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1.11 Möbius Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Mathematical Tripos: IA Algebra & Geometry (Part I) a c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
h
is

is
a

su
p
er

v
is

o
r’

s
co

p
y

o
f
th

e
n
o
te

s.
It

is
n
o
t

to
b
e

d
is

tr
ib

u
te

d
to

st
u
d
en

ts
.

1.11.2 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.11.3 Basic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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0 Introduction

0.1 Schedule

This is a copy from the booklet of schedules.1 Schedules are minimal for lecturing and maximal for
examining; that is to say, all the material in the schedules will be lectured and only material in the
schedules will be examined. The numbers in square brackets at the end of paragraphs of the schedules
indicate roughly the number of lectures that will be devoted to the material in the paragraph.

ALGEBRA AND GEOMETRY 48 lectures, Michaelmas term

Review of complex numbers, modulus, argument and de Moivre’s theorem. Informal treatment of complex
logarithm, n-th roots and complex powers. Equations of circles and straight lines. Examples of Möbius
transformations. [3]

Vectors in R3. Elementary algebra of scalars and vectors. Scalar and vector products, including triple
products. Geometrical interpretation. Cartesian coordinates; plane, spherical and cylindrical polar coor-
dinates. Suffix notation: including summation convention and δij , εijk. [5]

Vector equations. Lines, planes, spheres, cones and conic sections. Maps: isometries and inversions.
[2]

Introduction to Rn, scalar product, Cauchy–Schwarz inequality and distance. Subspaces, brief introduc-
tion to spanning sets and dimension. [4]

Linear maps from Rm to Rn with emphasis on m,n 6 3. Examples of geometrical actions (reflections,
dilations, shears, rotations). Composition of linear maps. Bases, representation of linear maps by matrices,
the algebra of matrices. [5]

Determinants, non-singular matrices and inverses. Solution and geometric interpretation of simultaneous
linear equations (3 equations in 3 unknowns). Gaussian Elimination. [3]

Discussion of Cn, linear maps and matrices. Eigenvalues, the fundamental theorem of algebra (statement
only), and its implication for the existence of eigenvalues. Eigenvectors, geometric significance as invariant
lines. [3]

Discussion of diagonalization, examples of matrices that cannot be diagonalized. A real 3× 3 orthogonal
matrix has a real eigenvalue. Real symmetric matrices, proof that eigenvalues are real, and that distinct
eigenvalues give orthogonal basis of eigenvectors. Brief discussion of quadratic forms, conics and their
classification. Canonical forms for 2× 2 matrices; discussion of relation between eigenvalues of a matrix
and fixed points of the corresponding Möbius map. [5]

Axioms for groups; subgroups and group actions. Orbits, stabilizers, cosets and conjugate subgroups.
Orbit-stabilizer theorem. Lagrange’s theorem. Examples from geometry, including the Euclidean groups,
symmetry groups of regular polygons, cube and tetrahedron. The Möbius group; cross-ratios, preservation
of circles, informal treatment of the point at infinity. [11]

Isomorphisms and homomorphisms of abstract groups, the kernel of a homomorphism. Examples. Intro-
duction to normal subgroups, quotient groups and the isomorphism theorem. Permutations, cycles and
transpositions. The sign of a permutation. [5]

Examples (only) of matrix groups; for example, the general and special linear groups, the orthogonal
and special orthogonal groups, unitary groups, the Lorentz groups, quaternions and Pauli spin matrices.

[2]

Appropriate books

M.A. Armstrong Groups and Symmetry. Springer–Verlag 1988 (£33.00 hardback).
† Alan F Beardon Algebra and Geometry. CUP 2005 (£21.99 paperback, £48 hardback).

1 See http://www.maths.cam.ac.uk/undergrad/schedules/.
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D.M. Bloom Linear Algebra and Geometry. Cambridge University Press 1979 (out of print).
D.E. Bourne and P.C. Kendall Vector Analysis and Cartesian Tensors. Nelson Thornes 1992 (£30.75

paperback).
R.P. Burn Groups, a Path to Geometry. Cambridge University Press 1987 (£20.95 paperback).
J.A. Green Sets and Groups: a first course in Algebra. Chapman and Hall/CRC 1988 (£38.99 paperback).
E. Sernesi Linear Algebra: A Geometric Approach. CRC Press 1993 (£38.99 paperback).
D. Smart Linear Algebra and Geometry. Cambridge University Press 1988 (out of print).

0.2 Lectures

• Lectures will start at 11:05 promptly with a summary of the last lecture. Please be on time since
it is distracting to have people walking in late.

• I will endeavour to have a 2 minute break in the middle of the lecture for a rest and/or jokes
and/or politics and/or paper aeroplanes2; students seem to find that the break makes it easier to
concentrate throughout the lecture.3

• I will aim to finish by 11:55, but am not going to stop dead in the middle of a long proof/explanation.

• I will stay around for a few minutes at the front after lectures in order to answer questions.

• By all means chat to each other quietly if I am unclear, but please do not discuss, say, last night’s
football results, or who did (or did not) get drunk and/or laid. Such chatting is a distraction.

• I want you to learn. I will do my best to be clear but you must read through and understand your
notes before the next lecture . . . otherwise you will get hopelessly lost (especially at 6 lectures a
week). An understanding of your notes will not diffuse into you just because you have carried your
notes around for a week . . . or put them under your pillow.

• I welcome constructive heckling. If I am inaudible, illegible, unclear or just plain wrong then please
shout out.

• I aim to avoid the words trivial, easy, obvious and yes4. Let me know if I fail. I will occasionally
use straightforward or similarly to last time; if it is not, email me (S.J.Cowley@damtp.cam.ac.uk)
or catch me at the end of the next lecture.

• Sometimes I may confuse both you and myself (I am not infallible), and may not be able to extract
myself in the middle of a lecture. Under such circumstances I will have to plough on as a result of
time constraints; however I will clear up any problems at the beginning of the next lecture.

• The course is somewhere between applied and pure mathematics. Hence do not always expect pure
mathematical levels of rigour; having said that all the outline/sketch ‘proofs’ could in principle be
tightened up given sufficient time.

• If anyone is colour blind please come and tell me which colour pens you cannot read.

• Finally, I was in your position 32 years ago and nearly gave up the Tripos. If you feel that the
course is going over your head, or you are spending more than 20-24 hours a week on it, come and
chat.

0.3 Printed Notes

• I hope that printed notes will be handed out for the course . . . so that you can listen to me rather
than having to scribble things down (but that depends on my typing keeping ahead of my lecturing).
If it is not in the notes or on the example sheets it should not be in the exam.

2 If you throw paper aeroplanes please pick them up. I will pick up the first one to stay in the air for 5 seconds.
3 Having said that, research suggests that within the first 20 minutes I will, at some point, have lost the attention of all

of you.
4 But I will fail miserably in the case of yes.

Mathematical Tripos: IA Algebra & Geometry (Part I) ii c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

• Any notes will only be available in lectures and only once for each set of notes.

• I do not keep back-copies (otherwise my office would be an even worse mess) . . . from which you
may conclude that I will not have copies of last time’s notes (so do not ask).

