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Abstract Boundary-layer theory is crucial in understanding why certain phenom-
ena occur. We start by reviewing steady and unsteady separation from
the viewpoint of classical non-interactive boundary-layer theory. Next,
interactive boundary-layer theory is introduced in the context of un-
steady separation. This discussion leads onto a consideration of large-
Reynolds-number asymptotic instability theory. We emphasise that a
key aspect of boundary-layer theory is the development of singularities
in solutions of the governing equations. This feature, when combined
with the pervasiveness of instabilities, often forces smaller and smaller
scales to be considered. Such a cascade of scales can limit the quan-
titative usefulness of solutions. We also note that classical boundary-
layer theory may not always be the large-Reynolds-number limit of the
Navier-Stokes equations. This is because of the possible amplification of
short-scale modes, which are initially exponentially small, by a Rayleigh
instability mechanism.

1. INTRODUCTION
Sectional lecturers were invited ‘to weave in a bit more retrospective

and/or prospective material [than normal] given the particular [Millen-
nium] year of the Congress’. This invitation is reflected in the current,
possibly idiosyncratic, article. For alternative viewpoints the reader is
referred to Stewartson (1981), Smith (1982), Cowley and Wu (1994),
Goldstein (1995) and Sychev et al. (1998). We begin with a deconstruc-
tion of the components of the title.

Boundary-Layer Theory. Prandtl (1904) proposed that viscous effects
would be confined to thin shear layers adjacent to boundaries in the case
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of the ‘motion of fluids with very little viscosity’, i.e. in the case of flows
for which the characteristic Reynolds number, Re, is large. In a more
general sense we will use ‘boundary-layer theory’ (BLT) to refer to any
large-Reynolds-number, Re� 1, asymptotic theory in which there are
thin shear layers (whether or not there are boundaries).

20th Century. Prandtl (1904) published his seminal paper on the
foundations of boundary-layer theory at the start of the 20th century,
while the ICTAM 2000 was held at the end of the same century.

Laminar. Like Prandtl (1904) we will be concerned with laminar,
rather than turbulent, flows. Flows that are in the process of laminar-
turbulent transition will be viewed as unstable laminar flows.

A Paradox. Experimental flows at large Reynolds numbers are tur-
bulent, yet useful comparisons with laminar-flow experiments at mod-
erately large Reynolds numbers can sometimes be made with large-
Reynolds-number asymptotic theories. We view as a paradox this seem-
ingly contradictory result, i.e. that useful comparisons with laminar flow
can be made with expansions made about Reynolds numbers when flows
are almost invariably turbulent.

?. The question this paper will discuss is whether the final ‘?’ is
needed in the title. A subjective conclusion is given at the end.

2. CLASSICAL BOUNDARY LAYERS

2.1. FORMULATION
We consider incompressible flow of a fluid with constant density ρ and

dynamic viscosity µ, past a body with typical length L. We assume that
a typical velocity scale is U , and that the Reynolds number is given by

Re = ρUL/µ� 1 . (1)

For simplicity we will, for the most part, consider two-dimensional in-
compressible flows, although many of our statements can be generalised
to three-dimensional flows and/or compressible flows.

The Key Approximations. BLT applies to flows where there are
extensive inviscid regions separated by thin shear layers, say, of typical
width δ � L. For one such shear layer take local dimensional Cartesian
coordinates x̂ and ŷ along and across the shear layer respectively. Denote
the corresponding velocity components by û and v̂ respectively, pressure
by p̂ and time by t̂. On the basis of scaling arguments (e.g. Rosenhead
1936) it then follows that

δ ∼ Re−
1
2L � L . (2)
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Further, it can also be deduced that the key approximations in classical
BLT are that the pressure is constant across the shear layer, i.e.

0 = −p̂ŷ , (3)

and that streamwise diffusion is negligible, i.e. if • represents any variable

•ŷŷ � •x̂x̂ . (4)

The former approximation is more significant dynamically.

The Governing Equations. Using the transformations

(x̂, ŷ, t̂, û, v̂, p̂)→ (Lx ,Re−
1
2L y ,U−1L t ,Uu ,Re−

1
2Uv , ρU2 p), (5)

and taking the limit Re→∞, the BLT equations can be deduced from
the Navier-Stokes equations:

ut + uux + vuy = −px + uyy , (6)
0 = −py , ux + vy = 0 . (7)

For flow past a rigid body the appropriate boundary conditions are

u = v = 0 on y = 0 and u→ U(x, t) as y →∞ , (8)

where U(x, t) is the inviscid slip velocity past the body. Further, from
(6) evaluated at the edge of the boundary layer

−px = Ut + UUx . (9)

We define the ‘viscous blowing’ velocity out of the boundary layer to be

vb(x, t) = lim
y→∞

(v + Ux(x, t)y) . (10)

vb indicates the strength of blowing, or suction, at the edge of the bound-
ary layer induced by viscous effects. It is a good diagnostic for dynami-
cally significant effects within the boundary layer — much better than,
say, the wall shear uy(x, 0, t) which can remain regular while vb(x, t)
becomes unbounded.

