinear theory is based on
the leading-order (one-term) approximation which
yields significant disagreement between linear the-
ory and experiment. This does not bode well for
quantitative comparisons between experiment and a
leading-order nonlinear theory based on the upper-
branch scaling.

However, Hultgren (1987) has shown that a sur-
prisingly accurate prediction of the OS upper-branch
neutral curve is possible by keeping the expansion for
the lower-branch dispersion relation in what he refers
to as its ‘naturally occurring’ form. In particular, a
matched asymptotic solution for a lower-branch dis-
persion relation yields a solution

1 + l1F
1
6 + l2F

1
3 + O(F

1
2 ) =

r

1 + l3F
1
2 log(F

1
6 L)

,

(2.9)
where the coefficients lj , L and r are known in terms
of the wavenumber and distance down the plate, and
the frequency parameter,

F =
ω̂ν̂

Û2
e

, (2.10)

can be viewed as an inverse Reynolds number for a
disturbance with given frequency. Solutions to (2.9)
obtained without expanding the wavenumber, etc. in
powers of F

1
6 (cf. Smith 1979a, Bodonyi & Smith

1981), yield quite good agreement with solutions to
the OS equation for F ≤ 10−5; this is so even for
asymptotically large wavenumbers for which (2.9) is
strictly not valid, e.g. at the upper branch.

For an important class of experiments, it is in
fact more natural to work in terms of the frequency
parameter, F , than the local Reynolds number, Re.
For instance, suppose a perturbation of fixed (di-
mensional) frequency ω̂ is introduced into a Blasius
boundary layer. As the disturbance propagates along
the plate its Reynolds number varies with down-
stream distance. In particular:

• The lower-branch scaling corresponds to down-
stream distances for which

Re = O(F−
4
3 ) . (2.11a)

In this region TS disturbances have O(F
5
6 Ûeν̂

−1)
wavenumbers. In addition it follows from (2.5b)
that as the disturbance propagates through this
region the logarithm of its amplitude experiences

an integrated net growth of O(F−
1
2 ).

• Further downstream where

Re = O(F−
5
3 ) , (2.11b)

the disturbance enters the region described by
the upper-branch scaling. Here TS disturbances
have O(F

11
12 Ûeν̂

−1) wavenumbers, i.e. marginally
longer wavelengths than for the lower-branch
scaling. As a disturbance propagates through
this region it follows from (2.8a), and the fact
that =(αu) = O(F

1
4 ) (e.g. Reid 1965), that there

is again an O(F−
1
2 ) net increase in logarithmic

amplitude.

• However, the greatest net increase in amplitude
occurs in the ‘matching region’, or ‘intermediate
region’, between the upper and lower branches;
specifically, the logarithmic amplitude experi-
ences a net growth of O(F−

1
2 log F ) here (e.g.

Goldstein & Hultgren 1989).

In the light of the above observations, arguments
can be put forward for in-depth study of each of the
asymptotic regions. For instance:

• From a theoretical standpoint, the upper-branch
scaling is possibly a more attractive proposition
than the lower-branch one, since from (2.11a, b),
the former covers almost the entire unstable re-
gion (e.g. Goldstein & Durbin 1986). Further,
in an experiment where the size of the input dis-
turbance is slowly increased, nonlinear effects are
likely to become important first where the am-
plitude of the disturbance is largest, i.e. near the
upper branch. This scaling also has the advan-
tage that a weakly nonlinear approach is possi-
ble, since the distance over which TS waves grow
is much larger than the TS wavelength, i.e. the
growth-rate is relatively small. However, as will
be discussed below, the upper-branch scaling can
involve very messy algebra when nonlinear ef-
fects are included.

• The lower-branch scaling also has attractions for
theoretical study, not in the least because the
agreement between linear theory and experiment
is much better for the lower-branch neutral curve
(see figure 3b). In addition the disturbance has
its largest growth rate in this region.

• However, as an alternative to both these scalings,
a number of studies have concentrated on the
intermediate scaling, i.e.

F−
4
3 � Re � F−

5
3 . (2.11c)

It is in this ‘fuzzy’ intermediate region between
the two distinguished scalings that the great-
est net increase in amplitude occurs. This re-
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gion can be viewed either as a far-downstream
lower-branch scaling, or a far-upstream upper-
branch scaling. While both approaches are
asymptotically equivalent, most authors have ap-
proached the problem by taking the limit of the
lower-branch scaling since the analysis is some-
what simpler from this direction, e.g. Smith &
Burggraf (1985). † Further, Hultgren’s (1987)
observation on the agreement between lower-
branch analysis and numerical solutions to the
OS equations possibly adds credence to this ap-
proach. Another advantage of this intermediate
scaling is that while the analysis is to a certain
extent simpler than for the upper-branch scal-
ing, the relative growth-rate is still small; hence
a weakly nonlinear approach to finite-amplitude
effects is possible.

2.3 Boundary layers with pressure gradients

At high Reynolds numbers the lower-branch
triple-deck scaling of figure 3a also applies to steady
boundary layers driven by a pressure gradient; the
pressure gradient does not affect lower-branch TS
waves at leading order. In fact this scaling de-
scribes the lower branch of most unbounded shear
flows adjacent to a wall, including supersonic flows
if three-dimensional disturbances are allowed (e.g.
Smith 1989). An exception is when the wall shear
is zero, i.e. for velocity profiles close to the onset
of backflow (Goldstein et al. 1987, Elliott & Smith
1987). ‡

As indicated above, in a boundary layer the

† There is a slight problem with nomenclature here.
Smith & Burggraf (1985) used a non-dimensionalisation
based on distance from the leading edge. Hence for a dis-
turbance with a fixed dimensional frequency, the scaled
non-dimensional frequency increases downstream. This
means that the intermediate region specified by (2.11c)
corresponds to the ‘high-frequency’/‘large-wavenumber’
region of the lower-branch parameter space studied by
Smith & Burggraf (1985) and others. Further, this no-
tation is even less intuitive if the wavenumber of a fixed-
frequency disturbance is considered. In dimensional vari-
ables, the wavenumber of a fixed-frequency disturbance
decreases as the disturbance propagates downstream out
of the lower-branch region and into the intermediate re-
gion; however, with Smith & Burggraf’s (1985) non-
dimensionalisation, this region corresponds to the large-
wavenumber limit!
‡ We prefer to use the term ‘backflow’ (or reversed

flow) rather than ‘separation’ since it is only in two-
dimensional steady flow adjacent to a non-moving bound-
ary that the onset of backflow is synonymous with the
separation of the boundary layer from the wall, e.g. El-
liott et al. (1983).

curvature of the streamwise velocity profile at the
wall is proportional to the pressure gradient. As for
the Blasius boundary layer, curvature plays a cru-
cial rôle in stabilising/destabilising disturbances suf-
ficiently far downstream. The larger curvature near
the wall induced by the pressure gradient means that
the ‘upper-branch’ scaling occurs for lower nondi-
mensional frequencies than those specified by (2.8b):
for an order-one pressure gradient, the scales of the
wavenumbers and frequencies of such modes are

(α̂, β̂) = O(Re−
5
12 L̂) and ω̂ = O(Re

1
3 ÛeL̂

−1) ,
(2.12)

respectively (Reid 1965).

If the pressure gradient is favourable, so that the
flow at the edge of the boundary layer is acceler-
ating, then ÛBŷŷ < 0 near the wall and the veloc-
ity jump across the critical layer is stabilising; an
upper-branch neutral frequency can then be identi-
fied. However, in an adverse pressure gradient, the
velocity jump across the critical layer enhances the
growth-rate of the disturbances with the result that
no upper branch exists on this scale.

Whatever the sign of the pressure gradient,
(2.12) specifies a ‘distinguished’ asymptotic scaling.
As a shorthand, we will refer to this scaling as a
‘viscous-layer/critical-layer balance’ (VCB) scaling,
since the contributions to the growth rate of linear
TS waves from the viscous wall layer and the critical
layer are comparable on this scaling. ? The growth-
rate of disturbances is relatively small for this VCB
scaling. Hence, in principle, a weakly nonlinear anal-
ysis is possible.

In terms of the frequency parameter F , the VCB
scaling corresponds to downstream distances where

Re = O(F−
3
2 ) ; (2.13a)

TS disturbances have O(F
7
8 Ûeν̂

−1) wavenumbers on
this scaling. Again we note from comparison with
the lower-branch scaling, that the wavelength of
fixed-frequency TS waves increases as they propa-
gate downstream. Since =(αu) = O(F

1
8 ) at dis-

tances specified by (2.13a) (e.g. Reid 1965), the net
growth in logarithmic amplitude on this scaling is
again O(F−

1
2 ). In the case of a favourable pressure

gradient, the total growth over the relatively ‘long’
upper-branch TS scaling is thus comparable with the
total growth over the ‘short’ lower-branch scaling.
The greatest net growth in logarithmic amplitude

? An alternative name might be the ‘quintuple-deck’
scaling. However, in certain nonlinear calculations, more
than five asymptotic layers are needed on this scaling,
e.g. Wu (1993a).
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is O(F−
1
2 log F ), and, as for the Blasius boundary

layer, this occurs in the intermediate region between
the lower-branch and upper-branch TS scalings.

For a flow in an order one adverse pressure gra-
dient, the absence of a neutral curve on the VCB
scaling (2.12) means that the amplitude (and wave-
length) of linear fixed-frequency waves continues to
grow downstream until

Re = O(F−2) . (2.13b)

Analysis shows that the modes then have O(FÛeν̂
−1)

wavenumbers, or in terms of the local Reynolds num-
ber, R = Re

1
2 ,

(α̂, β̂) = O(RL̂−1) ω̂ = O(RÛeL̂
−1) . (2.14)

(2.14) is just the classical Rayleigh-wave scaling, i.e.
the mode wavelengths are comparable with the width
of the boundary layer. The dynamics of the modes
in this region are thus inviscid to leading order. The
growth-rate of downstream propagating disturbances
is larger in this Rayleigh region than in either the
lower-branch or VCB regions. Moreover, since this
region also ‘covers’ a much larger extent than both
the lower-branch scaling (2.11a) and the VCB scaling
(2.13a), the largest net growth in amplitude (specifi-
cally an O(F−1) increase in logarithmic amplitude),
occurs on this Rayleigh scale. However, the net
growth in amplitude is bounded because sufficiently
far downstream a neutral point is reached beyond
which the waves decay. The structure of such de-
caying modes is a little surprising. In particular, in
the direction normal to the boundary there are fi-
nite regions where viscous effects are important and
where the modes have a very fine oscillatory struc-
ture (Foote & Lin, 1950).

In general, the spatial growth-rate for Rayleigh
modes is not relatively small compared with the real
wavenumber. However, the growth rate is small close
to the neutral point, with the result that a weakly
nonlinear analysis is possible if attention is focussed
on disturbances with wavelengths/frequencies close
to the neutral frequency (see §6). Similarly the in-
termediate region between the VCB scaling (2.13a)
and the Rayleigh scaling (2.13b), i.e.

F−
3
2 � Re � F−2 , (2.15a)

is amenable to weakly nonlinear analysis because dis-
turbances have relatively small growth-rates. For
a scaling specified by (2.15) the analysis can be
approached from two directions: either as a ‘far-
upstream’ expansion of a Rayleigh scaling, or as a
‘far-downstream’ expansion of the VCB scaling. †

† In terms of a non-dimensionalisation based on

However, details differ particularly when nonlinear
effects are included. This is because the critical layer
for the Rayleigh scalings is of ‘non-equilibrium’ (or
‘unsteady’) type, while the critical-layer is of viscous
type for the VCB TS scaling. As a consequence there
is an intermediate distinguished scaling

Re = O(F−
14
9 ) , (2.15b)

where the critical layer is both of non-equilibrium
and viscous type. This is a natural scaling to study
especially as regard nonlinear effects since the distur-
bance modes might be viewed as viscous TS waves
for Re � F−

14
9 , but inviscid Rayleigh modes for

Re � F−
14
9 (cf. Goldstein, Durbin & Leib 1987, Gaj-

jar 1994).

If there is a mild adverse pressure gradient, then
the only unstable Rayleigh modes have wavelengths
much longer than the local boundary-layer thick-
ness. Since all such modes have relatively small
growth-rates, a weakly nonlinear analysis is again
feasible (e.g. Goldstein, Durbin & Leib 1987, Gold-
stein & Lee 1992). For even milder adverse pres-
sure gradients, only (Blasius) upper-branch TS waves
are unstable (i.e. there is no distinct inviscid, ‘long-
wavelength’, Rayleigh scale). However, whenever the
adverse pressure gradient is sufficiently strong that
unstable waves exist downstream of the VCB scal-
ing, the largest net growth in amplitude of fixed-
frequency waves occurs downstream of this scaling.
This is despite the fact that, for a range of mild ad-
verse pressure gradients, the fastest growing mode

boundary-layer thickness rather than the frequency of
the disturbance, such an analysis is equivalent to a low-
frequency expansion based on the Rayleigh scaling, or a
high-frequency expansion based on the VCB scaling. We
note, however, that there is not necessarily an unique
low-frequency expansion based on the Rayleigh scaling.
In the case of velocity profiles that have a local maximum
or minimum there may exist additional low-frequency
Rayleigh modes. Such modes have an asymptotic struc-
ture similar to that for a jet (e.g. Drazin & Howard 1962).
When their frequencies are not excessively low, the modes
have an inviscid structure. However, viscous forces mod-
ify the growth-rate of such modes for frequencies

ω̂ = O(Re−
3
14 Ûeδ̂

−1) = O(Re
2
7 ÛeL̂

−1) ,

and wavenumbers

(α̂, β̂) = O(Re−
3
14 δ̂−1) = O(Re

2
7 L̂−1) .

Due to non-parallel effects no unique lower-branch neu-
tral curve can be identified for these modes (e.g. Cowley,
Hocking & Tutty 1985). While velocity profiles with such
turning points are unusual in steady two-dimensional
boundary-layer flow over stationary walls, they are rela-
tively common in motion over downstream-moving walls,
in three-dimensional boundary layers, and in unsteady
flow.
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can occur on the lower-branch scaling.