• There will only be approximately as many copies of the notes as there were students at the lecture
on the previous Saturday.5 We are going to fell a forest as it is, and I have no desire to be even
more environmentally unsound.

• Please do not take copies for your absent friends unless they are ill, but if they are ill then please
take copies.6

• The notes are deliberately not available on the WWW; they are an adjunct to lectures and are not
meant to be used independently.

• If you do not want to attend lectures then there are a number of excellent textbooks that you can
use in place of my notes.

• With one or two exceptions figures/diagrams are deliberately omitted from the notes. I was taught
to do this at my teaching course on How To Lecture . . . the aim being that it might help you to
stay awake if you have to write something down from time to time.

• There are a number of unlectured worked examples in the notes. In the past I have been tempted to
not include these because I was worried that students would be unhappy with material in the notes
that was not lectured. However, a vote in one of my previous lecture courses was overwhelming in
favour of including unlectured worked examples.

• Please email me corrections to the notes and example sheets (S.J.Cowley@damtp.cam.ac.uk).

0.4 Example Sheets

• There will be four main example sheets. They will be available on the WWW at about the same
time as I hand them out (see http://damtp.cam.ac.uk/user/examples/). There will also be two
supplementary ‘study’ sheets.

• You should be able to do example sheets 1/2/3/4 after lectures 6/12/18/23 respectively, or there-
abouts. Please bear this in mind when arranging supervisions. Personally I suggest that you do not
have your first supervision before the middle of week 2 of lectures.

• There is some repetition on the sheets by design; pianists do scales, athletes do press-ups, mathe-
maticians do algebra/manipulation.

• Your supervisors might like to know that the example sheets will be the same as last year (but
that they will not be the same next year).

0.5 Acknowledgements.

The following notes were adapted (i.e. stolen) from those of Peter Haynes, my esteemed Head of Depart-
ment.

5 With the exception of the first three lectures for the pedants.
6 If you really have been ill and cannot find a copy of the notes, then come and see me, but bring your sick-note.
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0.6 Revision.

You should check that you recall the following.

The Greek alphabet.

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

There are also typographic variations on epsilon (i.e. ε), phi (i.e. ϕ), and rho (i.e. %).

The exponential function. The exponential function, exp(x), is defined by the series

exp(x) =
∞∑

n=0

xn

n!
. (0.1a)

It has the following properties

exp(0) = 1 , (0.1b)
exp(1) = e ≈ 2.71828183 , (0.1c)
exp(x) = ex , (0.1d)
ex+y = exey . (0.1e)

The logarithm. The logarithm of x > 0, i.e. log x, is defined as the unique solution y of the equation

exp(y) = x . (0.2a)

It has the following properties

log(1) = 0 , (0.2b)
log(e) = 1 , (0.2c)

log(exp(x)) = x , (0.2d)
log(xy) = log x+ log y . (0.2e)

The sine and cosine functions. The sine and cosine functions are defined by the series

sin(x) =
∞∑

n=0

(−)nx2n+1

(2n+ 1)!
, (0.3a)

cos(x) =
∞∑

n=0

(−)nx2n

2n!
. (0.3b)
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Certain trigonometric identities. You should recall the following

sin(x± y) = sin(x) cos(y)± cos(x) sin(y) , (0.4a)
cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y) , (0.4b)

tan(x± y) =
tan(x)± tan(y)

1∓ tan(x) tan(y)
, (0.4c)

cos(x) + cos(y) = 2 cos
(
x+ y

2

)
cos
(
x− y

2

)
, (0.4d)

sin(x) + sin(y) = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)
, (0.4e)

cos(x)− cos(y) = −2 sin
(
x+ y

2

)
sin
(
x− y

2

)
, (0.4f)

sin(x)− sin(y) = 2 cos
(
x+ y

2

)
sin
(
x− y

2

)
. (0.4g)

The cosine rule.
Let ABC be a triangle. Let the lengths of the sides
opposite vertices A, B and C be a, b and c respec-
tively. Further suppose that the angles subtended at
A, B and C are α, β and γ respectively. Then the
cosine rule (also known as the cosine formula or law
of cosines) states that

a2 = b2 + c2 − 2bc cosα , (0.5a)
b2 = a2 + c2 − 2ac cosβ , (0.5b)
c2 = a2 + b2 − 2ab cos γ . (0.5c)

The equation of a line. In 2D Cartesian co-ordinates, (x, y), the equation of a line with slope m which
passes through (x0, y0) is given by

y − y0 = m(x− x0) . (0.6a)

In parametric form the equation of this line is given by

x = x0 + a t , y = y0 + am t , (0.6b)

where t is the parametric variable and a is an arbitrary real number.

The equation of a circle. In 2D Cartesian co-ordinates, (x, y), the equation of a circle of radius r and
centre (p, q) is given by

(x− p)2 + (y − q)2 = r2 . (0.7)
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Suggestions.

Examples.

1. Introduce a sheet 0 covering revision, e.g. log(xy) = log(x) + log(y).

2. Include a complex numbers study sheet, using some of the Imperial examples?

3. Use the following alternative proof of Schwarz’s inequality as an example:

‖x‖2‖y‖2 − |x · y|2 = xixiyjyj − xiyixjyj

= 1
2xixiyjyj + 1

2xjxjyiyi − xiyixjyj

= 1
2 (xiyj − xjyi)(xiyj − xjyi)

> 0 .

Additions/Subtractions?

1. Add more grey summation signs when introducing the summation convention.

2. Add a section on diagonal matrices, e.g. multiplication (using suffix notation).

3. Change of basis: add pictures and an example of diagonalisation (e.g. rotated reflection matrix,
or reflection and dilatation).

4. Add proof of rank-nullity theorem, and simplify notes on Gaussian elimination.

5. Add construction of the inverse matrix when doing Gaussian elimination.

6. n× n determinants, inverses, and Gaussian elimination.

7. Do (Shear Matrix)n, and geometric interpretation.

8. Deliberate mistake a day (with mars bar).
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1 Complex Numbers

1.0 Why Study This?

For the same reason as we study real numbers: because they are useful and occur throughout mathematics.
For many of you this section is revision, for a few of you who have not done, say, OCR FP1 and FP3
this will be new. For those for which it is revision, please do not fall asleep; instead note the speed that
new concepts are being introduced.

1.1 Introduction

1.1.1 Real numbers

The real numbers are denoted by R and consist of:

integers, denoted by Z, . . .− 3, −2, −1, 0, 1, 2, . . .
rationals, denoted by Q, p/q where p, q are integers (q 6= 0)
irrationals, the rest of the reals, e.g.

√
2, e, π, π2.

We sometimes visualise real numbers as lying on a line (e.g. between any two points on a line there is
another point, and between any two real numbers there is always another real number).

1.1.2 The general solution of a quadratic equation

Consider the quadratic equation

αz2 + βz + γ = 0 : α, β, γ ∈ R , α 6= 0 ,

where ∈ means ‘belongs to’. This has two roots

z1 = −β +
√
β2 − 4αγ
2α

and z2 = −β −
√
β2 − 4αγ
2α

. (1.1)

If β2 > 4αγ then the roots are real (there is a repeated root if β2 = 4αγ). If β2 < 4αγ then the square
root is not equal to any real number. In order that we can always solve a quadratic equation, we introduce

i =
√
−1 . (1.2)

Remark. Note that i is sometimes denoted by j by engineers.