2.2. STEADY FLOWS
Steady Flow Past An Aligned Flat Plate: A Success. Probably
the most famous solution to (6) and (7) is that of Blasius (1908) for
flow past an aligned flat plate. A comparison between this similarity
solution and Wortmann’s visualisation of that flow (Van Dyke 1982)
demonstrates that BLT seems to work in this case — at least forR ≈ 500,
where R = ρUδ/µ = Re

1
2 .
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Steady Flow Past A Circular Cylinder: A Failure. On the as-
sumption that far from the boundary the velocity field is irrotational
and inviscid to leading order, the inviscid slip velocity for steady flow
past a circular cylinder is given by U = 2 sin x. Terrill (1960) showed
numerically that the solution to (6)–(8) with this slip velocity terminates
in a Goldstein (1948) singularity at x = xc ≈ 104.5◦ with

vb ∼ k(xc − x)−
1
2 + . . . as x→ xc , (11)

for some constant k. This singularity occurs at the point where reversed
flow is about to develop, i.e. miny u→ 0 as x→ xc.

A Serious Problem. The occurrence of a singularity often indicates
that there is a significant development in the flow physics, e.g. the for-
mation of small scale structure. In such circumstances new physics can
usually be included in the model by introducing an asymptotic scaling
close to x = xc, so enabling a solution to be found for x > xc.

However, Stewartson (1970) showed that, in general, there is no in-
ner rescaling which ‘smoothes out’ the Goldstein singularity (Smith and
Daniels (1981) discuss an exception). As a result, no BLT solution exists
for x > xc. Moreover this result implies that both the BLT solution for
x < xc, and the inviscid solution far from the cylinder, are incorrect.
BLT does not always work.

What Has Gone Wrong? The short answer is that the assumption
that the flow far from the wall is irrotational is incorrect. Experimentally
it is observed that, other than at very small Reynolds numbers, there is a
rotational eddy behind the cylinder that is at least as large as the cylin-
der; moreover the flow is steady and symmetric only for Re 6 Rec ≈ 47
(for larger Reynolds numbers the flow is unsteady and asymmetric).

Further, Rec is not an asymptotically large Reynolds number! Steady
symmetric solutions for Re > Rec obtained numerically by specifically
excluding the possibility of unsteadiness and asymmetry, suggest that
the asymptotic regime for steady symmetric solutions is only reached
for Re & 600 (Fornberg 1985), i.e. at Reynolds numbers far larger than
those at which the steady flow is stable.

One way forward is to study unsteady flows on the basis that these
are what are observed experimentally (see § 2.3). Another is to seek the
asymptotic form of the steady symmetric solution (even if it is experi-
mentally unobservable) in the hope that the solution will shed light on
the failure of classical BLT (although the true justification for studying
the problem may be closer to that of mountaineers for climbing Everest,
i.e. it’s hard and it’s there).
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Steady Symmetric Flow Past A Circular Cylinder: An Answer.
An asymptotic solution for steady symmetric separated flow past a bluff
body at large Reynolds number must contain at least two important
ingredients. First there must be a local solution at the point of separation
of the boundary layer from the body surface. Second, an asymptotic
model of the global wake is needed.

Local separation is described by Sychev’s (1972) ‘triple-deck’ analysis
(see also Smith 1977). This is based on the premise that, at the point of
separation on a smooth surface, the pressure gradient is O(Re−

1
16 ). In

the context of Kirchhoff free-streamline theory this means that the ap-
propriate free-streamline solution satisfies the Brillouin-Villat condition
to leading order (e.g. see Sychev et al. (1998) for a discussion).

There have been a number of attempts to fit the above local descrip-
tion of separation into a consistent large-Reynolds-number asymptotic
global solution for the flow past a circular cylinder. Building on the
work of others, Chernyshenko (1988) proposed an asymptotic structure
based on the special Sadovskii (1971) vortex where there is no velocity
jump at the edge of the vortex. While this structure, in which both the
length and the width of the wake are O(Re) in magnitude, may not be
unique, it overcomes the technical shortcomings, especially as regards
wake reattachment, of other proposals (e.g. see Chernyshenko 1998).

2.3. UNSTEADY SEPARATION
While the large-Reynolds-number asymptotic solution for steady, sym-

metric laminar flow past a bluff body is not experimentally realizable,
this is not the case for fast starting flow past a smooth bluff body. In
particular, when t� 1 the unsteady ut term in (6) is much larger than
the nonlinear uux term, and is balanced by the diffusive uyy term (so
that the boundary layers are very thin with δ ∝ t

1
2 ). Hence when t� 1

each point of the boundary layer looks locally like Rayleigh’s solution
for starting motion over a flat plate, and hence separation does not take
place at sufficiently early times (e.g. Goldstein and Rosenhead 1936).

Impulsively Started Flow Past A Circular Cylinder. There
have been a number of visualisations of this flow, e.g. Prandtl (1932),
Coutanceau and Bouard (1977). Prandtl’s (1932) film is particularly
instructive as regards where separation of the boundary layer starts.

For many years research into unsteady separation focused on the rear
stagnation point (e.g. Robins and Howarth 1972), since it is there that
reversed flow first sets in. However, reversed flow is not the same as
separation/breakaway of the boundary layer from the body surface —
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there is plenty of reversed flow in Stokes’ solution for flow over an oscil-
lating plate, and yet this unsteady boundary layer remains attached to
the plate for all Reynolds numbers. In contrast, Prandtl (1932) focused
attention on a region approximately 3π

4 from the front stagnation point,
because it is approximately there that the boundary layer clearly first
separates from the body surface. It is arguable that conventional wis-
dom, i.e. that the rear stagnation point was the place to look, delayed
an understanding of unsteady separation by fifty years.