2.4 Free shear layers, jets and wakes

The high-Reynolds-number asymptotic theory
described above for boundary layers can also be ap-
plied to free shear layers, jets and wakes. For all
these flows the velocity profiles have inflection points,
and are inviscidly unstable to Rayleigh modes of fre-
quency O(Ûeδ̂

−1R), where Ûe is here a typical veloc-
ity, and δ̂ is the width over which there is a significant
change in vorticity in the shear-layer/jet/wake. †

At least for a convectively unstable flow, non-
parallelism can be accommodated by a straightfor-
ward multiple-scales approach since the wavelength
of the Rayleigh modes is much shorter than the de-
velopment length of the shear layer. To fix ideas, sup-
pose that a fixed-frequency disturbance is introduced
near the start of the shear layer (we will refer to
this as the ‘upstream’ region). Assume also that the
modes excited have a wavelength much greater than
the thickness of the shear layer. As the disturbance
propagates downstream, ‡ the ratio of wavelength to
shear-layer thickness decreases as the local Reynolds
number increases. At first this variation leads to
an increase in growth-rate, but sufficiently far down-
stream the disturbance stabilises when, according to
linear theory, the non-dimensional wavenumber of
the disturbance equals that of the ‘inflectional’, or
‘upper-branch’, neutral mode (this part of the flow
will be referred to as the ‘downstream’ region).

As we have emphasised already, weakly nonlinear
theory is in general only feasible when the growth-
rate of the instability wave is relatively small. This
is clearly the case in the (downstream) region close
to the neutral point (e.g. Goldstein & Leib 1988).
However, unlike a boundary layer, the growth-rate
in a subsonic shear layer is not relatively small for

† Since Rayleigh’s theorem and Fjortoft’s criterion are
sufficient rather than necessary conditions for inviscid in-
stability, the existence of an inflection point satisfying
Fjortoft’s criterion does not guarantee that the flow is
unstable. While unbounded shear flows that tend to a
constant velocity at infinity almost always admit unsta-
ble modes, this is not so in the case of parallel flows that
tend to a constant shear at infinity (e.g. Smith & Bodonyi
1985, Tutty & Cowley 1986).
‡ Certain complications can arise if the flow is abso-

lutely unstable, e.g. as can occur immediately behind
a body. Huerre & Monkewitz (1990) review aspects of
linear and weakly nonlinear absolute instability. Ex-
actly how current ideas on this problem can be incorpo-
rated into a consistent high-Reynolds-number asymptotic
framework, especially when nonlinear effects need to be
included, still needs some clarification.

disturbances with wavelengths long compared to the
shear-layer thickness, i.e. in the upstream region
close to the source. As a consequence of this ob-
servation, most of the weakly nonlinear theory that
has been developed has concentrated on describing
the ‘downstream’ development of very small initial
disturbances (although certain progress may be pos-
sible for disturbances which become nonlinear fur-
ther upstream, through an extension of the long-
wavelength analysis of Cowley, Tanveer, Baker &
Page 1993). For sufficiently supersonic shear lay-
ers, matters are more tractable in the upstream re-
gion, since the growth-rate of long wavelength dis-
turbances is small and a weakly nonlinear analysis
is feasible (Miles 1958, Balsa & Goldstein 1991 (per-
sonal communication)).

2.5 Unsteady boundary/shear layers

As explained in §1, for both parallel and non-
parallel unsteady shear flows, the OS equation for
normal modes can only be derived by making an
ad hoc quasi-steady approximation. Moreover, this
quasi-steady approximation often turns out to be
less accurate than the quasi-parallel assumption. An
alternative approach at high Reynolds numbers is
to study the stability of unsteady shear flows using
the analytical methods developed for steady almost
parallel flows. For instance, the stability of high-
Reynolds-number Stokes flow can be examined in a
mathematically consistent manner by an expansion
in inverse powers of the Reynolds number (Tromans
1977, Cowley 1987). Such a multiple-scales approach
is possible since in general the timescale of the insta-
bility waves is asymptotically small compared to the
timescale for the evolution of the shear layer.

3. WEAKLY NONLINEAR THEORY

If a flow is convectively unstable to exponen-
tially growing travelling waves, then the question
arises as to how the flow evolves when previously
neglected nonlinear effects are included. If the spa-
tial/temporal growth-rate is comparable with the
wavenumber/frequency, then this question can only
be answered, in general, by a fully numerical solution
of the NS equations. However, when the growth-rate
is relatively small, a weakly nonlinear theory is often
possible.

At large Reynolds numbers, many scalings lead
to weakly nonlinear theories. Some of these are ex-
tremely pertinent to experimental observations and
place earlier ad hoc theories on a sound basis; oth-
ers might be viewed as little more than displays of
‘asymptotic muscle’ ! However, almost all turn out to
be based on one or two basic concepts, which have
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their origin in the classical weakly nonlinear theory,
even though the extension sometimes turns out to be
rather elaborate mathematically.

In order to illustrate these basic concepts, we
begin by briefly reviewing weakly nonlinear theory
for PPF. This flow has the advantages (a) that non-
parallel effects are absent and (b) that there is a well-
defined finite critical Reynolds number, Rc, above
which small disturbances may be amplified.

3.1 Uniform travelling waves in PPF

Since PPF is an exactly parallel flow, it is consis-
tent to examine its stability from either a temporal or
spatial approach; however, most of the nonlinear the-
ory has taken the temporal approach. Weakly non-
linear calculations are possible when the timescale
over which a (linear) wave grows is much longer than
the period of the wave.

At the critical Reynolds number, R = Rc, there
is a neutral mode with a (real) frequency Ûeδ̂

−1ωc

and a (real) wavenumber δ̂−1αc. At slightly dif-
ferent wavenumbers α − αc = O(ε), where ε =
|R−Rc|

1
2 � 1, the growth-rates of the fastest grow-

ing linear disturbances are O(ε2Ûeδ̂
−1), i.e. much

smaller than typical frequencies. This allows the in-
troduction of a ‘fast’ timescale, t = Ûeδ̂

−1t̂, and a
slow timescale, τ = ε2Ûeδ̂

−1t̂. Nonlinear effects in-
fluence the growth of the disturbance through a cu-
bic interaction. Specifically, suppose from (1.4) and
(1.5) that the cross-stream velocity perturbation is
given by

ṽ = ε̄(A(τ)E + c.c.) + . . . , (3.1a)

where

E = exp(iαcx− iωct) , and 0 < ε̄ � 1 . (3.1b, c)

Then as a result of the quadratic inertia terms
in the NS equation, O(ε̄2) mean-flow and second-
harmonic terms will be excited. The quadratic in-
teraction of these terms with the original harmonic
leads to an O(ε̄3) forced harmonic. If this forced har-
monic is as large as the O(ε2ε̄) correction that arises
because the Reynolds number differs from its critical
value by an O(ε2) amount, i.e. if ε̄ = O(ε), then non-
linear effects cannot be neglected in estimating the
growth of the wave. Stuart (1960) showed that this
scaling leads to the ‘Landau equation’

dA

dτ
= k1A + k2|A|2A, (3.2)

where k1 and k2 are known complex constants, and
the sign of <(k1) depends on the sign of (R − Rc).
For PPF, k2r > 0 and sgn(k1r) = sgn(R−Rc), where
k1r = <(k1), k1i = =(k1) etc.. The Landau equation

describes the evolution of weakly nonlinear travelling
waves.

• If k1rk2r < 0, there is a non-zero equilibrium
amplitude corresponding to a nonlinear travel-
ling wave.

◦ A subcritical bifurcation. If k2r > 0, the
equilibrium solution is unstable and rep-
resents a ‘threshold’ amplitude; for PPF
this corresponds to the case R < Rc. If
the disturbance amplitude is smaller than
this threshold, it decays, while larger dis-
turbances grow to an ‘infinite’ (scaled) am-
plitude in a finite time. Of course, the
unbounded growth in the latter case indi-
cates that the asymptotic expansion proce-
dure must ultimately fail and a new scaling
must be tried.

◦ A supercritical bifurcation. If k2r < 0, the
equilibrium amplitude is stable, and distur-
bances of any amplitude evolve to it.

• If k1rk2r > 0, there is no equilibrium amplitude.

◦ If k2r > 0, all non-zero disturbances become
unbounded within a finite time; for PPF,
this is the case when R > Rc.

◦ If k2r < 0, all disturbances decay to zero.

Note that instead of deriving the time-evolution
equation (3.2), we could have sought nonlin-
ear travelling-wave solutions, i.e. the equilibrium-
amplitude solutions. This only leads to minor sim-
plifications in the weakly nonlinear case, but has sig-
nificant advantages for finite amplitudes. In partic-
ular, Herbert (1977) has pursued such an approach
for two-dimensional travelling waves. The equilib-
rium amplitudes so found map out a nonlinear neu-
tral surface in the parameter space of Reynolds num-
ber, wavenumber and amplitude (see figure 5).

Whether these travelling-wave solutions are sta-
ble to two-dimensional disturbances is a delicate
question, and depends on whether the mass flux or
the mean pressure gradient is fixed (e.g. Pugh &
Saffman 1988). Small-amplitude travelling waves are
certainly unstable to two-dimensional disturbances if
the bifurcation is subcritical (see above). In addition,
travelling waves that are stable to two-dimensional
disturbances can be unstable to three-dimensional
perturbations (Orszag & Patera 1980, 1981, Herbert
1983). However, whether such a linear stability anal-
yses of travelling waves provides a (quantitative) de-
scription of transition in PPF is debatable since it
is not clear how the unstable equilibria organise the
long-time behaviour of the unstable motion. Never-
theless, in subcritical régimes the amplitude of the
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travelling wave may provide a useful indication of
threshold amplitudes for instability.

3.2 Wavepackets in PPF: R ≈ Rc

A restriction of the formulation leading to the
Landau equation (3.2) is that it assumes a uniform
wavetrain for all x̂; this is physically unrealistic.
Stewartson & Stuart (1971) and Davey, Hocking &
Stewartson (1974) have shown how to generalise this
formulation to wavetrains modulated in the stream-
wise direction, x̂, and/or the spanwise direction, ẑ.
They consider the region of parameter space close to

R = Rc , α = αc and β = 0 . (3.3)

From the dispersion relation (1.7), the neutral wave
specified by (3.3) has a group velocity,

cg =
(

∂ω

∂α
,
∂ω

∂β

)
= −

(
∂f

∂ω

)−1 (
∂f

∂α
,
∂f

∂β

)
, (3.4)

that is real (in fact ∂ω
∂β = 0 by symmetry). This is

important since it proves useful to transform into a
frame moving with the group velocity. The appro-
priate scalings are

ε2 = |R−Rc| , t = Ûeδ̂
−1t̂ , τ = ε2Ûeδ̂

−1t̂ ,
(3.5a− c)

x = δ̂−1x̂ , ξ = ε

(
x− ∂ω

∂α
t

)
, η = εδ̂−1ẑ ,

(3.5d− f)
where the amplitude A in (3.1) is now a function of
τ , ξ and η. The resulting governing equations are
(after a suitable normalisation)

∂A

∂τ
−a

∂2A

∂ξ2
−b

∂2A

∂η2
= k1A+k2|A|2A+qAB , (3.6a)

∂2B

∂ξ2
+

∂2B

∂η2
=

∂2|A|2

∂η2
. (3.6b)

The function B(τ, ξ, η) arises because of the need to
account for a secular pressure term related to the
mean-flow correction.

An initial condition for (3.6) needs to be speci-
fied. Stewartson & Stuart (1971) and Hocking, Stew-
artson & Stuart (1972) proposed to study the evo-
lution of a small localised disturbance introduced at
t̂ = 0. For R > Rc, this slowly grows as it propagates
downstream. A (linear) steepest-descents analysis
shows that for δ̂Û−1

e � t̂ � ε−2δ̂Û−1
e , the ampli-

tude of the disturbance is largest in a small elliptical
region that propagates downstream with the group
velocity (see also Benjamin 1961, Gaster 1968a, b).
It was proposed that appropriate initial conditions
to (3.6) as τ → 0 might be

A ∼ ∆
τ

1
2

exp
(
− ξ2

4aτ

)
(3.7a)

for a line (two-dimensional) disturbance, and

A ∼ ∆
τ

exp
(
− ξ2

4aτ
− η2

4bτ

)
(3.7b)

for a point (three-dimensional) disturbance. How-
ever, it is relatively straightforward to show that
(3.7) do not provide uniformly valid initial conditions
to (3.6) (Hocking, Stewartson, & Stuart 1972). Nu-
merical calculations have been performed by instead
applying (3.7) at some time τ0 > 0 (e.g. Hocking
1974).

For this modified initial condition, Davey et al.
(1974) and Hocking & Stewartson (1971) consid-
ered wavepackets of two-dimensional waves that were
modulated in one (possibly oblique) direction, i.e.
A ≡ A(αξ + βη, τ). For wavepackets skewed at an-
gles greater than 57.3◦ to the mean flow, they showed
that a finite-time singularity develops for R > Rc,
while for angles less than 57.3◦ the solution remains
bounded. Hence modulation can suppress the un-
bounded growth of a uniform wavetrain.

Hocking & Stewartson (1971) refer to solutions
that become unbounded in a finite time as ‘bursts’.
However such solutions are not directly related to
the physical bursts commonly observed in transi-
tion. The latter have length and time scales much
shorter than those of TS waves, while the modula-
tional ‘bursts’ represented by solutions of (3.6) de-
scribe a ‘focussing’ of the wavetrain envelope from
an initial O(δ̂ε−1) length to, for instance, a still large

O(| log ε|
1
2 δ̂) length (Hocking et al. 1972). The subse-

quent evolution of the flow, and its susceptibility to
secondary instabilities, etc., have yet to be examined
in detail.

Further, Hocking (1974) finds that, with the
modified initial condition, a point-centred initial dis-
turbance does not apparently ‘burst’ – that is, its
amplitude remains bounded. This suggests that the
system of equations (3.6) may not be the most per-
tinent to a description of transition in PPF. It also
emphasises that the knowledge that a non-modulated
disturbance ‘bursts’, should not be used to conclude
that a localised initial disturbance ‘bursts’. Since the
theory is easier for the former, while experiments are
often closer to the latter, this is a point not to be
forgotten – no matter how tempting it might be to
do so!