If β2 < 4αγ, (1.1) can now be rewritten

z1 = − β

2α
+ i

√
4αγ − β2

2α
and z2 = − β

2α
− i

√
4αγ − β2

2α
, (1.3)

where the square roots are now real [numbers]. Subject to us being happy with the introduction and
existence of i, we can now always solve a quadratic equation.

1.1.3 Complex numbers

Complex numbers are denoted by C. We define a complex number, say z, to be a number with the form

z = a+ ib, where a, b ∈ R, (1.4)

and i is as defined in (1.2). We say that z ∈ C. Note that z1 and z2 in (1.3) are of this form.

For z = a+ ib, we sometimes write

a = Re (z) : the real part of z,
b = Im (z) : the imaginary part of z.
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Remarks.

1. Extending the number system from real (R) to complex (C) allows a number of important general-
isations in addition to always being able to solve a quadratic equation, e.g. it makes solving certain
differential equations much easier.

2. C contains all real numbers since if a ∈ R then a+ i.0 ∈ C.

3. A complex number 0 + i.b is said to be pure imaginary.

4. Complex numbers were first used by Tartaglia (1500-1557) and Cardano (1501-1576). The terms
real and imaginary were first introduced by Descartes (1596-1650).

Theorem 1.1. The representation of a complex number z in terms of its real and imaginary parts is
unique.

Proof. Assume ∃ a, b, c, d ∈ R such that

z = a+ ib = c+ id.

Then a− c = i (d− b), and so (a− c)2 = − (d− b)2. But the only number greater than or equal to zero
that is equal to a number that is less than or equal to zero, is zero. Hence a = c and b = d.

Corollary 1.2. If z1 = z2 where z1, z2 ∈ C, then Re (z1) = Re (z2) and Im (z1) = Im (z2).

1.2 Algebraic Manipulation of Complex Numbers

In order to manipulate complex numbers simply follow the rules for reals, but adding the rule i2 = −1.
Hence for z1 = a+ ib and z2 = c+ id, where a, b, c, d ∈ R, we have that

addition/subtraction : z1 + z2 = (a+ ib)± (c+ id) = (a± c) + i (b± d) ; (1.5)
multiplication : z1 z2 = (a+ ib) (c+ id) = ac+ ibc+ ida+ (ib) (id)

= (ac− bd) + i (bc+ ad) ; (1.6)

inverse : z−1
1 =

1
z

=
1

a+ ib

a− ib

a− ib
=

a

a2 + b2
− ib

a2 + b2
. (1.7)

Exercise: For z−1
1 as defined in (1.7), check that z1 z−1

1 = 1 + i.0.

Remark. All the above operations on elements of C result in new elements of C. This is described as
closure: C is closed under addition and multiplication.

1.3 Functions of Complex Numbers

We may extend the idea of functions to complex numbers. A complex-valued function f is one that takes
a complex number as ‘input’ and defines a new complex number f(z) as ‘output’.

1.3.1 Complex conjugate

The complex conjugate of z = a + ib, which is usually written as z but sometimes as z∗, is defined as
a− ib, i.e.

if z = a+ ib then z = a− ib. (1.8)
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Exercises. Show that

1.
z = z . (1.9a)

2.
z1 ± z2 = z1 ± z2. (1.9b)

3.
z1z2 = z1 z2. (1.9c)

4.
(z−1) = (z)−1. (1.9d)

Definition. Given a complex-valued function f , the complex conjugate function f is defined by

f (z) = f (z), and hence from (1.9a) f (z) = f (z). (1.10)

Example. Let f (z) = pz2 + qz + r with p, q, r ∈ C then by using (1.9b) and (1.9c)

f (z) ≡ f (z) = pz2 + qz + r = p z2 + q z + r.

Hence f (z) = p z2 + q z + r.

1.3.2 Modulus

The modulus of z = a+ ib, which is written as |z|, is defined as

|z| =
(
a2 + b2

)1/2
. (1.11)

Exercises. Show that

1.
|z|2 = z z. (1.12a)

2.
z−1 =

z

|z|2
. (1.12b)

1/03

1.4 The Argand Diagram

Consider the set of points in two dimensional (2D)
space referred to Cartesian axes. Then we can rep-
resent each z = x + iy ∈ C by the point (x, y), i.e.
the real and imaginary parts of z are viewed as co-
ordinates in an xy plot. We label the 2D vector be-

tween the origin and (x, y), say
→
OP , by the complex

number z. Such a plot is called an Argand diagram.

Remarks.

1. The xy plane is referred to as the complex
plane. We refer to the x-axis as the real axis,
and the y-axis as the imaginary axis.

2. The Argand diagram was invented by Caspar
Wessel (1797), and re-invented by Jean-Robert
Argand (1806).
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Modulus. The modulus of z corresponds to the mag-

nitude of the vector
→
OP since

|z| =
(
x2 + y2

)1/2
.

Complex conjugate. If
→
OP represents z, then

→
OP ′

represents z, where P ′ is the point (x,−y); i.e.
P ′ is P reflected in the x-axis.

Addition. Let z1 = x1 + iy1 be associated with P1,
and z2 = x2 + iy2 be associated with P2. Then

z3 = z1 + z2 = (x1 + x2) + i (y1 + y2) ,

is associated with the point P3 that is obtained
by completing the parallelogram P1OP2P3. In
terms of vector addition

→
OP3=

→
OP1 +

→
OP2 ,

which is sometimes called the triangle law.
1/02

Theorem 1.3. If z1, z2 ∈ C then

|z1 + z2| 6 |z1|+ |z2| , (1.13a)
|z1 − z2| >

∣∣ |z1| − |z2| ∣∣ . (1.13b)

Remark. Result (1.13a) is known as the triangle inequality (and is in fact one of many).

Proof. By the cosine rule

|z1 + z2|2 = |z1|2 + |z2|2 − 2|z1| |z2| cosψ
6 |z1|2 + |z2|2 + 2|z1| |z2|
= (|z1|+ |z2|)2 .

(1.13b) follows from (1.13a). Let z′1 = z1 + z2 and
z′2 = z2, so that z1 = z′1 − z′2. Then (1.13a) implies
that

|z′1| 6 |z′1 − z′2|+ |z′2| ,

and hence that

|z′1 − z′2| > |z′1| − |z′2| .

Interchanging z′1 and z′2 we also have that

|z′2 − z′1| = |z′1 − z′2| > |z′2| − |z′1| .

(1.13b) follows.
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1.5 Polar (Modulus/Argument) Representation

Another helpful representation of complex numbers
is obtained by using plane polar co-ordinates to rep-
resent position in Argand diagram. Let x = r cos θ
and y = r sin θ, then

z = x+ iy = r cos θ + ir sin θ
= r (cos θ + i sin θ) . (1.14)

Note that
|z| =

(
x2 + y2

)1/2
= r . (1.15)

• Hence r is the modulus of z (mod(z) for short).

• θ is called the argument of z (arg (z) for short).

• The expression for z in terms of r and θ is
called the modulus/argument form.