Unsteady Separation: Physics. On the rear-side of an impulsively
moved cylinder fluid particles are decelerating. These particles will tend
to be squashed in the streamwise direction, with a compensating expan-
sion in the direction normal to the boundary. In Navier-Stokes (NS) or
Euler flows it is not possible to squash a particle to zero thickness in one
direction and an infinite length in another because the rapid stretching
of the fluid particles leads to the generation of a pressure gradient that
inhibits the stretching. However, in classical BLT py = 0 (see (7)), and
hence no pressure gradient can be induced in the direction normal to the
wall. Unsteady separation occurs when a fluid particle is squashed to
zero thickness in the direction parallel to the wall, so ejecting the fluid
above it out of the boundary layer (van Dommelen 1981).

Unsteady Separation: Mathematics. Since unsteady separation is
connected with the deformation of a particle, it is natural to seek a math-
ematical description in terms of Lagrangian co-ordinates, say ξ = (ξ, η)
(Shen 1978, van Dommelen and Shen 1980). Then with x ≡ x (ξ, t),
u ≡ u (ξ, t) and U ≡ U (ξ, t), the momentum equation (6) becomes

∂u

∂t
=
∂U

∂t
+
(
∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

)(
∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

)
u , (12)

while kinematics and mass conservation yield

u =
∂x

∂t
, v =

∂y

∂t
, and

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1 . (13)

Van Dommelen and Shen (1980) made the key observation that (12)
depends only on x and u, and hence that (12) and the first equation in
(13) can be solved independently of the equations governing y and v.
The solution for y can then be obtained from the third equation of (13),
while the solution for v can be deduced subsequently from the second
equation of (13).

For a given x(ξ, t), the Jacobian mass conservation relation in (13)
is a hyperbolic equation for y(ξ, t) with a unit source term. If at some
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Figure 1 Schematic of a separating boundary layer (τ = ts − t).

time, say ts, the solution evolves so that ∇x = 0 (indicating that a
particle has been squashed to zero thickness in the x-direction), then
‘shock’ singularities can form in y, and hence v (van Dommelen and
Shen 1980).

Impulsively Started Circular Cylinder: Results. Numerical cal-
culations show that a ‘shock’ singularity develops at a time t = ts ≈ 1.5
and a position x = xs(ts) ≈ 111◦. The position where the unsteady sin-
gularity forms, xs(ts), is not the position where the Goldstein singularity
forms, i.e. xc ≈ 104.5◦.

As τ = (ts−t)→ 0, the unsteady singularity results in a rapid thicken-
ing of the boundary layer over a streamwise distance (x− xs(t))=O(τ

3
2 ),

where xs(t) is the centre of the singularity structure, while the dis-
placement thickness and blowing velocity vary like δb (xs, t) ∝ τ−

1
4 and

vb (xs, t) ∝ τ−
7
4 respectively (see figure 1 for a schematic).

Three-Dimensional Unsteady Separation. The above analysis
can be extended to describe three-dimensional separation (e.g. van Dom-
melen and Cowley 1990). When there are no symmetries the boundary-
layer still thickens like τ−

1
4 and the singularity is quasi-two-dimensional

with a slower τ variation in a direction orthogonal to the more rapid
τ

3
2 variation. However, if there is a plane or axis of symmetry then the

thickening of the boundary layer is more rapid than τ−
1
4 .

2.4. A SINGULARITY . . . SURELY NOT?
Conventional wisdom is that finite-time singularities do not sponta-

neously develop in solutions to the NS equations (of course conventional
wisdom may prove to be wrong — as illustrated by the aforementioned
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fifty years of misguided study of unsteady separation). Assuming that
conventional wisdom is correct, the BLT singularity must be an artifact
of the BLT approximation. Hence, at times very close to ts, at least
one of the terms that are usually asymptotically smaller than those in-
cluded in the BLT equations, must grow to be so large that it cannot
be neglected at leading order; e.g. in order to stop the extension of the
squashed particle in the y-direction, we might anticipate that the py = 0
approximation will need to be refined.

An Upper Deck. For τ � 1 it follows from (5) and the above scaling
for vb(xs, t) that the dimensional blowing velocity has magnitude

v̂b = O(U Re−
1
2 τ−

7
4 ) . (14)

This blowing velocity causes a perturbation to the inviscid flow in a
region just above the boundary layer. This perturbation is both invis-
cid and irrotational; hence it is governed by Laplace’s equation. The
perturbation extends over a region sufficient for a pressure gradient nor-
mal to the wall to be felt (and so reduce the normal velocity to zero).
Since the Laplacian is a ‘smooth operator’ and the extent of the vari-
ation in the x̂-direction is O(Lτ

3
2 ), the extent of the variation in the

ŷ-direction is also O(Lτ
3
2 ). From the continuity equation it follows that

the perturbation velocity in the streamwise direction is of the same or-
der of magnitude as the blowing velocity (14). Similarly it follows from
the linearised version of the time-dependent Bernoulli equation that the
dimensional pressure perturbation is O(ρU2Re−

1
2 τ−

7
4 ). Hence the di-

mensionless pressure-gradient perturbation has a magnitude

p̃x = O(Re−
1
2 τ−

13
4 ) . (15)

This induced perturbation pressure gradient can have a feedback ef-
fect on the boundary-layer flow when it is as large as the accelera-
tion, ut = xtt = O(τ−

1
2 ), within the boundary layer. This occurs when

τ = O(Re−
2
11 ). At such times a new asymptotic problem needs to be

formulated involving four distinct asymptotic regions in the y-direction
(Elliott et al. 1983). For this ‘quadruple-deck’ analysis to be valid, i.e.
for the four asymptotic regions to be distinct, strictly we need Re

1
22 � 1.