While the results for the modified initial condi-
tion are interesting, the question remains as to how
nonlinearity modifies the evolution of an initially lo-
calised linear disturbance. As discussed above, this is
a physical situation that can in principle be realised
experimentally. Analysis suggests that because of
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a necessary logarithmic shift in the time origin, the
Landau equation (3.2), rather than the system (3.6),
is recovered when the flow becomes nonlinear. Hence
the spatial modulation plays a passive rôle. Further,
it follows immediately (see §3.1) that the scaled dis-
turbance A becomes unbounded at a finite time due
to nonlinear effects. Hence an initially localised lin-
ear disturbance in PPF eventually ‘bursts’.

3.3 Extensions

Hocking (1975) has extended this weakly nonlin-
ear analysis to the (exactly-parallel) asymptotic suc-
tion profile. The most significant change in equations
(3.6) is that q = 0, because the absence of an upper
rigid boundary means that an induced pressure gra-
dient cannot be supported. For the initial conditions
(3.7) applied at τ = τ0 > 0, Hocking (1975) finds
that both line- and point-centred initial disturbances
can develop into localised modulational ‘bursts’ in a
finite time.

The analysis leading to (3.6) is for modulated
two-dimensional waves. The carrier wave cannot be
three-dimensional, since when R = Rc there is no
neutral three-dimensional wave. However, a weakly
nonlinear analysis can in principle be performed close
to any point on a neutral curve; as indicated above,
weakly nonlinear two-dimensional travelling-wave so-
lutions have been obtained in this way. It is rel-
atively straightforward to extend this analysis to
the time-evolution of modulated wavetrains of two-
dimensional waves, etc.. However, for R 6= Rc, the
group velocity, cg = ∇α, is in general not real; hence
the scaling (3.5e) for ξ has to be replaced by

ξ = ε2x. (3.8a)

For example, in the case of the asymptotic suction
profile, (3.6) becomes

∂A

∂τ
− d

∂A

∂ξ
− b

∂2A

∂η2
= k1A + k2|A|2A , (3.8b)

where d is complex. Care must be taken in the formu-
lation of suitable initial conditions for disturbances
that start as linear localised wavepackets. This is
because (3.4) is derived by expanding about a neu-
tral mode, and there exist modes with neighbouring
wavenumbers that have larger growth-rates. Since
a linear localised disturbance includes some of the
faster-growing modes, it is necessary to ensure that
these modes do not grow to dominate the solution be-
fore the slow timescale defined by (3.5c) comes into
play. Of course, there is also the question of how
such disturbances can be experimentally realised.

Likewise, the evolution of three-dimensional
oblique almost-neutral modes could be studied. Sup-
pose that Rβ

c is the ‘critical’ Reynolds number above

which unstable TS waves with spanwise wavenum-
ber β can be found. Then weakly nonlinear expan-
sions, based on either a single neutral carrier wave,
or a pair, are in principle possible for |R−Rβ

c | � 1.
This problem does not appear to have been tackled
at finite Reynolds numbers, either for uniform wave-
trains or for modulated wavepackets (but see Hall &
Smith (1990), Smith & Blennerhassett (1992), Smith
& Bowles (1992) for aspects of the high-Reynolds-
number limit). In a situation where disturbances
with a broad band of wavenumbers are excited, there
is a good reason for not doing this, namely that the
fastest-growing disturbance is likely to dominate. In
a carefully controlled experiment, however, or possi-
bly in flow through a grooved channel, near-neutral
waves might be preferentially excited with larger am-
plitudes and so cause transition. We will return
to this point later, particularly in relation to non-
parallel flows and wave/vortex interactions.

3.4 Summary of finite-Reynolds-number re-
sults

At finite Reynolds numbers we have seen that:

(a) Weakly nonlinear theory can be used to de-
scribe both two- and three-dimensional, small-
amplitude, equilibrium travelling waves (al-
though only two-dimensional solutions seem to
have been sought). It is possible to test the sta-
bility of these solutions (a) to disturbances of the
same wavelength using (3.2), and (b) to distur-
bances of slightly different wavelengths by means
of a ‘sideband’ instability analysis using (3.6). If
stable, the flow may evolve to these waves; if un-
stable, the equilibrium wave amplitude predicts
a threshold amplitude for nonlinear instability.

(b) Weakly nonlinear theory can also be used to
describe the nonlinear evolution of both uni-
form wavetrains (see (3.2)) and wavepackets, i.e.
wavetrains modulated in the streamwise and/or
spanwise directions (see (3.6) and (3.8b)). Un-
bounded growth (‘bursts’) can occur for both
types of disturbances. ‘Bursting’ indicates the
development of large-amplitude waves and, in
the case of wavepackets, the focussing of the dis-
turbance on the slow modulational lengthscale.
This type of ‘bursting’ does not describe the de-
velopment of sub-wavelength turbulent bursts,
although it may be a precursor of the latter.

(c) The method can be applied at any point on the
neutral curve, although the governing equations
for streamwise-modulated wavetrains differ ac-
cording to whether the group velocity is real or
complex.
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(d) For disturbances with a broad band of wavenum-
bers, the theory is most applicable for R ≈ Rc

since weakly nonlinear theory can then describe
the fastest-growing mode. However, in exper-
iments where (almost neutral) two- or three-
dimensional disturbances with a preferred wave
number are excited, the theory can also be ap-
plied for R > Rc.

(e) Little quantitative agreement between theory
and experiment has yet been presented for PPF
(but see Smith & Bowles 1992), or for boundary
layers with suction – the two best-known exactly-
parallel unstable profiles.

In summary, the key assumption (or restriction)
in weakly nonlinear theory is that the growth rate is
small. As such, the leading-order dispersion relation
and the eigenfunction can be determined by a linear
analysis while nonlinear effects are included at higher
order. By taking advantage of this, the nonlinear de-
velopment of uniform or modulated wavetrains in ex-
actly parallel flows can be described. For nonparallel
flows, a high-Reynolds-number asymptotic approach
is crucial if nonlinearity and nonparallelism are to be
included in a self-consistent and systematic manner.
As will be seen, the modern asymptotic approach has
both revealed new features in transition, and pro-
vided deeper insight into the physical mechanisms.
However, many (if not all) of these theories are based
on the assumption of small growth rate, and as such
should be regarded as being weakly nonlinear; this is
so despite the fact that sometimes nonlinear partial
differential equations have to be solved.

3.5 High-Reynolds-number weakly nonlinear
theory

Before 1979, attention concentrated on the pa-
rameter régime where R ≈ Rc, since in that régime
the fastest-growing modes can be described by an
asymptotic theory; this is crucial if disturbances with
a broad band of wavenumbers/frequencies are ex-
cited. However, there are important problems where
there exists a preferred frequency (e.g. arising from
engine noise or vibration of the structure) and/or a
preferred lengthscale (e.g. corresponding to the size
of particles impinging on the flow). Furthermore, in
a spatially-dependent or unsteady flow, disturbances
with preferred frequencies/lengthscales may be sta-
ble in one part of the flow régime but unstable in
another.

For much of the rest of this review we will con-
centrate on examples of transition which are caused
by disturbances with a preferred frequency. An oft-
repeated experiment modelling this type of transi-

tion is that of Schubauer & Skramstad (1947), on
the evolution of TS waves in a Blasius boundary
layer. By means of a vibrating ribbon, waves of
fixed frequency and known amplitude are introduced
into the flow. Suppose that the forcing occurs up-
stream of the lower branch (see figure 6, where the
abscissa measures the distance downstream). The
waves initially decay as they propagate downstream,
until they reach the lower branch; beyond this, there
is a region of amplitude growth. When the upper
branch is crossed, decay once again sets in, provided
that nonlinear effects are still not significant. Due
to the region of exponential growth, the initial am-
plitude at the point of forcing is usually required to
be exponentially small (in some sense) if the flow is
to remain linear everywhere. If the amplitude of the
initial disturbance is suitably adjusted, nonlinear ef-
fects can be made to come into play as the waves
reach the upper branch. If the forcing amplitude is
increased further, nonlinearity becomes important at
positions upstream of the upper branch, and for suf-
ficiently large input disturbances, nonlinear effects
may develop near the lower branch.

The analysis describing the evolution of the dis-
turbance differs depending on where the flow first
becomes nonlinear. For the Blasius boundary layer,
there are three major regions to be considered – these
are illustrated schematically in figure 7a. For defi-
niteness, suppose that a fixed-frequency disturbance
is introduced at the lower branch neutral point. As
discussed above, for very small initial amplitudes
the disturbance can remain linear at all points. For
slightly larger disturbances, the initial amplitude can
be adjusted so that the perturbation becomes non-
linear at an O(F−

5
3 Ûeν̂

−1) distance downstream, i.e.
in the region described by the VCB scaling. Aspects
of this case are discussed in §5 on the assumption
that the flow does not become nonlinear very close
to the upper branch. In the latter special case, the
very small growth rate of the disturbance can mean
that non-parallel effects, inter alia, play an enhanced
rôle, with the result that the asymptotic analysis is
modified.

If the initial amplitude is larger, then the distur-
bance can become nonlinear in the triple-deck region,
i.e. an O(F−

4
3 Ûeν̂

−1) distance from the leading edge.
In general, since the growth-rate is not small here, a
numerical solution of the fully nonlinear equations
(see (4.1)) is required (e.g. Duck 1985, 1990, Cow-
ley et al. 1990). However, if the initial amplitude is
sufficiently large, then the disturbance can become
nonlinear close to the lower branch. A weakly non-
linear analysis is then possible; this case is discussed
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in §4. Further, as discussed there, if the initial dis-
turbance is large enough, then the flow can become
nonlinear sufficiently close to the neutral curve for
non-parallel effects to be important.

For an accelerating boundary layer, there are
again three major regions to be considered where the
disturbance can first become nonlinear (see figure
7b). These correspond to the three regions for the
Blasius boundary layer. As explained in §2.3, the
major difference is that the VCB scaling occurs at
an O(F−

3
2 Ûeν̂

−1) distance downstream of the lead-
ing edge. Much of the nonlinear analysis described
in §5 remains valid after an appropriate change of
scaling.

For a decelerating boundary layer the distur-
bance can first become nonlinear in one of at least
seven distinguished regions. The three upstream re-
gions closest to the lower branch are the same as for
an accelerating boundary layer (see figure 7c). How-
ever, there is no upper-branch neutral point on the
VCB scaling. The fourth distinguished region oc-
curs at an O(F−

14
9 Ûeν̂

−1) distance downstream (see
(2.15b)). While on the VCB scaling the critical layer
is primarily viscous, in this region the dynamics in
the critical layer involves both ‘unsteady’ and viscous
forces (e.g. Goldstein, Durbin & Leib, 1987). Since
nonlinearities first come into play within the criti-
cal layers, this change in the dynamics of the critical
layer affects the amplitude-evolution equation. Since
this scaling and the VCB scaling differ only by a fac-
tor of F−

1
18 , before any comparison with experiment,

it is probably best to form a composite expansion
of the two scalings (Dr M.E. Goldstein 1992 (per-
sonal communication)). If the disturbance becomes
nonlinear for F−

14
9 � Re � F−2, then the weakly

nonlinear analysis is primarily inviscid.

If the initial disturbance amplitude is even
smaller, so that the flow becomes nonlinear in
the fifth distinguished region (defined to be an
O(F−2Ûeν̂

−1) distance downstream), then a fully
nonlinear analysis is in general necessary since the
growth-rate of the linear waves is not relatively
small. However, for suitable initial amplitudes the
flow perturbation can become nonlinear in the vicin-
ity of the upper branch (which we take to be at
Re = Rec); a weakly nonlinear analysis is then pos-
sible. † There are two distinguished regions close to
the upper branch. The first is an O(F−

5
3 Ûeν̂

−1) dis-

† The fact that the initial amplitude has to be tuned
so that the flow becomes nonlinear in the vicinity of the
upper branch may at first sight suggest that the analysis
has limited validity. However, in an analogous problem
for a shear layer (see §6.2), Hultgren (1992) has shown

tance upstream of the upper branch. The analysis
here is not dissimilar to that for the fourth region
since both unsteady and viscous effects are signifi-
cant in the critical layer (e.g. Goldstein & Hultgren
1988). The limits F−

5
3 � |Re − Rec| � 1 and

|Re−Rec| � F−
5
3 correspond to predominantly in-

viscid and viscous limits respectively (e.g. Goldstein
& Leib 1988). However, the latter limiting solution
is not valid arbitrarily close to the upper branch. For
|Re−Rec| = O(F−

3
2 ) there is a seventh distinguished

region. Here the growth-rate of the disturbance is so
small that nonparallel effects cannot be neglected at
leading order (e.g. Shukhman 1989, Smith, Brown &
Brown 1993).

The above classification is not comprehensive,
particularly if two or more disturbance modes are
excited and/or subsequent nonlinear stages are con-
sidered. However, the different scalings serve to
emphasise the different physical mechanisms that
can influence transition. Further, while the multi-
tude of scalings makes comparison with experiment
less than straightforward, some spectacular successes
have been achieved by use of composite expansions.

3.6 Types of disturbance

In addition to varying the position where the
perturbed flow becomes nonlinear, the evolution of
a number of different types of disturbance can be
considered. For example the ‘carrier’ TS/Rayleigh
wave can be

(a) a two-dimensional mode,

(b) a single oblique mode,

(c) a pair of oblique modes, or

(d) a combination of the above,

while the wavetrain may be

(i) uniform, or

(ii) be modulated so as to form a wavepacket that,
for instance, is localised in time and/or space,

Further, the disturbance may

(α) evolve from an initially linear state (as in §3.5),
or

(β) be introduced as a weakly nonlinear perturba-
tion.

It is also possible to consider disturbances excited

(A) at a point,

(B) along a line, or

(C) over some broader region.