1/06

The pair (r, θ) specifies z uniquely. However, z does not specify (r, θ) uniquely, since adding 2nπ to θ
(n ∈ Z, i.e. the integers) does not change z. For each z there is a unique value of the argument θ such
that −π < θ 6 π, sometimes called the principal value of the argument.

Remark. In order to get a unique value of the argument it is sometimes more convenient to restrict θ
to 0 6 θ < 2π

1.5.1 Geometric interpretation of multiplication

Consider z1, z2 written in modulus argument form:

z1 = r1 (cos θ1 + i sin θ1) ,
z2 = r2 (cos θ2 + i sin θ2) .

Then

z1z2 = r1r2 (cos θ1. cos θ2 − sin θ1. sin θ2
+i (sin θ1. cos θ2 + sin θ2. cos θ1))

= r1r2 (cos (θ1 + θ2) + i sin (θ1 + θ2)) . (1.16)

Hence

|z1z2| = |z1| |z2| , (1.17a)
arg (z1z2) = arg (z1) + arg (z2) (+2nπ with n an arbitrary integer). (1.17b)

In words: multiplication of z1 by z2 scales z1 by | z2 | and rotates z1 by arg(z2).

Exercise. Find equivalent results for z1/z2.
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1.6 The Exponential Function

1.6.1 The real exponential function

The real exponential function, exp(x), is defined by the power series

exp(x) = expx = 1 + x+
x2

2!
· · · =

∞∑
n=0

xn

n!
. (1.18)

This series converges for all x ∈ R (see the Analysis I course).

Worked exercise. Show for x, y ∈ R that

(expx) (exp y) = exp (x+ y) . (1.19)

Solution.

expx exp y =
∞∑

n=0

xn

n!

∞∑
m=0

ym

m!

=
∞∑

r=0

r∑
m=0

xr−m

(r −m)!
ym

m!
for n = r −m

=
∞∑

r=0

1
r!

r∑
m=0

r!
(r −m)!m!

xr−mym

=
∞∑

r=0

(x+ y)r

r!
by the binomial theorem

= exp(x+ y) .

Definition. We write
exp(1) = e .

Worked exercise. Show for n, p, q ∈ Z, where without loss of generality (wlog) q > 0, that:

exp(n) = en and exp
(
p

q

)
= e

p
q .

Solution. For n = 1 there is nothing to prove. For n > 2, and using (1.19),

exp(n) = exp(1) exp(n− 1) = e exp(n− 1) , and thence by induction exp(n) = en .

From the power series definition (1.18) with n = 0:

exp(0) = 1 = e0 .

Also from (1.19) we have that

exp(−1) exp(1) = exp(0) , and thence exp(−1) =
1
e

= e−1 .

For n 6 −2 proceed by induction as above.

Next note from applying (1.19) q times that(
exp

(
p

q

))q

= exp (p) = ep .

Thence on taking the positive qth root

exp
(
p

q

)
= e

p
q .
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Definition. For irrational x, define
ex = exp(x) .

From the above it follows that if y ∈ R, then it is consistent to write exp(y) = ey.

1.6.2 The complex exponential function

Definition. For z ∈ C, the complex exponential is defined by

exp(z) =
∞∑

n=0

zn

n!
. (1.20)

This series converges for all finite |z| (again see the Analysis I course).

Remarks. When z ∈ R this definition is consistent with (1.18). For z1, z2 ∈ C,

(exp z1) (exp z2) = exp (z1 + z2) ,

with the proof essentially as for (1.19).

Definition. For z ∈ C and z 6∈ R we define

ez = exp(z) ,

Remark. This definition is consistent with the earlier results and definitions for z ∈ R.

1.6.3 The complex trigonometric functions

Theorem 1.4. For w ∈ C
exp (iw) ≡ eiw = cos w + i sin w . (1.21)

Proof. First consider w real. Then from using the power series definitions for cosine and sine when their
arguments are real, we have that

exp (iw) =
∞∑

n=0

(iw)n

n!
= 1 + iw − w2

2
− i

w3

3!
. . .

=
(

1− w2

2!
+
w4

4!
. . .

)
+ i

(
w − w3

3!
+
w5

5!
. . .

)
=

∞∑
n=0

(−1)n w2n

(2n)!
+ i

∞∑
n=0

(−1)n w2n+1

(2n+ 1)!

= cos w + i sin w ,

which is as required (as long as we do not mind living dangerously and re-ordering infinite series). Next,
for w ∈ C define the complex trigonometric functions by7

cos w =
∞∑

n=0

(−1)n w2n

(2n)!
and sin w =

∞∑
n=0

(−1)n w2n+1

(2n+ 1)!
. (1.22)

The result (1.21) then follows for w complex.

7Again note that these definitions are consistent with the definitions when the arguments are real.
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Remarks.

1. From taking the complex conjugate of (1.21), or otherwise,

exp (−iw) ≡ e−iw = cos w − i sin w . (1.23)

2. From (1.21) and (1.23) it follows that

cos w = 1
2

(
eiw + e−iw

)
, and sin w =

1
2i
(
eiw − e−iw

)
. (1.24)

2/02

1.6.4 Relation to modulus/argument form

Let w = θ where θ ∈ R. Then from (1.21)

eiθ = cos θ + i sin θ . (1.25)

It follows from the polar representation (1.14) that

z = r (cos θ + i sin θ) = reiθ , (1.26)

with (again) r = |z| and θ = arg z. In this representation the multiplication of two complex numbers is
rather elegant:

z1z2 =
(
r1e

i θ1
) (
r2e

i θ2
)

= r1r2 e
i(θ1+θ2) ,

confirming (1.17a) and (1.17b).

1.6.5 Modulus/argument expression for 1

Consider solutions of
z = rei θ = 1 .

Since by definition r, θ ∈ R, it follows that r = 1,

ei θ = cos θ + i sin θ = 1 ,

and thence that cos θ = 1 and sin θ = 0. We deduce that

θ = 2kπ , for k ∈ Z.

2/03

1.7 Roots of Unity

A root of unity is a solution of zn = 1, with z ∈ C and n a positive integer.

Theorem 1.5. There are n solutions of zn = 1 (i.e. there are n ‘nth roots of unity’)

Proof. One solution is z = 1. Seek more general solutions of the form z = r ei θ with the restriction
0 6 θ < 2π so that θ is not multi-valued. Then(

r ei θ
)n

= rneinθ = 1 , (1.27)

and hence from §1.6.5, rn = 1 and n θ = 2kπ with k ∈ Z. We conclude that within the requirement that
0 6 θ < 2π, there are n distinct roots given by

θ =
2kπ
n

with k = 0, 1, . . . , n− 1. (1.28)
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Remark. If we write ω = e2π i/n, then the roots of zn = 1 are 1, ω, ω2, . . . , ωn−1. Further, for n > 2

1 + ω + · · ·+ ωn−1 =
n−1∑
k=0

ωk =
1− ωn

1− ω
= 0 , (1.29)

because ωn = 1.
Example. Solve z5 = 1.

Solution. Put z = ei θ, then we require that

e5i θ = e2πki for k ∈ Z.

There are thus five distinct roots given by

θ = 2πk/5 with k = 0, 1, 2, 3, 4.