This requirement of course raises the question of how large the Reynolds
number has to be for the analysis to be valid. We do not address that
issue here other than to note that ‘large’ can vary from approximately
100 (e.g. see Jobe and Burggraf 1974) to 108 (e.g. see Healey 1995).



Boundary-Layer Theory: A Paradox 9

The (Rescaled)n Problem. The interaction problem allows for vari-
ations of the pressure gradient in the y-direction in the inviscid outer
deck. Hence it might be hoped that the reformulation would be free
of finite-time singularities because the induced pressure gradient would
be sufficient to prevent a fluid particle being extended indefinitely in
the y-direction. However, this is not the case. This rescaled interactive
problem itself terminates in a finite-time singularity (Cassel et al. 1996).

It is then possible to formulate, at times close to this second singu-
larity, another rescaled problem on an even shorter time-scale. This
problem has not apparently been solved, although a model version has
been studied by Li et al. (1998). They show that depending on the value
of certain coefficients, the model problem may, or may not, terminate in
yet another finite-time singularity.

The formation of a succession of singularities prompts the question as
to whether something has gone wrong with the formulation and/or with
the analysis. The answer, we believe, is ‘not really’. As indicated earlier,
in practice large-Reynolds-number flows are turbulent and hence, if they
are to be modelled accurately, we can expect that there will be a natural
tendency for structures with small length-scales and short time-scales to
develop. The development of a succession of singularities with smaller
and smaller length-scales and shorter and shorter time-scales just reflects
this natural tendency.

The original singularity appears to be exciting instabilities that lead
to small-scale turbulent structure. Thus it is difficult to envisage how it
would be possible to find a detailed large-Reynolds-number asymptotic
solution for order-one times beyond ts — although that is not to say that
some clever averaging or multiple-scales technique will not be found.

To summarise. The good news is that BLT predicts unsteady sepa-
ration and the physical interactive effects that then come into play; the
bad news is that it does not appear to provide a long-time predictor.

3. BLT: A NAVIER-STOKES LIMIT?

3.1. BRINCKMAN AND WALKER’S
RESULTS

Conventional wisdom is that for, say, unsteady starting flows classical
BLT is the Re� 1 asymptotic limit of solutions of the NS equations, or
it is at least until the time at which BLT predicts a separation singularity.
While this may be the case for many flows, recent numerical results by
Brinckman and Walker (2001) suggest that it may not always be so.

In particular Brinckman and Walker (2001) study numerically a NS
problem that standard arguments suggest should tend, in the Re � 1
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limit, to the same BLT problem as unsteady flow past an impulsively
started circular cylinder. However, as the Reynolds number is increased,
Brinckman and Walker’s (2001) calculations develop rapid oscillations
in the solutions at times before the time at which a van Dommelen
separation singularity develops in the BLT solution. This suggests that
there are flows for which, at times before separation, the Re � 1 limit
of solutions of the NS equations is not the BLT solution.1

Rayleigh Instabilities. The wavelength of the short-scale oscillations
in Brinckman and Walker’s (2001) calculations seems to vary like Re−

1
2 .

This suggests that the oscillations are a Rayleigh instability.
Consider unsteady classical BLT flow over a rigid surface in a region

where there is an adverse pressure gradient, i.e. px > 0. On the rigid wall,
i.e. where u = v = 0, it follows from (6) that uyy = px > 0. However, if
u→ U > 0 as y →∞ there is region away from the wall where uyy < 0,
in which case the velocity profile u(x, y, t) has an inflection point in y.

The existence of an inflection point in a boundary-layer velocity profile
implies that disturbances with short Re−

1
2 streamwise length-scales, i.e.

streamwise length-scales comparable with the width of the boundary
layer, can grow by means of a Rayleigh instability (Tollmien 1936). The
amplitude of such a disturbance will locally behave like

amplitude ∝ exp
(
λRe

1
2
∫
β dt

)
, (16)

where λRe
1
2 is the local [positive] wavenumber and β(x, t) = O(1) is a

function of x and t (e.g. Tutty and Cowley 1986).

Is There Anything To Grow? The next question is whether there
are any inherent high-wavenumber modes in the solution with wave-
lengths of O(Re−

1
2 ) that might be amplified by a Rayleigh instability.

We emphasise that by ‘modes’ we do not mean disturbances introduced
through noise or, in the case of numerical calculations, rounding error.