A number of these possibilities will be reviewed be-
low.

that the weakly nonlinear analysis has a surprisingly large
range of validity.
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4. ASYMPTOTIC NONLINEAR THEORY
– TS LOWER BRANCH

In this section we will assume that a disturbance
is introduced into the boundary layer in such a way
that the flow becomes nonlinear very close to the
lower branch. For definiteness we start by assuming
that the disturbance is introduced in a region where
its evolution can be described by linear dynamics.
We then briefly review a situation where ‘nonlinear’
disturbances are introduced in the neighbourhood of
the lower branch - an example of bypass transition.

4.1 Growth of a two-dimensional carrier wave

If the carrier wave is two-dimensional, and the
disturbance initially linear, then an analysis similar
to that in §3 is expected to hold. Smith (1979b) and
Hall & Smith (1982) have derived the Landau equa-
tion for an attached boundary layer (e.g. the Blasius
boundary layer) and Poiseuille flow respectively. In
addition Hall & Smith (1982) allow for a wavelike
forcing at the flow boundary. Their analysis is based
on a nonlinear extension of the triple-deck scalings
discussed in §2. For boundary-layer flow, the scaled
governing equations are

UT + UUX + V UY + WUZ = −PX + UY Y ,(4.1a)
WT + UWX + V WY + WWZ = −PZ + WY Y ,(4.1b)

PY = 0 , UX + VY + WZ = 0 , (4.1c, d)

with boundary conditions

U = V = W = 0 on Y = 0 , (4.1e)
U → Λ(x)(Y + A) , W → 0 as Y →∞ , (4.1f)

U → Λ(x)Y as X → −∞ , (4.1g)

and interaction relation

P = − 1
2π

∫ ∞

−∞

∫ ∞

−∞

Aξξ

(X − ξ)2 + (z − ζ)2
dζdξ ,

(4.1h)
where for future convenience we have included a
spanwise dependence with the same scale as the
triple-deck TS wavelength. The slow variable x
(which is here non-dimensionalised by the distance
from the leading edge), represents the slow down-
stream evolution of the boundary layer. Its effect is
felt through the slowly-varying wall shear Λ(x).

For a given disturbance frequency, there will be
a location, say x = x0, where the TS wave is neu-
tral. The weakly nonlinear analysis assumes that
the wave remains linear as it propagates downstream
until it reaches a position x = x0 + ε2x1, where
0 < ε � 1 and x1 = O(1) (this downstream displace-
ment corresponds to the O(ε2) variation from the
critical Reynolds number in (3.5a)). At this point
the (scaled) spatial growth-rate of the wave is O(ε2),

while the (scaled) wavenumber is O(1). As in §3, if
the wave has a (scaled) amplitude of O(ε), a nonlin-
ear interaction ensues. The governing equation for
the amplitude is then the spatial Landau equation

dP̄

dX̄
= k3x1P̄ + k2|P̄ |2P̄ , (4.2a)

where X̄ = ε2X and P̄ is the scaled amplitude of the
leading-order pressure perturbation.

Note that if a disturbance is introduced at a fixed
value of x, then ε can be deduced in terms of the ini-
tial amplitude by the condition that the disturbance
should have an O(ε) amplitude at a distance O(ε2)
downstream of neutral. Observe also for future refer-
ence that there are four lengthscales involved in this
calculation:

(1) the very ‘slow’ downstream boundary-layer evo-
lution scale, x = O(1);

(2) the distance downstream from the lower branch
at which nonlinear effects develop, i.e. x− x0 =
O(ε2);

(3) the ‘slowish’ lengthscale over which the TS waves
grow, i.e. X̄ = O(1) or X = O(ε−2) or x− x0 =
O

(
ε−2Re−3/8

)
;

(4) the ‘fast’ wavelength of the TS wave, i.e. X =
O(1) or x− x0 = O(Re−3/8).

Hall & Smith (1984) observed that non-parallel ef-
fects enter the analysis at leading order if the second
and third scales are identical, i.e. if

ε = O(Re−3/32) . (4.2b)

In terms of figure 7, this corresponds to nonlinear
effects becoming important within an O(F−

13
12 ) dis-

tance of the lower neutral point. For such a scaling
the Landau equation (4.2a) is slightly modified be-
cause X̄ and x1 are now the same variable. The so-
lution to the linear equation is then proportional to
exp( 1

2k3X̄
2); that this is correct can be easily checked

by taking the lower bound of the integral in (2.5b) to
be x1, expanding in powers of (x−x1), and using the
fact that =(α`(x1)) = 0.

For boundary-layer flow, Smith (1979b) and Hall
& Smith (1982, 1984) show that solutions to (4.2a)
tend to a slowly-varying amplitude downstream,
i.e. the bifurcation is supercritical. This ‘equilib-
rium’ amplitude is stable to two-dimensional distur-
bances of the same frequency, but can be unstable
to three-dimensional disturbances of a different fre-
quency. Inter alia, Hall & Smith (1984) † show that

† Inter alia, Hall & Smith (1984) derive equations
which describe the nonlinear interaction of two or more
almost neutral nodes. Note that a ‘diffusion layer’ of
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such instabilities can force the disturbance amplitude
to become singular a finite, i.e. X̄ = O(1), distance
downstream. As a result of this singular growth, the
flow reverts to being described by the fully nonlinear
system of equations (4.1).

While such analyses yield interesting results,
they are equivalent to a ‘uniform-waveform’ calcu-
lation (cf. §3.1). No detailed consideration is given
to how the wavetrain is established, e.g. by includ-
ing some modulation in time. In addition, while the
rapid growth in disturbance amplitude identified by
Hall & Smith (1984) in their multi-mode analysis
is consistent with transition, their weakly nonlinear
analysis is based on the assumption that the dis-
turbance consists of multi-frequency, almost-neutral
three-dimensional waves. This may be possible in
very carefully controlled experiments, but in most
flows where the disturbance has a significant multi-
frequency component, it is likely that at least some
of the (linear) modes will have O(1) growth-rates – in
which case there will be other stronger instabilities.

Smith & Walton (1989) have extended the two-
dimensional analysis to include a slow spanwise mod-
ulation over distances Z̄ ≡ εZ = O(1). For the dis-
tinguished limit when non-parallel effects are impor-
tant, i.e. ε = O(R−3/32), the scaled amplitude equa-
tion is

∂P̄

∂X̄
= k3X̄P̄ + k4

∂2P̄

∂Z̄2
+ k2|P̄ |2P̄ . (4.3)

This equation has the same form as the finite-
Reynolds-number amplitude equation (3.8b) but
with the inclusion of the linear non-parallel effects,
and the exclusion of the modulation in time. For ap-
propriate parameter values, Smith & Walton (1989)
show that solutions to this equation can end in a
finite-distance singularity due to a focussing of the
spanwise modulation. The subsequent evolution of
the disturbance is described by the full nonlinear
equations (4.1). A time-modulated wavepacket cor-
responding to a finite period of excitation does not
seem to have been studied.

4.2 A ‘weak’ TS-wave/vortex interaction

Smith & Walton (1989) show that the large-X̄,
two-dimensional, quasi-equilibrium solution to (4.3)
is unstable to three-dimensional disturbances, par-
ticularly those with large spanwise wavenumbers.

width O(ε−
2
3 ) seems to have been omitted in their anal-

ysis. This layer is needed in order to eliminate a ‘steady-
streaming’ spanwise mean flow induced far from the
boundary. Since this velocity is independent of the span-
wise coordinate it is presumably passive (cf. Smith &
Walton 1989).

However, if such disturbances can be suppressed
then the two-dimensional equilibrium solution can
lose stability to another type of interaction further
downstream. In particular Smith & Walton (1989)
show that if ε = O(R−3/40) then this new ‘TS-
wave/vortex’ interaction is described by the nor-
malised amplitude equation

(k3X̄ + k5Λ0)P̄ + k4
∂2P̄

∂Z̄2
+ k2P̄ |P̄ |2 = 0 , (4.4a)

where the vortex skin-friction factor, Λ0, is given by‡

Λ0 = − ∂2

∂Z̄2

∫ X̄

−∞
(X̄ − ξ)−

1
3 |P̄ |2(ξ, Z̄) dξ . (4.4b)

These vortex equations arise because the
quadratic interaction between the two-dimensional
TS carrier wave and the spanwise TS wave induced
by the modulation, drives a surprisingly large X̄-
independent spanwise velocity – indeed this grows
logarithmically as Y → ∞. The growth is resolved
in a ‘diffusion layer’ (sometimes referred to as a
‘buffer layer’) of thickness Y = O(ε−1) far from
the wall. Such diffusion layers are common in sit-
uations where relatively large mean flows are forced
as a result of nonlinear interactions in critical lay-
ers (e.g. Brown & Stewartson 1978, Haynes & Cow-
ley 1986). These mean flows are generated over the
same lengthscale/timescale as that on which the non-
linear effects evolve. In the problem under discussion
nonlinear effects develop over a distance X = O(ε3).
Far from the wall the magnitude of the mean flow
is O(Y ), and hence from a balance between the
convective-inertia and viscous terms it follows that
the spanwise perturbation will have diffused a dis-
tance Y = O(ε−1) from the wall. The streamwise
and spanwise lengthscales are then chosen (after ac-
counting for logarithmic terms) so that this induced
‘vortex’ feeds back, via the skin-friction factor Λ0, to
interact with the evolving (nonlinear) TS wave.

Smith & Walton (1989) show

(a) that the two-dimensional quasi-equilibrium so-
lution is unstable to three-dimensional pertur-
bations, and

(b) that three-dimensional solutions to (4.4) may ei-
ther terminate in a finite-distance singularity, or
decay downstream.

Again, these solutions have features in common with
transition, but ‘no quantitative comparison with
transition experiments and computations have been
attempted yet’ (Smith & Walton 1989).

‡ The original version of this analysis was corrected in
outline by Smith & Blennerhassett (1992).
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4.3 A ‘medium’ TS-wave/vortex interaction

Having recognised the powerful influence that an
induced longitudinal vortex can have on the evolu-
tion of a wave, Smith & Walton (1989) also consid-
ered disturbances with a spanwise lengthscale com-
parable with the wavelength of the two-dimensional
TS carrier wave. The flow is again assumed to evolve
over a distance O(ε−3), where the amplitude of the
wave for Y = O(1) is O(ε(log ε)−1/2). The analo-
gous equation to (4.4a) yields a dispersion relation
which has a nonlinear dependence on P̄ through an
unknown skin-friction factor. The equations gov-
erning the vortex in the diffusion layer where Y =
O(ε−1) are the full classical three-dimensional, zero-
pressure-gradient, boundary-layer equations, with a
spanwise forcing at the boundary as a result of
matching to the Y = O(1) region.

A key point in the analysis is that the leading-
order wavenumber must be allowed to vary over
the slow O(ε−3) evolution scale, whereas in previous
‘almost-neutral’ stability analyses the carrier wave
wavenumber/frequency only varies slightly. As the
flow evolves downstream the linear three-dimensional
TS waves force the vortex flow. This in turn modi-
fies the wall shear which governs the TS wavelength
(i.e. assuming the frequency of the disturbance is
known). The TS waves must remain neutral for the
theory to be applicable. This is achieved by a feed-
back loop in which the amplitude of the TS wave
automatically adjusts itself so that the forced vortex
leads to a value of wall shear consistent with a neutral
wave. This condition might be viewed as a nonlin-
ear secularity condition for fixing the amplitude of a
three-dimensional, weakly nonlinear, TS wave.

4.4 A ‘strong’ TS-wave/vortex interaction

The above analysis has been extended by Hall &
Smith (1991) to the case when ε = O(Re−1/8); the
downstream evolution lengthscale then merges with
the non-parallel evolution scale of the Blasius bound-
ary layer. The TS-wave/vortex interaction is then
sufficiently strong to produce a complete alteration
of the Blasius boundary-layer velocity profile.

The governing equations for both the above
TS-wave/vortex interactions are ‘strongly’ nonlinear.
Numerical solutions have been obtained by Hall &
Smith (1991) (see also Walton & Smith 1992). The
initial conditions for these calculations are rather ar-
bitrary, and in general require the spanwise veloc-
ity to satisfy a compatibility constraint. A slight
question-mark remains as to whether such initial con-
ditions can be realised experimentally. However, as
noted by Smith & Walton (1989), an alternative ini-

tial condition can be constructed by considering the
secondary instability of a two-dimensional TS wave
to three-dimensional perturbations. As indicated in
§4.4 another possible initial condition arises from the
evolution of a pair of oblique waves (Hall & Smith
1989, Blackaby 1993).

The calculations of Hall & Smith (1991) and
Walton & Smith (1992) suggest that TS-wave/vortex
interactions of this kind terminate in singularities a
finite distance downstream (see also Smith & Wal-
ton, 1989). Smith & Walton (1989) and Walton &
Smith (1992) tentatively suggest that the singular-
ity formation is related to the creation of lambda
vortices. However, in an extension of work by Hall
& Horseman (1991), Hall (1992, personal communi-
cation) has shown that before the singularity devel-
ops, the three-dimensional distorted boundary-layer
flow induced by the TS-wave/vortex interaction is
itself unstable to a ‘secondary’ Rayleigh instability.
Hall proposes that it is this instability which is re-
sponsible for the so-called ‘spike’ formation (see also
Greenspan & Benney 1963).

Hall & Smith (1991) show how the ideas underly-
ing the TS-wave/vortex interaction can be extended
to other flows supporting almost neutral waves, e.g.
Rayleigh-wave/vortex interactions (see also Bennett,
Hall & Smith 1991). However, as noted by Smith
et al. (1993), there are difficulties in establishing
such Rayleigh-wave/vortex interactions from realis-
tic upstream boundary conditions (see also Wu, Lee
& Cowley 1993, Brown, Brown, Smith & Timoshin
1993). †

4.5 A pair of oblique modes

Other TS-wave/vortex interactions can be
sought at locations close to the lower-branch neutral
point (i.e. in region I of figure 7). For instance, Hall
& Smith (1989), Smith & Blennerhassett (1992) and
Blackaby 1993 consider the interaction of two oblique
three-dimensional TS waves with an induced stream-
wise vortex.