Larger (or smaller) values of k yield no new
roots. If we write ω = e2π i/5, then the roots
are 1, ω, ω2, ω3, ω4, and

1 + ω + ω2 + ω3 + ω4 = 0 .

Each root corresponds to a vertex of a pen-
tagon. 2/06

1.8 De Moivre’s Theorem

Theorem 1.6. De Moivre’s theorem states that for θ ∈ R and n ∈ Z

cosnθ + i sinnθ = (cos θ + i sin θ)n
. (1.30)

Proof. From (1.25)

cosnθ + i sinnθ = ei (nθ)

=
(
ei θ
)n

= (cos θ + i sin θ)n

Remark. Although De Moivre’s theorem requires θ ∈ R and n ∈ Z, (1.30) holds for θ, n ∈ C in the sense
that (cosnθ + i sinnθ) (single valued) is one value of (cos θ + i sin θ)n (multivalued).

Alternative proof (unlectured). (1.30) is true for n = 0. Now argue by induction.
Assume true for n = p > 0, i.e. assume that (cos θ + i sin θ)p = cos pθ + i sin pθ. Then

(cos θ + i sin θ)p+1 = (cos θ + i sin θ) (cos θ + i sin θ)p

= (cos θ + i sin θ) (cos pθ + i sin pθ)
= cos θ. cos pθ − sin θ. sin pθ + i (sin θ. cos pθ + cos θ. sin pθ)
= cos (p+ 1) θ + i sin (p+ 1) θ .

Hence the result is true for n = p+ 1, and so holds for all n > 0. Now consider n < 0, say n = −p.
Then, using the proved result for p > 0,

(cos θ + i sin θ)n = (cos θ + i sin θ)−p

=
1

(cos θ + i sin θ)p

=
1

cos p θ + i sin pθ
= cos pθ − i sin p θ
= cosn θ + i sinnθ

Hence De Moivre’s theorem is true ∀ n ∈ Z.

Mathematical Tripos: IA Algebra & Geometry (Part I) 9 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

1.9 Logarithms and Complex Powers

We know already that if x ∈ R and x > 0, the com-
plex equation ey = x has a unique real solution,
namely y = log x (or lnx if you prefer).

Definition. We define log z for z ∈ C as ‘the’ solu-
tion w of

ew = z . (1.31)

To understand the nature of the complex logarithm let w = u+ iv with u, v ∈ R. Then eu+iv = z = reiθ,
and hence

eu = |z| = r .

v = arg z = θ + 2kπ for any k ∈ Z .

Thus
w = log z = log |z|+ i arg z . (1.32a)

Remark. Since arg z is a multi-valued function, so is log z.

Definition. The principal value of log z is such that

−π < arg z = Im(log z) 6 π. (1.32b)

Example. If z = −x with x ∈ R and x > 0, then

log z = log | −x | +i arg (−x)
= log | x | +(2k + 1)iπ for any k ∈ Z .

The principal value of log(−x) is log |x|+ iπ.

1.9.1 Complex powers

Recall the definition of xa, for x, a ∈ R, x > 0 and a irrational, namely

xa = ea log x = exp (a log x) .

Definition. For z 6= 0, z, w ∈ C, define zw by

zw = ew log z. (1.33)

Remark. Since log z is multi-valued so is zw, i.e. zw is only defined upto an arbitrary multiple of e2kiπw,
for any k ∈ Z.

Example. The value of ii is given by

ii = ei log i

= ei(log |i|+i arg i)

= ei(log 1+2ki π+iπ/2)

= e
−

“
2k+

1
2

”
π for any k ∈ Z (which is real).
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1.10 Lines and Circles in the Complex Plane

1.10.1 Lines

For fixed z0, w ∈ C with w 6= 0, and varying λ ∈ R,
the equation

z = z0 + λw (1.34a)

represents in the Argand diagram (complex plane)
points on straight line through z0 and parallel to w.

Remark. Since λ = (z − z0)/w ∈ R, it follows that
λ = λ̄, and hence that

z − z0
w

=
z̄ − z̄0
w̄

.

Thus
zw̄ − z̄w = z0w̄ − z̄0w (1.34b)

is an alternative representation of the line.

Worked exercise. Show that z0w̄− z̄0w = 0 if and only if (iff) the line (1.34a) passes through the origin.

Solution. If the line passes through the origin then put z = 0 in (1.34b), and the result follows. If
z0w̄ − z̄0w = 0, then the equation of the line is zw̄ − z̄w = 0. This is satisfied by z = 0, and hence
the line passes through the origin.

Exercise. Show that if zw̄ − z̄w = 0, then z = γw for some γ ∈ R.

1.10.2 Circles

In the Argand diagram, a circle of radius r 6= 0 and
centre v (r ∈ R, v ∈ C) is given by

S = {z ∈ C : | z − v |= r} , (1.35a)

i.e. the set of complex numbers z such that |z − v| = r.

Remarks.

• If z = x+ iy and v = p+ iq then

|z − v|2 = (x− p)2 + (y − q)2 = r2 ,

which is the equation for a circle with centre
(p, q) and radius r in Cartesian coordinates.

• Since |z − v|2 = (z̄ − v̄) (z − v), an alternative
equation for the circle is

|z|2 − v̄z − vz̄ + |v|2 = r2 . (1.35b)3/02
3/03

1.11 Möbius Transformations

Consider a map of C → C (‘C into C’) defined by

z 7→ z′ = f (z) =
az + b

cz + d
, (1.36)

where a, b, c, d ∈ C are constants. We require that

Mathematical Tripos: IA Algebra & Geometry (Part I) 11 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006
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(i) c and d are not both zero, so that the map is finite (except at z = −d/c);

(ii) different points map to different points, i.e. if z1 6= z2 then z′1 6= z′2, i.e. we require that

az1 + b

cz1 + d
6= az2 + b

cz2 + d
, or equivalently (ad− bc)(z1 − z2) 6= 0 , i.e. (ad− bc) 6= 0 .

Remarks.

• Condition (i) is a subset of condition (ii), hence we need only require that (ad− bc) 6= 0.

• f(z) maps every point of the complex plane, except z = −d/c, into another (z = −d/c is mapped
to infinity).

• Adding the ‘point at infinity’ makes f complete.

1.11.1 Composition

Consider a second Möbius transformation

z′ 7→ z′′ = g (z′) =
αz′ + β

γz′ + δ
where α, β, γ, δ ∈ C, and αδ − βγ 6= 0 .

Then the combined map z 7→ z′′ is also a Möbius transformation:

z′′ = g (z′) = g (f (z))

=
α
(

az+b
cz+d

)
+ β

γ
(

az+b
cz+d

)
+ δ

=
α (az + b) + β (cz + d)
γ (az + b) + δ (cz + d)

=
(αa+ βc) z + (αb+ βd)
(γa+ δc) z + (γb+ δd)

, (1.37)

where we note that (αa+ βc) (γb+ δd)− (αb+ βd) (γa+ δc) = (ad− bc)(αδ−βγ) 6= 0. Hence the set of
all Möbius maps is therefore closed under composition.