Let u(x, y, t) be a solution to the unsteady classical BLT equations
that develops a singularity at t = ts. Analytically continue u into the
complex x-plane. For times t < ts there will almost certainly be singu-
larities of u in the complex x-plane. These singularities will move around
the complex x-plane and intersect the real x-axis at t = ts (cf. a similar
situation for vortex sheets as explained by, say, Krasny 1986).

1 It is arguable that the ‘upper’ boundary condition used in the calculations is not consistent.
This casts a slight doubt on the results, as possibly does the relatively low iteration tolerance
for the Poisson solver. Nevertheless the calculations seem to pose an important question.
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Suppose that at time t < ts the singularity in the complex x-plane
nearest to the real x-axis is a distance α(t) from that axis. If ũ(k, y, t)
is the kth term of the Fourier series of u, then as explained in Carrier et
al. (1983)

ũ(k, y, t) ∝ exp(−α|k|) as |k| → ∞ . (17)

We now hypothesise that this exponential decay for wavenumbers on the
‘body length-scale’ holds for all large wavenumbers up to the k=O(Re

1
2 )

Rayleigh scale. If this hypothesis, which needs verifying, is correct then
it follows from (17) that there are modes, albeit with exponentially small
amplitudes, that might be amplified by a Rayleigh instability.

A Race. Näıvely combining (16) and (17) we argue that the high-
wavenumber modes generated by nonlinear interactions can in principle
be amplified by the Rayleigh instability according to

ũ(λRe
1
2 , y, t) ∝ exp

(
−λRe

1
2
(
α−

∫
β dt

))
. (18)

The key point is that (18) suggests that within an order-one time the
high-wavenumber modes can grow to be comparable with the basic BLT
solution; this is not inconsistent with Brinckman and Walker’s (2001)
numerical results. Thus there is a ‘race’ between the growth of the
modes amplified by the Rayleigh instability, and the development of a
van Dommelen singularity. Whether the instability or the singularity
develops first probably depends on particular circumstances.

Comments. Clearly this [very] heuristic argument needs to be placed
on a firmer footing by means of an analysis based on, say, asymptotics
beyond all orders. Nevertheless it is worth noting that

no high-wavenumber modes are needed in the boundary or initial
conditions — self-induced nonlinear effects seem to be sufficient to
fill out the spectrum;

in order to track the amplification of the short Rayleigh-scale
modes there is apparently a need to consider terms that are ini-
tially exponentially small;

there is apparently no hint from the BLT asymptotics that a short-
scale disturbance can grow to ‘infect’ the BLT solution.

Of course we have not proved that the short-scale instabilities observed
by Brinckman and Walker (2001) are generated by the above mechanism.
Indeed we have not considered convective effects and it is possible that
disturbances that begin to grow can be convected into regions where
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they subsequently decay (although in Brinckman and Walker’s (2001)
problem this effect may be less important because the existence of the
‘rear’ stagnation point tends to confine any disturbance). However, we
believe that there is a case to answer. In the next section we consider
a model problem where we predict a similar effect on the basis of an
analogous scaling argument.

3.2. A MODEL PROBLEM
Consider the Kuramoto-Sivashinsky (KS) equation

ut + uux = −εuxx −∆uxxxx , (19)

with, say, the initial condition u = cos x at t = 0. For the case
∆ = ε = 0, i.e. the kinematic wave equation, there is a known analytic
solution, u0(x, t), that develops a singularity at t = 1. From this ana-
lytic solution it is straightforward to show (e.g. Sulem et al. 1983) that
for t > 0 and k � 1,

ũ0(k, t) ∝ exp(−α(t)k) , (20)

where ũ0(k, t) denotes the Fourier series of u0(x, t), and α(t) > 0.
For ∆ > 0 and ε > 0 the KS equation is known to be well-posed

and have regular solutions for all time. We will study the particular
scaling 0 < ∆� ε� 1 and consider for what times u0 is the leading-
order solution for u in an expansion in powers of ∆ and ε. We argue
that u0 is analogous to the BLT solution in that it develops a singularity
within a finite time, while if 0 < ∆ � ε � 1 there are rapidly growing
high-wavenumber instabilities analogous to Rayleigh instabilities, e.g.
when k2 = ε/2∆� 1 small amplitude instabilities grow like

amplitude ∝ exp(ε2 t/2∆) . (21)

An order-of-magnitude argument from a comparison of (20) and (21)
suggests that short-scale instabilities can grow to be comparable with
u0(x, t) when t ∼ ∆

1
2 ε−

3
2 . Hence if ∆ � ε3 short-scale instabilities

should develop before the singularity forms at t = 1.

KS Equation: Numerical Solutions. As a preliminary confirma-
tion of the above prediction we have solved the KS equation numerically
for ε = 10−1, ∆ = 10−5, and with u = cos x at t = 0. The initial con-
dition, and numerical solution at t = 0.46, are shown in figure 2; the
development of a short-scale instability well before the time at which a
singularity develops in u0 is evident.
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Figure 2 Numerical solution with ε = 10−1, ∆ = 10−5 and u = cos x at t = 0.
– · –: solution at t = 0, – – –: solution at t = 0.46.