If the TS waves are weakly three-dimensional
then the induced vortex is passive and the ampli-
tude evolution equation is just (4.3). However, if the
TS waves are sufficiently oblique, the induced vortex

† This point is possibly not surprising once it is re-
alised that the almost-neutral Rayleigh (or TS) carrier
modes are in fact weakly nonlinear, quasi-equilibrium,
three-dimensional travelling waves which slowly evolve
downstream – cf. equilibrium solutions to (4.2a) when
x1 is viewed as a slowly varying parameter. Experience
suggests that such quasi-equilibrium travelling waves are
highly likely to be unstable to three-dimensional distur-
bances at asymptotically large Reynolds numbers.
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can affect the nonlinear evolution of the disturbance.
If β is the spanwise wavenumber based on the triple-
deck scaling, then the distinguished limit where the
two types of nonlinearity balance is given by †

β = O(ε
2
3 (log ε)−

1
2 ) , (4.5)

where ε is as in §4.1 Nonparallel effects can be al-
lowed for by scaling ε as in (4.2b). For stronger three-
dimensionality than (4.5) the nonlinearity forced by
the streamwise vortex dominates the cubic Landau
nonlinearity. If β = O(1), the scaled amplitude
equation for two oblique waves of equal amplitude
is (Blackaby 1993)

∂P̄

∂X̄
= K3X̄P̄ +K5P̄

∫ X̄

0

(X̄−ξ)−
1
3 |P̄ (ξ)|2dξ , (4.6)

where it has been assumed that the disturbance is
introduced at X = 0. The same equation, but with
different coefficients, is obtained if compressibility ef-
fects are included. For incompressible flow, Black-
aby argues that if the obliqueness angle, θ, of the
TS waves satisfies 32.21◦ < θ < 45◦, then their
amplitude blows-up in a finite distance. The sub-
sequent evolution of the waves is then described by
the fully nonlinear triple-deck equations (4.1) (Hall
& Smith 1989). For other values of θ the distur-
bance amplitude grows algebraically as X̄ → ∞.
Hall & Smith (1989) argue that the disturbance sub-
sequently evolves to a TS-wave/vortex interaction in
which the entire boundary layer is altered (Hall &
Smith (1991) and §4.4). As far as transition to tur-
bulence is concerned (i.e. the development of short[er]
scale motions), the existence of a finite-distance sin-
gularity is potentially the most relevant result (see
also §6.4). However, such singularities only develop
for a relatively narrow range of obliqueness angles.
Further, Blackaby (1993) shows that range of angles
is dependent on Mach number, and disappears for
Mach numbers above

√
2.

If the initial disturbance is sufficiently small so
that nonlinear effects only become important in a re-
gion where non-parallel effects are negligible to lead-
ing order, i.e. if Re−3/32 � ε � 1, then instead of
algebraic growth, nonlinear effects cause the distur-
bance amplitudes to decay exponentially (cf. Smith
& Blennerhassett 1992, Wu et al. 1993). The dis-
turbance only reverts to algebraic growth even fur-
ther downstream as a result of non-parallel effects
(cf. Smith et al. 1993)

4.6 ‘Far-downstream’ lower-branch analyses

† University of Cambridge, Mathematical Tripos Part
III (1993), Paper 33, Question 3.

As indicated in §2, if TS waves propagate to a po-
sition far downstream from the lower branch (as mea-
sured on the lower-branch scaling), then the growth-
rate of TS waves is relatively small. This means
that if a flow becomes nonlinear in this region, its
evolution can in general be described by a weakly
nonlinear analysis. Solutions for the weakly nonlin-
ear evolution of two-dimensional disturbances in this
so-called ‘high-frequency’ limit have been obtained
by Smith & Burggraf (1985) and Smith (1986a).
For two-dimensional disturbances of larger ampli-
tude, the inviscid dynamics are apparently described
by the well-known Benjamin-Ono equation. Theo-
ries have been proposed (e.g. Rothmayer & Smith
1987, Kachanov, Ryzhov & Smith 1993) suggesting
that soliton solutions of this equation may be asso-
ciated with the ‘spikes’ in the velocity profiles ob-
served in many transition experiments. However,
this idea cannot be fully evaluated until the theory is
extended to three-dimensional disturbances. In addi-
tion, the problem of incorporating viscous effects into
the analysis appears to be unresolved at present.

The nonlinear development of weakly three-
dimensional wavetrains has been considered by Stew-
art & Smith (1992) for boundary layers, and Smith &
Bowles (1992) for channel flow. These authors make
comparisons with the experiments of Klebanoff &
Tidstrom (1959) and Nishioka, Asai & Iida (1980) re-
spectively; their ‘wave-vortex’ interaction theory ap-
parently captures the main features observed. Stew-
art & Smith (1987) and Doorly & Smith (1992) have
looked at various fully three-dimensional linear prob-
lems. In addition, Smith & Stewart (1987) observe
that a resonant-triad interaction is a possibility in
the HFLB régime. Solutions of their equations ap-
parently yield good agreement with the experiments
by Kachanov & Levchenko (1984) on subharmonic
transition in boundary layers.

However, rather than reviewing this work in de-
tail, we will proceed to consider analyses performed
with the upper-branch scaling. The ‘far-upstream’
(or ‘low-frequency’) limit of such analyses should
match with the above ‘far-downstream’ lower-branch
solutions.

5. ASYMPTOTIC NONLINEAR THEORY
– TS UPPER BRANCH

5.1 Two-dimensional instability

One of the major strands of work based on the
upper-branch scaling has been the derivation of two-
dimensional travelling-wave equilibrium solutions for
flows in favourable (or zero) pressure gradients. As
the amplitude of a linear TS wave is increased, non-
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linear effects first come into play within the thin crit-
ical layer situated in the buffer region adjacent to
the wall (see figure 4a). The possibility that nonlin-
earity could play a crucial rôle in critical layers was
realised by Lin (1957), and then exploited by Ben-
ney & Bergeron (1969) and Davis (1969). The latter
authors concentrated on almost-inviscid critical lay-
ers, while Haberman (1972) and Brown & Stewart-
son (1978) incorporated viscous effects into nonlinear
critical layers (and corrected earlier ideas). As a re-
sult of these studies, the wavespeed of possible trav-
elling waves could be identified, but the amplitude
of the wave was not fixed. Smith & Bodonyi (1982a)
explained how this could be done for a boundary
layer in a favourable pressure gradient. Like Haber-
man (1972), they considered a scaling in which vis-
cous and convective-inertia effects were compara-
ble within the critical layer.They showed how the
amplitude-dependent ‘phase jump’ across the criti-
cal layer (essentially one Fourier component of the
critical-layer velocity jump) could balance the phase
jump arising from the Stokes layer adjacent to the
wall, and so fix the amplitude. Bodonyi, Smith
& Gajjar (1983) and Smith, Doorly & Rothmayer
(1990) extended this analysis to larger-amplitude
modes in which the critical layer is situated either
in the middle of the classical boundary layer, or at
the outer edge of the boundary layer, respectively.

For PPF and (non-decelerating) boundary lay-
ers, it was shown by Reutov (1982) and Gajjar
& Smith (1985), respectively, that upper-branch
travelling-wave solutions are unstable – i.e. the bi-
furcation is subcritical. Hence the amplitudes of the
travelling waves may provide an indication of non-
linear threshold amplitudes for two-dimensional in-
stability (subject to the condition that the diffusion
layers mentioned below are passive). Goldstein &
Durbin (1986) also conclude that nonlinear critical-
layer effects completely ‘eliminate’ the upper branch
predicted by linear theory; this is in agreement with
numerical results of Bayliss et al. (1985).

We note that Gajjar & Smith (1985) and Gold-
stein & Durbin (1986) base their analysis on the as-
sumption that an induced mean-flow perturbation
has diffused completely across the developing bound-
ary layer. If the TS wave has grown from an ini-
tially linear disturbance, this assumption is incor-
rect. Instead, it is necessary to introduce extra ‘dif-
fusion layers’ which sandwich the critical layer (e.g.
Brown & Stewartson 1978). For two-dimensional dis-
turbances, the diffusion layers are expected to be
passive, (e.g. Churilov & Shukhman 1987, Goldstein
& Hultgren 1988); however in three dimensions this

may not be the case, since a wave/vortex interaction
can arise in these layers (e.g. Wu 1993a).

It is not immediately clear what the rôle of
such diffusion layers is in equilibrium, travelling-
wave analyses for developing boundary layers, e.g.
Bodonyi et al. (1983) and Smith et al. (1990). † In
a developing boundary layer, the equilibrium travel-
ling waves must have evolved from some upstream
initial condition. Unless this initial condition is cho-
sen so that the mean-flow change is introduced across
the whole boundary layer, then diffusion layers will
be needed. However, even with such carefully cho-
sen initial conditions, it is likely that diffusion layers
will develop as the non-parallelism of the mean flow
comes into play. Hence there seems a need to confirm
that any such diffusion layers are passive.

For boundary layers in adverse pressure gradi-
ents, similar nonlinear critical-layer analyses can be
performed. While no equilibrium travelling-wave so-
lutions can be found, the growth of perturbations can
be followed from the linear through to the strongly
nonlinear stage, e.g. Gajjar & Smith (1985). In the
vicinity of the ‘upper-branch’ scaling, the growth re-
mains exponential even after the critical layer be-
comes nonlinear. However, if the disturbance be-
comes nonlinear far downstream of the VCB scal-
ing, a simple extension of Gajjar & Smith’s (1985)
analysis shows that the initial exponential growth of
the linear wave gives way to algebraic growth, before
reverting to a smaller exponential growth once the
amplitude is large enough. ‡

We note that the distance of the critical layer
from the wall can be amplitude-dependent. If an
almost-inviscid nonlinear critical layer moves too
rapidly through the ambient vorticity then there may
not be time for the vorticity within the ‘cats-eyes’ of
the critical layer, i.e. the region of closed stream-
lines, to equilibrate to a uniform vorticity. Exam-
ples of such non-uniform vorticity régimes in forced
problems were found by Cowley (1981, 1985) and

† In an exactly parallel flow, e.g. Hagen-Poiseuille flow
(Smith & Bodonyi 1982b), the diffusion layers need not
be present since in principle there is always sufficient
‘time’ for the mean flow perturbation to have diffused
completely across the flow.
‡ Churilov & Shukhman (1987) and Goldstein & Hult-

gren (1988) find algebraic growth in closely related prob-
lems concerned with the growth of two-dimensional insta-
bilities in shear layers. An important difference between
shear layers and boundary layers is the existence of the
Stokes layer adjacent to the wall in the latter case. When
the effects of this Stokes layer are felt at leading order,
the instability wave grows exponentially.
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Haynes & Cowley (1986), while Gajjar & Smith
(1985) proposed a scenario for a wavepacket of modu-
lated upper-branch TS waves that could lead to such
critical layers. †

If in a flow with an adverse pressure gradient,
the disturbance first becomes nonlinear in the fourth
region of figure 7c, i.e. where Re = F−

14
9 , then

the initial nonlinear evolution of the TS waves is
governed by a non-equilibrium, nonlinear, viscous
critical-layer equation (e.g. Gajjar 1994). Again non-
linear effects result in a transformation from expo-
nential to algebraic growth. Even further down-
stream, i.e. effectively in the Rayleigh régime, viscous
effects are initially negligible in the critical layer. In
this case Goldstein, Durbin & Leib (1987) show that
the growth-rate can oscillate about zero before vis-
cous effects reassert themselves and lead to algebraic
growth.

5.2 Spatial modulation of a planar carrier
wave

Imperfections are invariably present in, say, a
vibrating-ribbon experiment. As a result, a suppos-
edly two-dimensional wavetrain may have an ampli-
tude that is weakly modulated in the spanwise di-
rection. Models for such flows when the disturbance
first becomes nonlinear near the lower branch have
been discussed in §4 (e.g. equation (4.3)). Suppose
instead that the initial amplitude of the disturbance
is smaller, so that nonlinear effects become important
in the upper-branch (VCB) régime. As an example
we discuss a boundary layer with a pressure gradient,
but with a simple modification of scaling, the analysis
also applies to the Blasius boundary layer, or to the
‘high-frequency lower-branch’ régime. For our typi-
cal lengthscale (see §1.1) we use the boundary-layer
thickness and we write F = σ8. The leading-order
pressure perturbation is assumed to be of the form

εA(X̄, Z̄) exp iσ(ᾱx− σω̄t) + c.c. , (5.1a)

where X̄, Z̄ are ‘slow’ spatial scales, ᾱ and ω̄ are of
order one, and ε � 1.

If the three-dimensionality is extremely weak,
then the evolution of the disturbance will still be de-
scribed by the two-dimensional analysis of the pre-
vious section. However, if a typical spanwise length-

† While studying the spatial stability of shear lay-
ers, Goldstein & Hultgren (1988) and Hultgren (1992)
find quasi-equilibrium nonlinear critical layers which have
non-uniform vorticity within almost-inviscid ‘cat-eyes’.
However, the source of this non-uniformity is vorticity
swept downstream rather than a variation in the ambi-
ent arising from the sideways movement of the critical
layer.

scale of the warping is O(σ−
23
12 ), then the solution

to the strongly nonlinear critical layer is believed to
be influenced by a diffusion layer that surrounds it.
This problem has yet to be studied in detail.

If the warping is more rapid than O(σ−
23
12 ) then

the critical layer ceases to be strongly nonlinear. Wu,
Stewart & Cowley (1994) identify a distinguished
scaling which accommodates the effects of linear
growth, linear spanwise dispersion and weak nonlin-
earity at the same order, viz.

X̄ = σ2x , Z̄ = σ3/2z , ε = σ15/4 . (5.1b)

The dominant nonlinear effect arises in the critical
layer and surrounding diffusion layer, and can be re-
garded as a cubic ‘wave-vortex’ interaction between
the fundamental mode and an induced spanwise-
dependent mean flow. The amplitude equation takes
the form

∂A

∂X̄
− i

∂2A

∂Z̄2
= A

+iA
∫ ∞

0

ζ−
1
2
(
A(X̄−ζ, Z̄)A∗Z̄(X̄−ζ, Z̄)

)
Z̄
dζ .(5.2)

It is straightforward to include a temporal modula-
tion in this equation.