1.11.2 Inverse

For the a, b, c, d ∈ R as in (1.36), consider the Möbius map

z′′ =
−dz′ + b

cz′ − a
, (1.38)

i.e. α = −d, β = b, γ = c and δ = −a. Then from (1.37), z′′ = z. We conclude that (1.38) is the inverse
to (1.36), and vice versa.

Remarks.

1. (1.36) maps C \{−d/c} to C \{a/c}, while (1.38) maps C \{a/c} to C \{−d/c}.

2. The inverse (1.38) can be deduced from (1.36) by formal manipulation.

Exercise. For Möbius maps f , g and h demonstrate that the maps are associative, i.e. (fg)h = f(gh).
Those who have taken Further Mathematics A-level should then conclude something.

Mathematical Tripos: IA Algebra & Geometry (Part I) 12 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

1.11.3 Basic Maps

Translation. Put a = 1, c = 0 and d = 1 to obtain

z′ = z + b . (1.39a)

This map represents a translation; e.g lines map to parallel
lines, while circles map to circles of the same radius but
with a centre offset by b.

3/06

Dilatation and rotation. Next put b = 0, c = 0 and d = 1 so
that

z′ = az = |a||z| ei(arg a+arg z) . (1.39b)

This map scales z by |a| and rotates z by arg a about the
origin O.

The line z = z0 + λw, where λ ∈ R and w ∈ C, becomes

z′ = az0 + λaw = z′0 + λw′ ,

where z′0 = az0 and w′ = aw, which is just another line.

The circle |z − v| = r becomes∣∣∣∣z′a − v

∣∣∣∣ = r or equivalently |z′ − v′| = r′ ,

where v′ = av and r′ = |a|r, which is just another circle.

Inversion and reflection. Now put a = 0, b = 1, c = 1 and
d = 0, so that z′ = 1

z . Thus if z = reiθ then

z′ =
1
r
e−iθ , i.e. |z′| = |z|−1 and arg z′ = − arg z.

Hence this map represents inversion in the unit circle cen-
tred on the origin O, and reflection in the real axis.

The line z = z0 + λw, or equivalently (see (1.34b))

zw̄ − z̄w = z0w̄ − z̄0w ,

becomes
w̄

z′
− w

z̄′
= z0w̄ − z̄0w .

By multiplying by |z′|2, etc., this equation can be rewrit-
ten successively as

z̄′w̄ − z′w = (z0w̄ − z̄0w) z′z̄′

z′z̄′ − z̄′w̄

z0w̄ − z̄0w
− z′w

z̄0w − z0w̄
= 0∣∣∣∣z′ − w̄

z0w̄ − z̄0w

∣∣∣∣2 =
∣∣∣∣ w̄

z0w̄ − z̄0w

∣∣∣∣2
From (1.35a) this is a circle (which passes through the
origin) with centre w̄

z0w̄−z̄0w and radius
∣∣∣ w̄
z0w̄−z̄0w

∣∣∣. The
exception is when z0w̄−z̄0w = 0, in which case the original
line passes through the origin, and the mapped curve,
z̄′w̄ − z′w = 0, is also a straight line through the origin.
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Further, under the map z′ = 1
z the circle | z − v |= r becomes∣∣∣∣ 1z′ − v

∣∣∣∣ = r , i.e. |1− vz′| = r|z′| .

Hence

(1− vz′)
(
1− v̄z̄′

)
= r2z̄′z′ ,

or equivalently

z′z̄′
(
|v|2 − r2

)
− vz′ − v̄z̄′ + 1 = 0 .

or equivalently

z′z̄′ − v

(|v|2 − r2)
z′ − v̄

(|v|2 − r2)
z̄′ +

|v|2

(|v|2 − r2)2
=

r2

(|v|2 − r2)2
.

From (1.35b) this is the equation for a circle with centre v̄/(|v|2− r2) and radius r/(|v|2− r2). The
exception is if |v|2 = r2, in which case the original circle passed through the origin, and the map
reduces to

vz′ + v̄z̄′ = 1 ,

which is the equation of a straight line.

Summary. Under inversion and reflection, circles and straight lines which do not pass through the
origin map to circles, while circles and straight lines that do pass through origin map to straight
lines.

1.11.4 The general Möbius map

The reason for introducing the basic maps above is that the general Möbius map can be generated by
composition of translation, dilatation and rotation, and inversion and reflection. To see this consider the
sequence:

dilatation and rotation z 7→ z1 = cz (c 6= 0)

translation z1 7→ z2 = z1 + d

inversion and reflection z2 7→ z3 = 1/z2

dilatation and rotation z3 7→ z4 =
(
bc− ad

c

)
z3 (bc 6= ad)

translation z4 7→ z5 = z4 + a/c (c 6= 0)

Exercises.

(i) Show that

z5 =
az + b

cz + d
.

(ii) Construct a similar sequence if c = 0 and d 6= 0.

The above implies that a general Möbius map transforms circles and straight lines to circles and straight
lines (since each constituent transformation does so).
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2 Vector Algebra

2.0 Why Study This?

Many scientific quantities just have a magnitude, e.g. time, temperature, density, concentration. Such
quantities can be completely specified by a single number. We refer to such numbers as scalars. You
have learnt how to manipulate such scalars (e.g. by addition, subtraction, multiplication, differentiation)
since your first day in school (or possibly before that). A scalar, e.g. temperature T , that is a function
of position (x, y, z) is referred to as a scalar field ; in the case of our example we write T ≡ T (x, y, z).

However other quantities have both a magnitude and a direction, e.g. the position of a particle, the
velocity of a particle, the direction of propagation of a wave, a force, an electric field, a magnetic field.
You need to know how to manipulate these quantities (e.g. by addition, subtraction, multiplication and,
next term, differentiation) if you are to be able to describe them mathematically.

2.1 Vectors

Definition. A quantity that is specified by a [positive] magnitude and a direction in space is called a
vector.

Remarks.

• For the purpose of this course the notes will represent vectors in bold, e.g. v. On the over-
head/blackboard I will put a squiggle under the v

∼
.8

• The magnitude of a vector v is written |v|.

• Two vectors u and v are equal if they have the same magnitude, i.e. |u| = |v|, and they are in the
same direction, i.e. u is parallel to v and in both vectors are in the same direction/sense.

• A vector, e.g. force F, that is a function of position (x, y, z) is referred to as a vector field ; in the
case of our example we write F ≡ F(x, y, z).

2.1.1 Geometric representation

We represent a vector v as a line segment, say
→
AB, with length |v| and direction that of v (the direc-

tion/sense of v is from A to B).

Examples.

(i) Every point P in 3D (or 2D) space has a position

vector, r, from some chosen origin O, with r =
→
OP

and r = OP = |r|.
Remarks.

• Often the position vector is represented by x
rather than r, but even then the length (i.e.
magnitude) is usually represented by r.

• The position vector is an example of a vector
field.

(ii) Every complex number corresponds to a unique
point in the complex plane, and hence to the po-
sition vector of that point.

4/03

8 Sophisticated mathematicians use neither bold nor squiggles.
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2.2 Properties of Vectors

2.2.1 Addition

Vectors add according to the parallelogram rule:

a + b = c , (2.1a)
or equivalently

→
OA +

→
OB =

→
OC , (2.1b)

where OACB is a parallelogram.

Remarks.