Comments On The KS Problem. Our heuristic arguments are ap-
parently supported by the numerical experiments. Further, the use of
a single-mode initial condition emphasises the fact that the ‘exponen-
tially small’ higher modes are generated by nonlinear interactions. In
addition, preliminary analysis suggests that the crucial need to consider
‘exponentially small’ terms is not hinted at by solving for higher-order
terms of a regular perturbation expansion in powers of ∆ and ε (i.e.
regular perturbation theory fails, and fails spectacularly).

While there is clearly a need to improve the analysis (and work is
underway with that in mind), it seems that there is an a priori case for
believing that a mechanism for the growth of short-scale disturbances has
been identified in the KS model, and that these short-scale disturbances
can alter the leading-order solution by an order-one amount. A similar,
although not identical, change to the leading-order solution caused by
the growth of exponentially small terms has been reported in a Saffman-
Taylor Hele-Shaw problem by Siegel, Tanveer and Dai (1996). As in the
Hele-Shaw problem it may be possible to place our analysis on a firmer
footing by analytically continuing into the complex x-plane.

Of course the KS model does not contain all the dynamics of BLT
theory, e.g. it does not include spatial regions of both growth and decay
of the instability. However we believe that KS model does include key
aspects of the mathematics that are similar to those in the BLT problem.
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4. ASYMPTOTIC INSTABILITY THEORY

4.1. INTRODUCTION
We have seen that laminar Re� 1 asymptotic analysis is problematic

in that it is sometimes successful (e.g. Blasius solution at R ≈ 500), and
other times not (e.g. unsteady flow past a circular cylinder at times past
singularity formation). We have also noted two ‘features’ of BLT.

First, the leading-order problem can lead to a succession of singular-
ities forcing consideration of extremely short time scales with the result
that it is impossible to obtain solutions an order-one time after the first
appearance of a singularity. Second, it appears possible that terms that
are initially exponentially small can grow to alter the leading-order so-
lution; moreover, as yet there seems to be no way of identifying whether
or not this will occur by means of predictive asymptotic analysis.

There is thus a tendency for short-scale phenomena to occur naturally
in BLT. As a result, a main strand of research that has developed in BLT
over the last thirty years has been the study of instabilities and transition
to turbulence in shear layers.

4.2. ALMOST PARALLEL FLOWS
The stability of thin shear layers has been studied for well over a

century. Thin almost-parallel shear layers have often been idealised as
exactly parallel so that the underlying flow is given by

u = (U(y), 0, 0) ≡ U . (22)

A linear stability analysis of such a flow is then performed based on
normal mode perturbations of the form

u = U + εũ(y) exp(iαx+ iβz − iαct) + . . . , (23)

where α, β are here the wavenumbers in the x and z directions respec-
tively, and c is the phase-speed. Substitution into the linearised NS
equations and solution of the resulting Orr-Sommerfeld (OS) equation
yields a Re-dependent dispersion relation relating α, β and c:

F (α, β, c;Re) = 0 . (24)

In the case of linear two-dimensional Tollmien-Schlichting (TS) waves
on a flat plate, the predictions of OS theory are in very good agreement
with experiment (e.g. Klingmann et al. 1993). However, good agreement
is not invariably obtained, and in the case of Görtler rolls and cross-flow
instability, OS theory can yield misleading results.
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A drawback of OS theory, and possibly the reason that it does not
always work, is that the theory is mathematically inconsistent. On the
one hand, for the basic shear layer flow to be ‘almost’ parallel then,
formally, it is necessary to assume that the Reynolds number is asymp-
totically large, i.e. Re� 1. On the other hand, for the derivation of the
linearised OS equation and the resulting dispersion relation (24), it is
necessary to assume that the Reynolds number is, formally, an order-one
quantity, i.e. Re = O(1).

We emphasise that the distinction between ‘asymptotically large’ and
‘order one’ does not depend on whether or not the Reynolds number is
numerically large. The distinction concerns the approximations made in
the analysis. OS theory tries to have its cake (i.e. by approximating the
basic flow with the asymptotic Blasius solution), and eat it (i.e by taking
the Reynolds number to be order one in the OS equation). Moreover, it
was not until there was a proper appreciation of the incompatibility of
the two different treatments of the Reynolds number in OS theory that
it became clear how to deal with non-parallel and/or nonlinear effects
in a consistent manner.

4.3. ASYMPTOTIC LINEAR THEORY
An alternative to OS theory is to assume consistently that Re � 1.

The drawback of this approach is that almost all flows first become un-
stable at moderate Reynolds numbers where it is not clear a priori that
results derived on the basis of an asymptotically large Reynolds number
will hold. Moreover it is difficult, if not impossible, to study the fastest-
growing disturbances with this approach. Nevertheless, sometimes these
difficulties are not show stoppers.

Triple-Deck Theory (TDT). The most significant advance in BLT
after Prandtl’s original formulation was the simultaneous discovery of
TDT by Messiter (1970), Neiland (1969) and Stewartson (1969). This
theory applies to disturbances that change ‘rapidly’ in the downstream
direction, that is on a length scale short compared with that over which
the underlying boundary layer varies, though still long compared with
the boundary-layer thickness. This relatively rapid change means that
viscous effects associated with the disturbances are confined to a thin
sublayer close to the wall (the ‘lower deck’), while the bulk of the un-
derlying boundary layer adjusts through an inviscid, rotational displace-
ment (the ‘middle deck’). The fluid ejected from the middle deck induces
a flow in an ‘upper deck’ above the boundary layer that is inviscid and
irrotational. In turn this irrotational flow induces a dynamically signifi-
cant pressure gradient in the lower deck. There is thus a feedback loop
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whereby fluid motion in the lower deck can change the pressure gradient
felt in the lower deck (albeit indirectly by means of the flow generated
in the upper deck). In contrast, in classical BLT the pressure gradient is
fixed by the slip velocity and is not influenced by induced motions in the
boundary layer. Finally we note that while at leading order py = 0 in
the lower and middle decks, at leading order py 6= 0 in the upper deck.