Equation (5.2) has exact solutions describing
pure plane waves. A linear secondary-stability anal-
ysis shows that they are susceptible to a ‘sideband’
instability of ‘exponential-of-exponential form’. So-
lutions of the full nonlinear equation can terminate in
a finite-distance singularity associated with a short-
ening of both spanwise and streamwise scales. The
subsequent evolution of such solutions has not been
studied in detail. However an analysis of scaling
changes indicates that in the subsequent phase of
development, the slow streamwise variation will en-
ter at leading order in the critical layer equations,
so that the critical layer becomes of non-equilibrium
viscous type – a situation similar to that studied by
Wu (1993b); see §6.6.

As an alternative to considering the warping of a
two-dimensional mode, equation (5.2) can be used to
study the nonlinear evolution of, say, a pair of slightly
oblique TS waves. If the three-dimensionality is
much stronger than that specified by (5.1), then the
governing equations simplify. In particular, the en-
ergy of the waves can be shown to grow exponentially
in a frame moving downstream with the group veloc-
ity.

In the next section we consider a case where the
pair of oblique TS waves have comparable spanwise
and streamwise wavelengths. However, first we note
that there is an intermediate scaling with spanwise
lengthscale of O(σ−13/12). On this scaling there are
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two competing forms of wave/vortex interaction. As
a result the ζ−

1
2 kernel function in (5.2) needs to

be replaced by (ζ−
1
2 + κ), where the magnitude of

κ is proportional to the obliqueness (cf. Timoshin &
Smith 1993). However, the precise form of the kernel
function seems to have no significant effect on the
qualitative form of solutions, which again display an
exponential increase in both amplitude and phase.

5.3 Resonant-triad interactions

Rather than considering a general pair of oblique
modes (which can be viewed as a special case), we
study the interaction of a pair of oblique modes with
a two-dimensional mode. Such interactions are of in-
terest because experiments have shown that subhar-
monic resonance is a possible mechanism for tran-
sition to turbulence in boundary layers (e.g. Raetz
1959, Craik 1971, Kachanov et al. 1977, 1984). Res-
onance occurs when for any three waves

k1 + k2 + k3 = 0 and ω1 + ω2 + ω3 = 0 , (5.3)

where the kj and ωj are the wavenumbers and fre-
quencies of the waves respectively. The three waves
need not all be of the same type, although in this
section we only consider TS waves.

The resonance condition (5.3) cannot be satis-
fied by three almost-neutral lower-branch TS waves.
However, Smith & Stewart (1987) show that this
condition can be satisfied by three TS waves in the
‘high-frequency’ limit of the lower-branch régime. In
other words, for disturbances of given frequency, res-
onance can take place sufficiently far downstream
of the lower branch. Resonance can likewise take
place in the upper-branch (VCB) régime (where the
asymptotic structure is very similar). We focus on
the VCB scaling since subharmonic resonance is ex-
perimentally observed to occur near, and to continue
downstream of, the upper branch neutral point.

A resonant-triad interaction in the upper-branch
régime has been studied by Mankbadi (1991) and
Mankbadi, Wu & Lee (1993) for the Blasius bound-
ary layer, and by Wu (1993a) for boundary layers
with non-zero pressure gradients (see also §6.5). We
take the latter case as an example.

In the notation of §5.2, the leading-order pres-
sure perturbation is assumed to be of the form

εB(X̄)eiσ(ᾱx−σω̄t) + δA+(X̄)eiσ(ᾱx/2+β̄z−σω̄t/2)

+ δA−(X̄)eiσ(ᾱx/2−β̄z−σω̄t/2) + c.c. , (5.4)

where ᾱ, β̄, and ω̄ are all of order one and X̄ = σ2x.
As shown by Smith & Stewart (1987), the resonance
condition (5.3) is satisfied when

tan−1 β̄/ᾱ = 60◦.

Since upper-branch TS modes have an inviscid struc-
ture at leading order, this resonance condition is the
same as for long-wavelength Rayleigh modes. The
three waves have (nearly) equal phase speeds, and so
share the same critical layer.

The maximal interaction scaling to ensure that
the oblique waves are both influenced by the two-
dimensional wave, and interact nonlinearly among
themselves (cf. §5.2), is given by

δ ∼ σ13/3 , ε ∼ σ5 .

For these scalings, quadratic interactions between
the two-dimensional wave and one or other of the
oblique modes within the critical layer lead to a para-
metric resonance. Moreover, while the quadratic
interaction between the oblique waves does not af-
fect the development of the two-dimensional mode,
it does drive a mean-flow distortion which becomes
unbounded towards the edge of the critical layer. In
order to match the mean-flow distortion in a self-
consistent manner, a diffusion layer must be intro-
duced. In this layer the slow-spatial-growth term
balances the viscous diffusion term. The interaction
between an oblique mode and the mean-flow distor-
tion produces a cubic nonlinear term in the ampli-
tude equations. This interaction is non-local because
the diffusion layer is ‘unsteady’. The final amplitude
equations are found to be

dA+

dX̄
= aA+ + qA∗−B

+ hA−

∫ +∞

0

A∗−(X̄ − ζ)A+(X̄ − ζ)dζ ,

dA−
dX̄

= aA− + qA∗+B

+ hA+

∫ +∞

0

A∗+(X̄ − ζ)A−(X̄ − ζ)dζ ,

dB

dX̄
= bB , (5.5)

where a, b, q and h are constants. The analy-
sis can readily be extended to allow for temporal
and/or spanwise modulation (Jennings, Stewart &
Wu 1994).

Numerical solutions of these equations indicate
that if the oblique modes initially have small ampli-
tudes, they first experience a rapid ‘exponential-of-
exponential’ growth caused by parametric resonance
(Goldstein & Lee 1992, Wu 1993a). † In a sub-
sequent stage, the cubic interactions of the oblique

† If/when the small growth-rate of the two-dimen-
sional mode is much less than that of the three-
dimensional modes, then the secondary stability of the
two-dimensional mode to three-dimensional disturbances
can be tested using Floquet theory (e.g. Herbert 1988).
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modes inhibit the growth and lead to a wavelength
shortening. On the other hand, if the initial ampli-
tudes of the oblique modes are sufficiently large, the
parametric resonance can be completely bypassed
and the amplitude growth is merely exponential. Nu-
merical solutions also suggest that oblique modes
with unequal initial amplitudes evolve to an equal-
amplitude state.

Similar results to the above have been obtained
by Mankbadi et al. (1993) for the upper-branch
régime of the Blasius boundary layer, and by Jen-
nings et al. (1994) for the ‘high-frequency lower-
branch’ régime . Mankbadi (1993) presents compar-
isons between theory and experiment. However, in
order to obtain good agreement, he has to include
additional higher-order terms without performing a
full systematic asymptotic analysis.

Recently, Goldstein (1994) observed that if
the initial amplitude of the subharmonic mode is
sufficiently small, the ‘exponential-of-exponential’
growth of the subharominc induced by the para-
metric resonance can lead it to evolve on a faster
spatial scale. As a result, the viscous critical layer
becomes of nonequilibrium type (see also Khokhlov
1991, 1993). Goldstein (private communication) also
points out that at the streamwise locations where
experimental measurements were made, the critical
layer has actually entered the nonequilibrium régime.
Therefore, this régime must be considered in order to
perform an appropriate comparison with experiment.

6. RAYLEIGH WAVES IN SHEAR FLOWS

So far we have discussed asymptotic approaches
to transition when fixed-frequency disturbances ini-
tially become nonlinear either very close to the lower
branch, or in the upper-branch régime, i.e. regions I
and III in figure 7. In this section we will concen-
trate on disturbances that become nonlinear near a
Rayleigh wave neutral point, i.e. regions VI and VII
in figure 7c. Although we do not discuss region IV in
figure 7c explicitly, we note that many of the prop-
erties of weakly nonlinear disturbances in this region
are similar to those in region VI. This is because non-
equilibrium, viscous critical layers play an important
rôle in both regions. There are also certain common
properties between region III and region VII since a
viscous critical layer surrounded by a diffusion layer
is a key element of both regions. However, the am-
plitude equations in region VII have a slightly more

When the three-dimensional modes have growth-rates
comparable with, or even smaller than, that of the two-
dimensional mode, the multiple-scales approach seems
necessary (Smith 1986b, Goldstein & Lee 1992).

general form; additionally they include non-parallel
effects.

Rather than concentrating on a decelerat-
ing boundary layer, we consider a general two-
dimensional spatially developing, and/or temporally
varying, shear layer that has an inflectional veloc-
ity profile. Such a shear layer usually has a verti-
cal velocity component of magnitude of order R−1,
where R is the Reynolds number based on shear-layer
width. As indicated in §1.1, a quasi-parallel linear in-
stability analysis can only be justified when R � 1.
Such an analysis shows that shear layers with inflec-
tional profiles (e.g. a free shear layer, a decelerating
boundary layer, a Stokes Layer) can often support
inviscid Rayleigh instability waves (§2.4). For shear
layers with a monotonic or symmetric velocity pro-
file, e.g. the free mixing layer or wake, the instabil-
ity is ‘associated’ with an inflection point. However
for shear layers with non-monotonic profiles, other
modes may exist (Foote & Lin 1950).

In general Rayleigh modes have order-one
growth-rates, so that a weakly nonlinear analysis is
not possible. However, as in §3.5 suppose that a
small disturbance of given frequency is introduced
upstream. Because of the viscous spreading of the
shear layer, the (spatial) growth-rate varies, and
eventually goes to zero at some location downstream,
say x0. As the disturbance approaches this neutral
point, critical layers emerge in the structure of the
modes. Owing to the singular nature of the eigen-
function close to the critical layer, the vorticity dis-
turbance generally has a larger magnitude within the
critical layer than elsewhere. As a result that non-
linear effects are most significant in the critical layer
– a fact first highlighted by Lin (1957).

Early weakly nonlinear studies exploiting the
weak growth near the neutral curve include those of
Robinson (1974), Huerre (1980) and Huerre & Scott
(1980). In these studies, the critical layer was as-
sumed to be viscous and in equilibrium. Goldstein &
Leib (1988) criticised this work on the grounds that
the growth-rates were so small that either the non-
linear stage could not be matched onto the linear one
upstream, or the quasi-parallel assumption could not
be justified unless artificial body forces were applied
(see also Huerre & Scott 1980). In particular, follow-
ing Stewartson & Stuart (1971), Goldstein & Leib
(1988) proposed that for a theory to be relevant, the
nonlinear stage should be a natural continuation of
an earlier linear development. They therefore chose
scalings such that the slow spatial growth could be
retained at leading order in the critical-layer equa-
tions. Goldstein & Leib (1988) refer to such criti-

3-23



S.J. Cowley & X. Wu: Asymptotic Approaches AGARD 1993

cal layers as non-equilibrium critical layers, although
they are also referred to as an unsteady critical lay-
ers, e.g. Dickinson 1970.

In this section we concentrate on cases where
non-equilibrium viscous critical layers play a cen-
tral rôle (i.e. region VI in figure 7c). However, we
will indicate certain of the changes that occur if
disturbances become nonlinear in the region where
the critical layer is viscous and non-parallel effects
are important at leading order (i.e. region VII). We
consider in turn the evolution of (a) a ‘regular’
two-dimensional mode, (b) either a ‘singular’ two-
dimensional mode or a single oblique mode, (c) a
pair of oblique modes, (d) a resonant triad, and (e)
a modulated two-dimensional mode. First we pro-
vide an example of how a nonlinear scaling can be
derived.

6.1 An example scaling

As appropriate for a weakly nonlinear analysis
in the vicinity of a neutral point we write

x = x0 + µx1 , ω = ω0 + µω1 , (6.1a, b)

where x is the slow variable describing the viscous
spreading of the unperturbed shear flow, µ � 1, x1 =
O(1) and ω is the local Strouhal number. Since ω0

is real the local growth rate is O(µ). The variables

X = Rx , x̄ = µX (6.1c)

are introduced to describe the carrier wave and the
slow streamwise development of the amplitude.

The flow is described by a double-layered struc-
ture: (i) an outer region occupying the main part
of shear layer where the flow is basically linear and
inviscid, and (ii) a critical layer centred at y = yc,
say, where nonlinear interactions are important. If
the disturbance becomes nonlinear in region VI the
critical is layer is required to be of viscous, nonequi-
librium type. From a balance of terms in the x-
momentum equation it follows that the thickness of
the critical layer is of order µ = O(R−

1
3 ).

The precise effect of nonlinearity depends on the
type of disturbance introduced and the nature of the
singularity associated with the critical layer[s]. Nev-
ertheless, scalings for a number of different cases can
be derived in a unified manner. Assume that as a
critical layer is approached, the vorticity of the dis-
turbance ũy can be expressed as

ũy ∼ O

(
ε

(y − yc)k

)
∼ O

(
ε

µk

)
, (6.2a)

where ε is the amplitude of the disturbance in the
outer region and

k = 0 for two-dimensional disturbances with a

‘regular’ critical layer, i.e. Ūyy(yc) = 0,

k = 1 for two-dimensional disturbances with a ‘sin-
gular’ critical layer, i.e. Ūyy(yc) 6= 0,

k = 2 for three-dimensional disturbances.

By means of a scaling argument it is possible
to analyse how the nonlinear interactions inside the
critical layers generate higher harmonics and a mean-
flow distortion. In particular, the cubic interaction
drives a fundamental of O(ε3µ−k−3). For this to af-
fect the evolution of the disturbance, it must bal-
ance the O(εµ) linear, ‘slow-growth’, correction in
the outer region (Hickernell 1984, Goldstein & Choi
1989):

O(ε3µ−k−3) ∼ O(εµ) , i.e. µ = O(ε
2

k+4 ) .
(6.2b, c)

Hence in region VI the critical amplitude for nonlin-
ear effects to be felt by the disturbance is

ε = (λR)−
k+4
6 , (6.2d)

where λ is a (generalised) Haberman parameter.

6.2 Two-dimensional ‘regular’ modes

The development of nonlinear effects for two-
dimensional modes in an incompressible free shear
layer has been studied by Goldstein & Leib (1988),
Goldstein & Hultgren (1988) and Hultgren (1992).
For a free shear layer, the critical layer is located
at the inflection point in the velocity profile; hence
k = 0 in (6.2b, c) (Goldstein & Leib 1988, Goldstein
& Hultgren 1988).