(i) Since
→
OB=

→
AC, it is also true that

→
OA +

→
AC=

→
OC . (2.2)

(ii) Addition is commutative, i.e.
a + b = b + a . (2.3)

(iii) Addition is associative, i.e.

a + (b + c) = (a + b) + c . (2.4)

(iv) There is a triangle inequality analogous to (1.13a), i.e.

|a + b| 6 |a|+ |b| . (2.5)

This is proved in an analogous manner to (1.13a) using the cosine rule.

(v) If |a| = 0, write a = 0, where 0 is the null vector or zero vector.9 For all vectors b

b + 0 = b , and from (2.3) 0 + b = b . (2.6)

(vi) Define the vector −a to be parallel to a, to have
the same magnitude as a, but to have the opposite
direction/sense (so that it is anti-parallel). This is
called the negative of a and is such

(−a) + a = 0 . (2.7a)

Define subtraction of vectors by

b− a ≡ b + (−a) . (2.7b)

2.2.2 Multiplication by a scalar
4/02

If λ ∈ R then λa has magnitude |λ||a|, is parallel to a, and it has the same direction/sense as a if λ > 0,
but the opposite direction/sense as a if λ < 0 (see below for λ = 0).

A number of properties follow from the above definition. In what follows λ, µ ∈ R.

Distributive law:

(λ+ µ)a = λa + µa , (2.8a)
λ(a + b) = λa + λb . (2.8b)

9 I have attempted to always write 0 in bold in the notes; if I have got it wrong somewhere then please let me know.
However, on the overhead/blackboard you will need to be more ‘sophisticated’. I will try and get it right, but I will not
always. Depending on context 0 will sometimes mean 0 and sometimes 0.
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Associative law:

λ(µa) = (λµ)a . (2.9)

Multiplication by 0, 1 and -1:

0a = 0 since 0 |a| = 0, (2.10a)
1a = a , (2.10b)

(−1)a = −a since | − 1| |a| = |a| and −1 < 0. (2.10c)

We can also recover the final result without appealing to geometry by using (2.4), (2.6), (2.7a),
(2.7b), (2.8a), (2.10a) and (2.10b) since

(−1)a = (−1)a + 0

= (−1)a + (a− a)
= ((−1)a + 1a)− a

= (−1 + 1)a− a

= 0− a

= −a .

Definition. The vector c = λa + µb is described as a linear combination of a and b.

Unit vectors. Suppose a 6= 0, then define
â =

a
|a|

. (2.11)

â is termed a unit vector since

|â| =
∣∣∣∣ 1
|a|

∣∣∣∣ |a| = 1
|a|
|a| = 1 .

A ˆ is often used to indicate a unit vector, but note that this is a convention that is often broken (e.g.
see §2.7.1).

2.2.3 Example: the midpoints of the sides of any quadrilateral form a parallelogram

This an example of the fact that the rules of vector manipulation and their geometric interpretation can
be used to prove geometric theorems.

Denote the vertices of the quadrilateral by A, B, C

and D. Let a, b, c and d represent the sides
→
DA,

→
AB,

→
BC and

→
CD, and let P , Q, R and S denote the

respective midpoints. Then since the quadrilateral is
closed

a + b + c + d = 0 . (2.12)

Further →
PQ=

→
PA +

→
AQ= 1

2a + 1
2b .

Similarly, from using (2.12),

→
RS = 1

2 (c + d)
= − 1

2 (a + b)

= −
→
PQ ,

and thus
→
SR=

→
PQ. Since PQ and SR have equal magnitude and are parallel, PQSR is a parallelogram. 04/06
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2.3 Scalar Product

Definition. The scalar product of two vectors a and
b is defined to be the real (scalar) number

a · b = |a||b| cos θ , (2.13)

where 0 6 θ 6 π is the angle between a and b mea-
sured in the positive (anti-clockwise) sense once they
have been placed ‘tail to tail’ or ‘head to head’.

Remark. The scalar product is also referred to as
the dot product.

2.3.1 Properties of the scalar product

(i) The scalar product of a vector with itself is the square of its modulus:

a · a = |a|2= a2 . (2.14)

(ii) The scalar product is commutative:
a · b = b · a . (2.15)

(iii) If 0 6 θ < 1
2π, then a · b > 0, while if 1

2π < θ 6 π, then a · b < 0.

(iv) If a 6= 0 and b 6= 0 and a · b = 0, then a and b must be orthogonal (i.e. θ = 1
2π).

(v) Suppose λ ∈ R. If λ > 0 then

a · (λb) = |a||λb| cos θ
= |λ||a||b| cos θ
= |λ|a · b
= λa · b .

If instead λ < 0 then

a · (λb) = |a||λb| cos(π − θ)
= −|λ||a||b| cos θ
= −|λ|a · b
= λa · b .

Similarly, or by using (2.15), (λa) · b = λa · b. In
summary

a · (λb) = (λa) · b = λa · b . (2.16)

2.3.2 Projections

Before deducing one more property of the scalar
product, we need to discuss projections. The pro-
jection of a onto b is that part of a that is parallel
to b (which here we will denote by a′).

From geometry, |a′| = |a| cos θ (assume for the time
being that cos θ > 0). Thus since a′ is parallel to b,

a′ = |a′| b
|b|

= |a| cos θ
b
|b|

. (2.17a)
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Exercise. Show that (2.17a) remains true if cos θ < 0.

Hence from (2.13)

a′ = |a| a · b
|a||b|

b
|b|

=
a · b
|b|2

b = (a · b̂) b̂ , (2.17b)

where b̂ is the unit vector in the direction of b.

2.3.3 Another property of the scalar product

We wish to show that

a · (b + c) = a · b + a · c . (2.18)

The result is [clearly] true if a = 0, so henceforth
assume a 6= 0. Then from (2.17b) (after exchanging
a for b, and b or c or (b + c) for a, etc.)

a · b
|a|2

a +
a · c
|a|2

a = {projection of b onto a}+ {projection of c onto a}

= {projection of (b + c) onto a} (by geometry)

=
a · (b + c)

|a|2
a .

Now use (2.8a) on the LHS before ‘dotting’ both sides with a to obtain the result (i.e. if λa + µa = γa,
then (λ+ µ)a = γa, hence (λ+ µ)|a|2 = γ|a|2, and so λ+ µ = γ).

2.3.4 Example: the cosine rule

BC2 ≡ |
→
BC |2 = |

→
BA +

→
AC |2

=
(

→
BA +

→
AC

)
·
(

→
BA +

→
AC

)
=

→
BA ·

→
BA +

→
BA ·

→
AC +

→
AC ·

→
BA +

→
AC ·

→
AC

= BA2 + 2
→
BA ·

→
AC +AC2

= BA2 + 2BA AC cos θ +AC2

= BA2 − 2BA AC cosα+AC2 .

5/03

2.4 Vector Product

Definition. The vector product a× b of an ordered pair a, b
is a vector such that

(i)
|a× b| = |a||b| sin θ , (2.19)

with 0 6 θ 6 π defined as before;

(ii) a × b is perpendicular/orthogonal to both a and b (if
a× b 6= 0);

(iii) a × b has the sense/direction defined by the ‘right-hand
rule’, i.e. take a right hand, point the index finger in the
direction of a, the second finger in the direction of b, and
then a× b is in the direction of the thumb.
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Remarks.