Linear TS Waves. Whilst TDT was first formulated in terms of for-
mal asymptotic expansions in the late 60s, the key ideas can be found
in the linearised analysis of shock/boundary-layer interactions (Lighthill
1953) and lower-branch TS waves (Tollmien 1929, Lin 1945). However it
was Smith (1979) who realised that lower-branch TS could be placed in
the TDT framework, and so make it possible to study laminar-turbulent
transition using a large-Reynolds-number asymptotic approach.

For the TS lower branch Smith (1979) expanded the dynamical vari-
ables in powers of Re−

1
8 , and used multiple-scales in x and matched

asymptotic expansions in y. His asymptotic expansion for the neutral
curve for flow over a flat plate is in reasonably good agreement with
experiments at moderate Reynolds number. However, the equivalent
asymptotic expansion for the TS neutral upper branch only provides a
good approximation to the neutral curve at Reynolds numbers when the
flow would, in practice, be fully turbulent (Healey 1995).

4.4. ASYMPTOTIC NONLINEAR THEORY
A major advantage of the Re� 1 asymptotic approach is that there

is a consistent way to examine nonlinear effects. A disadvantage is that
there is a plethora of possible scalings, and it is difficult to identify a
priori which, if any, will give good agreement with experiment. For in-
stance there are different types of modes (e.g. TS, Rayleigh, Klebanoff)
and different sources of instability (e.g. 2D/3D, localised/global, lin-
ear/nonlinear, noisy/controlled disturbances that are internal/external
to the shear layer). There are also different types of analysis. For in-
stance there have been many studies of uniform or modulated wavetrains
of almost neutral linear modes, but there are other possibilities such as
studies of wavetrains of almost neutral nonlinear modes or studies of
algebraically growing modes (e.g. Klebanoff modes). There have also
been numerical studies of modes with order-one growth rates. See the
review by Cowley and Wu (1994) for other examples.

Particularly in the case of studies of wavetrains of almost neutral
modes, two key ideas reoccur, namely wave/mean-flow interactions and
critical-layer effects.
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Wave/Mean-Flow Interactions. Such effects arise many circum-
stances. An archetypal example occurs if there are two ‘carrier’ modes
propagating at equal and opposite directions to the mean flow, e.g.

eiαxeiβze−iωt + c.c. and eiαxe−iβze−iωt + c.c. , (25)

where c.c. denotes complex conjugate. Nonlinear interactions between
such modes through the quadratic terms in the NS equations, generate
a steady mean flow:(

eiαxeiβze−iωt
) (

e−iαxeiβzeiωt
)

= e2iβz .
mode 1 c.c. of mode 2 (26)

If the spanwise scale, β−1, and ‘slow’ streamwise scale, L, are disjoint, i.e.
βL � 1, then modest spanwise motions generate large streamwise mean
flows, as a scaling argument based on the continuity equation shows:

ux + vy + wz = 0
Um
L ∼ βWm

}
⇒ Um ∼ βLWm �Wm . (27)

This mechanism is one reason why relatively strong longitudinal vortices
are observed in transitional (and fully turbulent) boundary-layers (e.g.
Jang et al. 1986, Hall and Smith 1989).

Critical Layers. Often in a weakly nonlinear perturbation analy-
sis the ut + uux part of the NS equations reduces at leading-order to
iα(U − c)ũ, where U is the underlying mean flow and ũ is the perturba-
tion velocity. If U = c at y = yc, then yc is said to be a critical level.
Critical levels are important since linear inviscid solutions almost always
have singularities there, e.g. for 3D disturbances ũ ∝ (y − yc)−1.

This singularity is smoothed out by one or more effects (e.g. viscosity,
unsteadiness, nonlinearity) in a thin ‘critical layer’ surrounding y = yc.
Critical layers tend to be dynamically important since nonlinear effects
are largest within them. For this reason many analytic studies have
focused on ‘phase-locked’ nonlinear interactions, that is, interactions
among modes with the same phase speed c, since nonlinear interactions
are strongest when the critical layers coincide (e.g. Goldstein 1995).

TS Resonant-Triad Instability. One of the more intriguing aspects
of laminar-turbulent transition is the appearance of subharmonics (e.g.
Knapp and Roache 1968, Kachanov et al. 1977). Craik (1971) proposed
a weakly nonlinear theory involving a phase-locked resonant-triad inter-
action to explain these observations (see also Raetz 1959), while Herbert
(1988) used a Floquet approach to demonstrate secondary instability of
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approximate TS wave solutions to subharmonic (and other) perturba-
tions. Although these analyses identified key aspects of the physics,
the approaches were somewhat heuristic. An asymptotic description of
the resonant-triad mechanism, including a qualitative explanation of the
observed super-exponential growth, was eventually given by Goldstein
and Lee (1992) and Mankbadi et al. (1993). A central feature of their
analyses was nonlinear interactions within critical layers. An important
revelation of the asymptotic approach was that wave/mean-flow inter-
actions can be as important as the resonant-triad interaction.