After an appropriate rescaling, the critical-layer
dynamics in this region is governed by(

∂

∂x̄
+ Y

∂

∂X
−<(iAeiX)

∂

∂Y
− λ̄

∂2

∂Y 2

)
Q =

<
(

eiX(iA +
1
2
Ū

dA

dx̄
)
)

, (6.3a)

where A is the amplitude function, Q is the distur-
bance vorticity within the critical layer, Ū is a mea-
sure of the mean speed of the critical layer, λ̄ is pro-
portional to λ, Y is a critical layer coordinate. From
matching with the outer layer, and an upstream lin-
ear mode, it follows that

1
π

∫ +∞

−∞

∫ 2π

0

Qe−iXdXdY = iχ
dA

dx̄
+ JA , (6.3b)

and

A → eκx̄ as x̄ → −∞ , (6.3c)

respectively, where χ, J and κ are constants depend-
ing on the shear-layer velocity profile.

The system (6.3) uniquely determines A and
Q. Similar equations were derived by Churilov &
Shukhman (1987) when studying the evolution of a
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free Rayleigh mode on a β plane. This system also
governs the development of a forced Rossby wave
(Warn & Warn (1976, 1978), Stewartson (1978)). †

Numerical solutions to (6.3) have been obtained
by Goldstein & Leib (1988) in the inviscid, λ = 0,
case. Their results show that nonlinearity can cause
the instability to saturate well upstream of the lin-
ear neutral stability point. The vorticity rolls up
under nonlinear effects, and small-scale eddies are
generated downstream (Warn & Warn 1978). The
‘large-time’ solution does not seem to tend to a well-
defined limit (Stewartson 1978). However, when vis-
cosity is included, Goldstein & Hultgren (1988) found
that sufficiently far downstream viscous effects cause
the vorticity distribution to diffuse into a much sim-
pler pattern. Far downstream the instability wave
grows algebraically and the critical layer evolves into
a quasi–equilibrium state. This is similar to that
of Benney & Bergeron (1969), but the detailed flow
is different in that the vorticity within the cat’s-eye
boundary is non–uniform. Of course there are the
ubiquitous diffusion layers sandwiching the critical
layer. As this quasi–equilibrium state propagates
downstream, Goldstein & Hultgren (1988) show how
to incorporate non-parallel effects. They demon-
strate that on passing the neutral point of linear
waves, the nonlinear quasi-equilibrium states decay!

In both Goldstein & Leib (1988) and Goldstein
& Hultgren (1988), the basic profile was chosen to
be ‘tanh y’ so that the eigenfunction could be solved
analytically. Strictly speaking, for complete self-
consistency the basic flow should be obtained by solv-
ing the steady two-dimensional boundary-layer equa-
tions. Hultgren (1992) adopted this approach using
an experimentally measured velocity distribution as
an initial profile. Based on this more realistic pro-
file and using composite expansions, Hultgren (1992)
obtained theoretical predictions for the development
of the wave that are in quantitative agreement with
experiment (see figure 8).

Using a similar approach, Leib & Goldstein
(1989) have investigated the nonlinear interaction be-
tween the marginally unstable sinuous and varicose
modes in the ‘Bickley jet’. Both modes are regular
since the critical levels are located at the symmetric
inflection points. The varicose mode is the subhar-
monic of the sinuous mode, and thus they form a sub-
harmonic resonance. The critical layers are strongly

† While equation (6.3a) is strongly nonlinear, we be-
lieve that the theory as a whole should be regarded as
being weakly nonlinear in the sense stated at the end of
§3.4.

nonlinear, and the equations governing the evolution
of the amplitudes and the distribution of the vortic-
ity of each mode are coupled.

In fact, ‘strongly’ nonlinear critical layers are
not limited to flows with regular normal modes. As
indicated at the end of §5.1, a strongly nonlinear
critical-layer structure also describes the vorticity
roll-up for long-wavelength modes in boundary layers
with (weak) adverse pressure gradients (Goldstein,
Durbin & Leib, 1987). In addition, Goldstein &
Wundrow (1990) found that the nonlinear evolution
of the so-called ‘acoustic’ mode in hypersonic bound-
ary layers is governed by a nonlinear critical-layer
vorticity equation coupled with a nonlinear energy
equation.

6.3 Two-dimensional ‘singular’ modes

Not all flows of interest have regular critical
layers (e.g. Stokes layers). In the case of a two-
dimensional flow where a mode’s critical layer[s]
is/are not located at inflection points, the outer so-
lution for the linear vorticity perturbation has a pole
singular at the critical layer[s]. On setting k = 1
and µ = ε

2
5 in (6.2), we recover Hickernell’s (1984)

scaling ε = R−
5
6 . It follows that the mode needs a

smaller amplitude for nonlinearity to influence the
disturbance. ‡

For this scaling Hickernell (1984) showed that,
as in classical weakly nonlinear theory (e.g. Stuart
1960), nonlinearity enters through inhomogeneous
terms in the governing equations. Specifically, within
the critical layer a sequence of linear partial differen-
tial equations of the form(

∂

∂x̄
+ Y

∂

∂X
− λ

∂2

∂Y 2

)
Φ = F (X, x̄, Y ) (6.4)

need to be solved (cf. (6.3a)). The evolution equa-
tion for the amplitude then follows from matching
the critical-layer solutions to those in the outer layer.
In particular, as a result of retaining the slow growth
term at leading order in the critical-layer equations,
the amplitude equation is of integro-differential type
(cf. (4.4), (4.6), (5.2), (5.5)). Hickernell (1984) as-
sumed that a disturbance was introduced at a specific
upstream location, say at x̄. † An alternative initial
condition is to follow Stewartson & Stuart (1971)
and assume that as x̄ → −∞, the nonlinear stage
matches onto the earlier linear one. The amplitude

‡ Of course this statement on relative local amplitudes
ignores any upstream region of linear exponential growth.
† Actually, Hickernell (1984) considered a temporal

stability problem, and so introduced his disturbance at a
specific time.
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equation in this case is

dA

dx̄
= g0x1A +

∫ +∞

0

dξ

∫ +∞

0

dη
∑

j

gjKj(ξ, η)×

A(x̄ − ξ)A(x̄ − ξ − η)A∗(x̄ − 2ξ − η), (6.5a)

where the sum is over all critical layers, g0 and gj are
constants, and

Kj(ξ, η) = ξ2e−
1
3 λβj(2ξ3+3ξ2η) , βj = α2Ū2

y .
(6.5b)

Numerical investigations of this equation by
Goldstein & Leib (1989) and others show that so-
lutions can either blow up at a finite distance down-
stream, or evolve into an equilibrium state. The out-
come depends on the relative size of the disturbance,
the Reynolds number, and the <(gj). The rapid in-
crease in amplitude associated with a finite-distance
singularity indicates the development of a shorter-
scale flow, consistent with observations of transition.
We note, however, that this result is analogous to
a finite-time singularity of a uniform wavetrain de-
scribed by the Landau equation (3.2). Since real ex-
periments have finite spanwise extent, and are per-
formed over a finite period of time, the effects of
modulation on this result need to be accounted for
(§6.6).

Hickernell’s (1984) equation, and generalisations
of it, have also been derived by Goldstein & Leib
(1989) and Leib (1991) when studying the evolution
of a single oblique mode in a compressible shear layer.
Although the neutral eigensolutions for the stream-
wise and spanwise velocity exhibit a pole type of sin-
gularity in such a shear layer, these singularities can
be eliminated by an appropriate Squire transforma-
tion (cf. Bodonyi & Smith 1982b). ‡ Goldstein &

‡ A key point here is that Goldstein & Leib (1989)
and Leib (1991) assume that the oblique mode grows in
its direction of propagation. As part of a study on the
nonlinear spatial evolution of helical disturbances on an
axial jet, Churilov & Shukhman (1994) have shown that
the governing amplitude equation changes if, instead, the
oblique mode grows in the direction of the underlying
shear-layer flow. Although the scaling is still given by
(6.2d) with k = 1, the interactions within the critical
layer differ from those given in §6.1, and arise from a
need to satisfy the continuity equation on the modula-
tional lengthscale. In the very viscous limit Churilov &
Shukhman (1994) obtain

dA

dX̄
= G0x1A + G1A

d

dX̄

∫ ∞

0

ζ̄−
1
2 |A(X̄ − ζ)|2dζ ,

where the Gi are constants, as their scaled amplitude
equation. Depending on the sign of <(G1), solutions to
this equation either terminate in a finite distance singu-
larity, or grow algebraically as X̄ →∞.

Leib (1989) and Leib (1991) show that the simple
pole in the temperature fluctuation (plus the loga-
rithmic branch point of the leading–order solutions
for the pressure and the vertical velocity, if the criti-
cal level does not coincide with a generalised inflexion
point), lead to a critical-layer nonlinearity similar to
that of Hickernell (1984).

Shukhman (1991) showed that equation (6.5)
also describes the nonlinear evolution of unstable spi-
ral density waves on a rotating compressible shear
layer. Wu & Cowley (1994) have used this approach
to describe the two-dimensional weakly nonlinear
temporal instability of Stokes layers. They propose
that the explosive growth associated with a finite-
time singularity may be related to the rapid growth
of high-frequency disturbances observed in experi-
ments.

6.4 A pair of oblique modes

In two-dimensional incompressible flows, the pla-
nar mode usually has the largest linear growth rate.
Thus the early stages of transition are often ob-
served to be two-dimensional. Sufficiently far down-
stream, however, three-dimensionality can no longer
be ignored. For example, if nonlinear effects modify
the growth of a two-dimensional instability through
a strongly nonlinear critical layer (see §6.2), then
the initial exponential growth of the two-dimensional
mode is reduced to an algebraic growth (e.g. Churilov
& Shukhman 1987, Goldstein & Hultgren 1988). Wu
et al. (1993) observe that this may allow a exponen-
tially growing three-dimensional instability to over-
take the two-dimensional mode, for instance through
secondary instability (cf. Kelly & Maslowe 1970, Kill-
worth & Mcintyre 1985, and Haynes 1985). ?

In addition, there are supersonic compressible
shear flows where, if the Mach number is not too
large, the most rapidly growing mode is three-
dimensional. Even in flows such as Stokes layers
where the fastest-growing mode is two-dimensional,
transition caused by instability waves growing from
background noise is often is observed to be three-
dimensional throughout.

For these and other reasons, three-dimensional
disturbances have been studied. The case of a sin-
gle oblique mode in a (compressible) shear layer has
been mentioned in §6.3. However, since there is no
preferred spanwise direction, it is likely that if one
oblique mode is excited, so is its ‘twin’ propagating
at an equal but opposite angle to the mean-flow di-
rection. Furthermore, the nonlinear interaction of

? Goldstein & Lee (1993) note that this observation
has recently been placed on a firmer analytical footing.
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these oblique modes generates a longitudinal vortex.
The presence of such longitudinal vortices is one of
the characteristics of transitional flows.

The nonlinear spatial evolution of a pair of
oblique waves in a free shear layer has been stud-
ied by Goldstein & Choi (1989). They showed that
because of the double-pole vorticity singularity at
the critical layer, nonlinear effects must be included
when ε = R−1 (put k = 2 in (6.2d)). This is a smaller
amplitude than needed for nonlinear effects to influ-
ence a single oblique mode. This analysis was ex-
tended by Wu et al. (1993) to include viscous effects
and to allow critical layers to be situated away from
an inflection point of the velocity profile. Their anal-
ysis applies to any ‘nearly parallel’ two-dimensional
shear layer which is inviscidly unstable, although by
way of example they apply the theory to Stokes lay-
ers.

The amplitude evolution equation still takes the
form of (6.5a), but the kernel functions Kj(ξ, η|λ)
are different, and in the viscous case are algebraically
messy. In the inviscid limit, λ = 0, Goldstein & Choi
(1989) obtain

Kj(ξ, η|λ) = K(ξ, η) = (2ξ3 + ξ2η)−
2 sin2θ(2ξ3 − ξη2)− 4 sin4θ(ξ2η + ξη2) . (6.6)

Goldstein & Choi (1989) show that solutions of
the inviscid equation always terminate in a finite-
distance singularity (or finite-time singularity in the
corresponding temporal problem). As usual this can
be interpreted as indicating an evolution towards
shorter scales, usually the fully nonlinear Euler stage.
Numerical solutions of the viscous problem show that
for a range of obliqueness angles a singularity always
forms, while for other angles the solution decays ex-
ponentially downstream if viscous effects are suffi-
ciently large (i.e. if the flow becomes nonlinear suffi-
ciently close to the neutral point). Indeed for large
viscosity, and after a suitable rescaling, the ampli-
tude equation simplifies to

dA

dx̄
= g0x1A + ḡA

∫ +∞

0

|A(x̄− η)|2dη . (6.7)

This equation has also been derived by Smith &
Blennerhassett (1992) in a TS-wave/vortex study
of the evolution of almost-neutral, lower-branch,
oblique waves in PPF. Solutions to (6.7) develop
a finite-distance singularity if <(ḡ) > 0, decay ex-
ponentially far downstream (but leave a mean flow
growing algebraically) if <(ḡ) < 0, and grow ex-
ponentially if <(ḡ) = 0. The last case always
corresponds to waves propagating at 45◦ to the
freestream. Depending on the flow in question, a
singularity forms, or the solutions decays, for angles

greater than or less than 45◦ respectively — or vice
versa.

The dynamics underlying (6.7) are a Rayleigh-
wave/vortex interaction as a result of the develop-
ment of a diffusion layer that sandwiches the critical
layer. If viscous effects are sufficiently large, i.e. if
nonlinear effects become important in region VII (or
equivalent) of figure 7c, then the x̄ and x1 variables
in (6.7) become identical (cf. §4.1). This scaling has
been considered by Smith et al. (1993) in some detail
in the context of a wall shear layers. In that case an
extra linear term proportional to A arises as an re-
sult of an O(R−

1
2 ) correction to the growth-rate from

a Stokes layer adjacent to the wall (see also Cowley,
1987).