As with many other asymptotic analyses the first nonlinear scaling
in the resonant-triad problem predicts that the time/length scales of
the modulation amplitude rapidly shorten. Consequently, in order to
follow the evolution of the flow, it is necessary to consider a succession
of asymptotic problems with shorter and shorter time/length scales. As
a result it is not possible, at present, to obtain an asymptotic description
at times much beyond that at which the first nonlinear interaction takes
place (cf. unsteady separation). Moreover, while the asymptotic theory
is in qualitative agreement with experiment, quantitative agreement has
yet to be achieved (at least for a correct asymptotic theory).

Further, note that it is the time/length scales of the modulation am-
plitude that shorten. While such an occurrence may be a prelude to
transition, the time and/or length scales are still longer than the pe-
riod and/or wavelength of the carrier wave[s]. Singularity formation, or
similar, in the modulational amplitude does not necessarily imply the
development of fine-scale structure on the length of an instability wave.

Receptivity: How A Disturbance Penetrates A Shear Layer.
Another success for asymptotic theory has been an explanation of how
sound waves can interact with a ‘rivet’ protruding from an otherwise
smooth surface, and so generate TS waves (Ruban 1984, Goldstein 1985).
A key qualitative observation is that the rivet length should match the
triple-deck lengthscale. A related analysis for TS wave generation by a
curvature discontinuity on a surface shows quantitative agreement with
experiment (Goldstein and Hultgren 1987).

Wu (1999) has also explained how sound waves and a vorticity or en-
tropy gust can interact in the upper deck to generate TS waves. While at
first sight the required asymptotic scaling between the length and time
scales of the sound wave and gust appears to rule out general applica-
bility, Wu (1999) shows how the analysis can be applied to broad-band
spectra.
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Other Successes. Other than receptivity, there are relatively few ex-
amples where asymptotic theory has obtained good quantitative agree-
ment with experiment. Hultgren’s (1992) theoretical explanation of the
2D nonlinear roll-up of a shear layer is one notable exception, while the
asymptotic description of Görtler instability is another (e.g. Hall 1990).

5. CONCLUSIONS
An undoubted strength and success of BLT is its ability to explain,

qualitatively, fundamental concepts such as separation, nonlinear insta-
bility and receptivity. However, there are surprisingly few reliable calcu-
lations where good quantitative agreement has been obtained between
asymptotic theory and experiment. Some of the best examples with
good quantitative agreement have been mentioned above. There are
also reports that the Russian space shuttle Buran was designed using
large-Reynolds-number hypersonic theory. Unfortunately that work is
not for the most part available in the open literature (although, assum-
ing that the work is available to some western agencies, some credence to
the claim might be gleaned from NASA’s interest in asymptotic theory
in the mid-80s).

A drawback of nonlinear large-Reynolds-number asymptotic instabil-
ity theory is that the analysis can become complicated, e.g. a resonant-
triad interaction of TS waves requires a ‘septuple-deck’ structure (Mank-
badi et al. 1993). As a result it is arguable that the payoff does not
always justify the effort. Further, there are a number of examples where
the technical difficulties of the analysis have lead to erroneous results —
some of which have nevertheless agreed with experiment! For instance
see the discussions in Wu et al. (1996) and Moston et al. (2000).

We also recall the pervasiveness of singularities in BLT. Often the de-
velopment of a singularity indicates an important physical feature, e.g.
unsteady separation or the onset of short time/length scales in laminar-
turbulent transition. However, after the formation of an initial singular-
ity a succession of problems with increasingly short time/length scales
can result, making it difficult to obtain an asymptotic description for
order-one times beyond the formation of the initial singularity. Moreover
we have also seen that in order to obtain the correct asymptotic solu-
tion, it maybe necessary to include the effects of terms that are initially
exponentially small using a ‘beyond-all-orders’ asymptotic analysis.

In the light of these comments we return to the question of the title.

Laminar BLT: A Paradox. Laminar BLT is a paradox, in that it
is based on the assumption that Re � 1, whereas almost all flows are
turbulent if Re � 1. As a result, in order to obtain laminar solutions
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it is necessary to suppress instabilities. Sometimes this is possible (e.g.
the Blasius flat-plate solution and receptivity), but other times it is not
(e.g. for a ‘long-time’ description of unsteady separation).

Laminar BLT: A 20th Century Paradox? But is BLT a 20th
century paradox? On the one hand one might argue that the answer to
this question is no, since BLT is still good for explaining fundamental
mechanisms and obtaining scalings. On the other hand one might argue
that the answer is yes, since for quantitative agreement with experiment
BLT will be outgunned by computational fluid dynamics (CFD) in the
21st century.

I argue that the answer is yes. With the rise of modern computers
and codes, good engineering answers for laminar flows can be obtained
with CFD for the Reynolds numbers when asymptotic theory might be
applicable. This is not to say that BLT does not have a rôle in explain-
ing fundamental mechanisms, but many, if not all, of the fundamental
questions in BLT have now been answered.
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