For the case where the shear layer is about to sta-
bilise (cf. figure 7c), Smith et al. (1993) show that so-
lutions to their equation in general either hit a finite-
distance singularity or decay (although in one special
case a Hall & Smith (1991) Rayleigh-wave/vortex in-
teraction is generated). However, the analysis also
applies close to a neutral point if a shear flow is be-
coming unstable to Rayleigh waves. Then, if the ini-
tial disturbances is large enough, solutions either hit
a finite-distance singularity or evolve to a periodic
solution.

Since Smith et al. (1993) arrived at their
equation by considering a limiting problem of a
wave/vortex interaction, while Wu et al. (1993)
started from a non-equilibrium critical-layer ap-
proach, there is clearly a mathematical link between
the two approaches. Further, Wu et al. (1993) sug-
gest that because their solutions either decay or ter-
minate in a singularity, it is unlikely that an initially
linear wave will evolve to a Rayleigh-wave/vortex
interaction of the type described by Hall & Smith
(1991).

6.5 Resonant-triad interactions

A resonant triad of Rayleigh instability waves
was first studied in the context of non-equilibrium
critical layers by Goldstein & Lee (1992) for long
wavelength modes (in fact for the inviscid limit of
region IV in figure 7c). The case of modes with
O(1) wavelengths (i.e. inviscid limit of region VI) was
studied by Wu (1992). In both situations, the am-
plitude, ε, of the subharmonic waves was assumed to
be O(δ/µ), where δ is the magnitude of the planar
wave at the fundamental frequency (µ satisfies (6.2c)
with k = 2, and while λ � 1 in (6.2d) so that the
flow is primarily inviscid). Essentially the same am-
plitude equations are obtained by both Goldstein &
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Lee (1992) and Wu (1992), namely

dA

dx̄
= g10x1A + g11

∫ ∞

0

K11A
∗(x̄− 2ξ)B(x̄− ξ)dξ

+ g12

∫ ∞

0

dξ

∫ ∞

0

dηK12×

A(x̄− ξ)A(x̄− ξ − η)A∗(x̄− 2ξ − η) ,(6.8a)

and

dB

dx̄
= g20x1B

+ g21

∫ ∞

0

dη

∫ ∞

0

dζK21×

B(x̄− ζ)A(x̄− ζ − η)A∗(x̄− 3ζ − η)

+ g22

∫ ∞

0

dη

∫ ∞

0

dζK22×

B(x̄− ζ − η)A(x̄− ζ)A∗(x̄− 3ζ − 2η)

+ g23

∫ ∞

0

dξ

∫ ∞

0

dη

∫ ∞

0

dζK23A(x̄− η)×

A(x̄− η − ζ)A(x̄− η − ζ − ξ)A∗(x̄− 3η − 2ζ − ξ) ,

(6.8b)

where A and B are the amplitudes of the oblique
modes and the two-dimensional mode respectively,
and the two oblique modes have been assumed to
have equal amplitudes (for the sake of simplicity).
The kernel functions are polynomials in ξ, η and ζ.
For a triad of modes with O(1) wavelengths, the coef-
ficients are usually complex numbers, while for long-
wavelength modes they are pure imaginary. What-
ever their value, numerical solutions always seem
to develop a singularity within a finite distance (or
time).

The above results are obtained by assuming that
the Reynolds number is sufficiently large so that vis-
cosity can be ignored. Given the rather surprising
rôle played by viscosity in the case of pair of oblique
modes, it would be interesting to examine whether
the singularity still forms when viscosity is included.
Goldstein & Lee (private communication) are tack-
ling this problem by solving the critical-layer equa-
tions numerically, while Wu is taking an analytical
approach.

As mentioned above, in order to derive the
fully coupled equations (6.8a, b), it is assumed that
ε = O(δ/µ), i.e. the three-dimensional modes are re-
quired to have a much larger magnitude than the
two-dimensional mode. If ε � δ/µ, then the cubic
term in (6.8a), and all the nonlinear terms in (6.8b),
can be dropped from from the equations. Since the
oblique modes have no feedback effect on the pla-
nar mode, this is referred to as parametric reso-
nance. Goldstein & Lee (1992) show that the oblique
waves can experience a exponential-of-exponential

growth, while the planar waves evolve exponentially.
Depending on the initial magnitude of the oblique
modes, there are several possibilities for the subse-
quent development. If the oblique modes are not too
small initially, their magnitude will quickly overtake
that of the planar mode, and the evolution soon en-
ters the fully coupled stage described by (6.8). How-
ever, if the initial magnitudes of the oblique modes
are sufficiently small (exponentially small in some
sense), Wundrow, Hultgren & Goldstein (1994) ob-
serve that the planar wave can go nonlinear before
the oblique waves can produce a feedback effect. For
shear layers with a regular critical layer, the evolu-
tion of the planar modes is then governed by (6.3),
while the oblique modes evolve over a much faster
(inviscid) ‘time’ scale in this stage. The continuing
increase of the amplitude of the oblique modes even-
tually leads to a feedback on the plane mode so that
ultimately all waves evolve on the short (inviscid)
scale, and become fully coupled. This final stage is
largely described by (6.8a, b) except that the linear
terms are dropped. In addition a different upstream
condition is imposed which is given by the asymp-
totic behaviour of the previous stage. However, if
the critical layer is singular, then following the para-
metric resonance stage the development of the pla-
nar mode is governed by (6.5a). Because the solution
of this equation can develop a singularity or equili-
brate, the final stage may be different from that of
Wundrow et al. (1994).

6.6 Spatial modulation of a planar carrier
wave

In the studies summarised so far in this sec-
tion, the disturbances have been assumed to be two-
dimensional or to have a sinusoidal dependence on
the spanwise variable. As in earlier weakly nonlinear
studies this restriction can be relaxed by allowing for
modulated wavetrains. For example, Wu (1993b) has
studied the spanwise modulated version of the ampli-
tude equation (6.5a) for modes with singular critical
layers. He shows that for weak spanwise variations
over O(ε−

1
5 ) distances, nonlinear interactions within

the critical layer affect the spanwise distribution of
the vorticity, as well as the streamwise development,
in region VI (i.e. at O(ε2/5R) distances upstream of
the neutral curve). The modulation equation is

∂A

∂x̄
−p

∂2A

∂Z̄2
= g0x1A +

∫ ∞

0

dξ

∫ ∞

0

dηK(ξ, η|λ)×(
g1ξ

2A(x̄ − ξ)A(x̄ − ξ − η)A∗(x̄ − 2ξ − η)

+ hξA(Z̄, x̄−ξ)A(Z̄, x̄−ξ−η)A∗Z̄Z̄(Z̄, x̄−2ξ−η)
+ hηA(Z̄, x̄−ξ)[A(Z̄, x̄−ξ−η)A∗Z̄(Z̄, x̄−2ξ−η)]Z̄
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+ hξ[A(Z̄, x̄−ξ)A(Z̄, x̄−ξ−η)A∗Z̄(Z̄, x̄−2ξ−η)]Z̄

)
,

(6.9a)

where Z̄ = ε
1
5 z, K(ξ, η) is defined by (6.5b), and p,

g0, g1 and h are constants.

Numerical solutions show that a disturbance cen-
tred at a spanwise position can propagate laterally
to form concentrated, quasi-periodic streamwise vor-
tices. This qualitatively captures phenomena ob-
served in free shear layer experiments. The focussing
of the vorticity appears to be associated with a lo-
calised singularity at a finite distance downstream.

In the viscous limit the scaled amplitude equa-
tion becomes

∂A

∂x̄
−p

∂2A

∂Z̄2
= g0x1A

+hA

∫ ∞

0

η−
1
2 [A(x̄− η)A∗Z̄(x̄− η)]Z̄dη . (6.9b)

As in the case of the oblique modes, the equation
obtained in the viscous limit is non-local. Further,
we note that the amplitude equation governing the
modulation of TS waves in the upper-branch régime,
i.e. equation (5.2), is a special case of (6.9b).

As for oblique waves, if the disturbance becomes
nonlinear very close to the neutral point (i.e. region
VII), then non-parallel effects need to be included
by identifying x1 with x̄ in (6.9b) (and, in the case
of a wall shear layer, by including an extra linear
term in A to allow for the influence of the Stokes
layer on the wall). This régime has been studied
by Timoshin & Smith (1993), who also note there is
an intermediate scaling between this slow-spanwise-
modulation scaling, and the oblique wave scaling of
§6.4 (cf. §5.2).

7. CONCLUDING REMARKS

In this paper we have attempted to review some
of the more recent high-Reynolds-number asymp-
totic approaches to understanding transition in in-
compressible/subsonic shear flows. By necessity we
have had to be selective in our choice of material be-
cause of the fact that in the high-Reynolds-number
limit there are an abundance of possible scalings. We
have attempted to explain how some of these scalings
relate to each other in the hope that this will make
the choice of which theory to compare with which ex-
periment slightly easier. However, in preparing the
review we were struck by disparity between the large
number of papers based on an asymptotic approach,
and the small number of papers that obtain good
quantitative (or even qualitative) agreement with ex-
periment. To a certain extent this is a consequence

of our choice of subject material, i.e. [weakly] non-
linear models of transition caused by the growth of
TS/Rayleigh waves. We note that in related topics
(for which they are already recent reviews) a num-
ber of favourable comparisons have been obtained
between high-Reynolds-number theories and experi-
ment; e.g. for the linear receptivity problem see Gold-
stein & Hultgren (1987), while for Görtler vortex
flows see Hall (1983), Hall & Seddougui (1989), De-
nier, Hall & Seddougui (1991) and Hall & Horseman
(1991).

There is of course agreement between the lower
branch neutral curve for the Blasius boundary layer
and experiment (Smith 1979a). Hultgren (1992) has
also obtained good quantitative agreement between
theory and experiment by imaginative use of com-
posite expansions. Further, Smith & Stewart (1987),
Stewart & Smith (1992) and Smith & Bowles (1992)
all note quantitative agreement with various weakly
nonlinear theories and experiment. However, in each
of these three theories an assumption is apparently
made that the nonlinear critical layer plays a passive
rôle, whereas in other theories (e.g. Wu et al. 1994)
critical layers are known to play an active part in the
dynamics. Verification that the critical layer in the
aforementioned theories was indeed passive would be
reassuring.

Further, if improved quantitative agreement be-
tween theory and experiment is to be obtained, then
more attention seems to be required concerning ini-
tial conditions to the nonlinear amplitude equations,
etc. For instance, it appears that careful attention
in this area may revise our view of whether slightly
supercritical PPF ‘bursts’. There also appears to be
merit in greater use of composite expansions.

On the plus side, one of the great strengths of
asymptotic theory has been in identifying mecha-
nisms. They key rôle of the critical layer has been
emphasised in many of the papers quoted. The
work of Hall, Smith and their colleagues has also
highlighted the powerful influence that wave/vortex
(or wave/mean-flow) interactions can have on high-
Reynolds-number flows. Further, the occurrence of
finite-distance/finite-time singularities is also sugges-
tive of the development of small scales. The possi-
bilities of singularities in the fully nonlinear triple-
deck equations (e.g. Smith 1988), and the potential
of Van Dommelen singularities (Van Dommelen &
Shen 1980) in the classical unsteady boundary layer
equations to explain sub-layer bursting (e.g. Smith
& Burggraf 1985, Hoyle, Smith & Walker 1991), are
worthy of special mention.
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Mécanique 12, 75–95.

Brown P.G., Brown S.N., Smith F.T. & Timoshin S.N.
1993. On the starting process of strongly nonlinear vor-
tex Rayleigh-wave interactions. Mathematika 40, 7-29.

Brown S.N. & Stewartson K. 1978. The evolution of the
critical layer of a Rossby wave. Part II. Geophys. As-
trophys. Fluid Dyn. 10, 1–24.

Churilov S.M. & Shukhman I.G. 1987. The nonlinear de-
velopment of disturbances in a zonal shear flow. Geo-
phys. Astrophys. Fluid Dyn. 38, 145–175.

Churilov S.M. & Shukhman I.G. 1994. Nonlinear spatial
evolution of helical disturbances on an axial jet. Sub-
mitted to J. Fluid Mech.

Cowley S.J. 1981. High Reynolds number flows through
distorted channels and flexible tubes. Ph.D Thesis, Uni-
versity of Cambridge.

Cowley S.J. 1985. Pulsatile flow through distorted
channels: low-Strouhal-number and translating-critical-
layer effects. Q. J. Mech. Appl. Maths. 38, 589–619.

Cowley S.J. 1987. High frequency Rayleigh instability of
Stokes layers. In Stability of time dependent and spa-
tially varying flows (ed. D.L. Dwoyer & M.Y. Hussaini),
Springer-Verlag.

Cowley S.J., Duck P.W., Tutty O.R. & Van Domme-
len L.L 1990. Genesis of three-dimensional separation.
Workshop on Analytical Methods in Unsteady Separa-
tion, Ohio State University, January 1990.

Cowley S.J. & Hall P. 1990. On the instability of hyper-
sonic flow past a wedge. J. Fluid Mech. 214, 17–42.

Cowley S.J., Hocking L.M. & Tutty O.R. 1985. The sta-
bility of solutions of the classical unsteady boundary-
layer equation. Phys. Fluids 28, 441–443.

Cowley S.J., Tanveer S., Baker G.R. & Page M.A. 1993.
An asymptotic description of the formation of a curva-
ture singularity in a vortex sheet. In Preparation.

Craik A.D.D. 1971. Non-linear resonant instability in
boundary layers. J. Fluid Mech. 50, 393–413.

Dickinson R.E. 1970. Development of a Rossby wave crit-
ical level. J. Atmos. Sci. 27, 627–633.

Davey A., Hocking L.M. & Stewartson K. 1974. On the
nonlinear evolution of three-dimensional disturbances in
plane Poiseuille flow. J. Fluid Mech. 63, 529–536.

Davis R.E. 1969. On the high Reynolds number flow over
a wavy boundary. J. Fluid Mech. 30, 337–346.

Denier J.P., Hall P. & Seddougui S.O. 1991. On the
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in growing boundary layers. J. Fluid Mech. 130, 41–58.
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