(i) The vector product is also referred to as the cross product.

(ii) An alternative notation (that is falling out of favour except on my overhead/blackboard) is a ∧ b.
5/02

2.4.1 Properties of the vector product

(i) The vector product is not commutative (from the right-hand rule):

a× b = −b× a . (2.20a)

(ii) The vector product of a vector with itself is zero:

a× a = 0 . (2.20b)

(iii) If a 6= 0 and b 6= 0 and a × b = 0, then θ = 0 or θ = π, i.e. a and b are parallel (or equivalently
there exists λ ∈ R such that a = λb).

(iv) It follows from the definition of the vector product

a× (λb) = λ (a× b) . (2.20c)

(v) Consider b′′ = â × b. This vector can be constructed by two operations. First project b onto a
plane orthogonal to â to generate the vector b′, then rotate b′ about â by π

2 in an ‘anti-clockwise’
direction (‘anti-clockwise’ when looking in the opposite direction to â).

π 2

a π 2 a
a )

b
a

b’

θ

b’ is the projection of b onto

a

b’

b’’

b’’ is the result of rotating the vectorb’
the plane perpendicular to through an angle anti−clockwise about 

(looking in the opposite direction to

By geometry |b′| = |b| sin θ = |â×b|, and b′′ has the same magnitude as b′. Further, by construc-
tion b′′ is orthogonal to both a and b, and thus has the correct magnitude and sense/direction to
be equated to â× b.

(vi) We can use this geometric interpretation to show that

a× (b + c) = a× b + a× c , (2.20d)

by first noting by geometry that

{projection of b onto plane ⊥ to a} + {projection of c onto plane ⊥ to a}
= {projection of (b + c) onto plane ⊥ to a} ,

i.e.
b′ + c′ = (b + c)′ ,
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and by then rotating b′, c′ and (b + c)′ by π
2 ‘anti-

clockwise’ about a to show that

b′′ + c′′ = (b + c)′′ .

2.4.2 Vector area of a triangle/parallelogram

Let O, A and B denote the vertices of a triangle, and let NB

be the altitude through B. Denote
→
OA and

→
OB by a and b

respectively. Then

Area of triangle = 1
2 OA .NB = 1

2 OA .OB sin θ = 1
2 |a× b| .

1
2a × b is referred to as the vector area of the triangle. It has
the same magnitude as the area of the triangle, and is normal
to OAB, i.e. normal to the plane containing a and b.

Let O, A, C and B denote the vertices of a parallelogram, with
→
OA and

→
OB as before. Then

Area of parallelogram = |a× b| ,

and the vector area is a× b.

2.5 Triple Products

Given the scalar (‘dot’) product and the vector (‘cross’) product, we can form two triple products.

Scalar triple product:
(a× b) · c = c · (a× b) = − (b× a) · c , (2.21)

from using (2.15) and (2.20a).

Vector triple product:

(a× b)× c = −c× (a× b) = − (b× a)× c = c× (b× a) , (2.22)

from using (2.20a).
5/06

2.5.1 Properties of the scalar triple product

Volume of parallelepipeds. The volume of a parallelepiped
(or parallelipiped or parallelopiped or parallelopi-
pede or parallelopipedon) with edges a, b and c is

Volume = Base Area × Height
= |a× b| |c| cosφ
= | (a× b) · c| (2.23a)
= (a× b) · c > 0 , (2.23b)

if a, b and c have the sense of the right-hand rule.
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Identities. Assume that the ordered triple (a,b, c) has the sense of the right-hand rule. Then so do the
ordered triples (b, c,a), and (c,a,b). Since the ordered scalar triple products will all equal the
volume of the same parallelepiped it follows that

(a× b) · c = (b× c) · a = (c× a) · b . (2.24a)

Further the ordered triples (a, c,b), (b,a, c) and (c,b,a) all have the sense of the left-hand rule,
and so their scalar triple products must all equal the ‘negative volume’ of the parallelepiped; thus

(a× c) · b = (b× a) · c = (c× b) · a = − (a× b) · c . (2.24b)

It also follows from (2.15) and (2.24a) that

(a× b) · c = a · (b× c) , (2.24c)

and hence the order of the ‘cross’ and ‘dot’ is inconsequential.10 For this reason we sometimes use
the notation

[a,b, c] = (a× b) · c . (2.24d)

Coplanar vectors. If a, b and c are coplanar then

[a,b, c] = 0 ,

since the volume of the parallelepiped is zero. Conversely if non-zero a, b and c are such that
[a,b, c] = 0, then a, b and c are coplanar.

6/03

2.6 Bases and Components

2.6.1 Two dimensional space

First consider 2D space, an origin O, and two non-zero and non-parallel vectors a and b. Then the
position vector r of any point P in the plane can be expressed as

r =
→
OP= λa + µb , (2.25)

for suitable and unique real scalars λ and µ.

Geometric construction. Draw a line through P par-

allel to
→
OA= a to intersect

→
OB= b (or its ex-

tension) at N (all non-parallel lines intersect).
Then there exist λ, µ ∈ R such that

→
ON= µb and

→
NP= λa ,

and hence

r =
→
OP= λa + µb .

Definition. We say that the set {a,b} spans the set of vectors lying in the plane.

Uniqueness. Suppose that λ and µ are not-unique, and that there exists λ, λ′, µ, µ′ ∈ R such that

r = λa + µb = λ′a + µ′b .

Hence
(λ− λ′)a = (µ′ − µ)b ,

and so λ− λ′ = µ− µ′ = 0, since a and b are not parallel (or ‘cross’ first with a and then b).

10 What is important is the order of a, b and c.
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Definition. If for two vectors a and b and α, β ∈ R,

αa + βb = 0 ⇒ α = β = 0 , (2.26)

then we say that a and b are linearly independent.

Definition. We say that the set {a,b} is a basis for the set of vectors lying the in plane if it is a spanning
set and a and b are linearly independent.

Remark. {a,b} do not have to be orthogonal to be a basis.

2.6.2 Three dimensional space

Next consider 3D space, an origin O, and three non-zero and non-coplanar vectors a, b and c (i.e.
[a,b, c] 6= 0). Then the position vector r of any point P in space can be expressed as

r =
→
OP= λa + µb + νc , (2.27)

for suitable and unique real scalars λ, µ and ν.

Geometric construction. Let Πab be the plane con-
taining a and b. Draw a line through P parallel

to
→
OC= c. This line cannot be parallel to Πab

because a, b and c are not coplanar. Hence it
will intersect Πab, say at N , and there will ex-

ist ν ∈ R such that
→
NP= νc. Further, since

→
ON lies in the plane Πab, from §2.6.1 there

exists λ, µ ∈ R such that
→
ON= λa + µb. It

follows that

r =
→
OP =

→
ON +

→
NP

= λa + µb + νc ,

for some λ, µ, ν ∈ R.

We conclude that if [a,b, c] 6= 0 then the set {a,b, c} spans 3D space. 6/02

Uniqueness. We can show that λ, µ and ν are unique by construction. Suppose that r is given by (2.27)
and consider

r · (b× c) = (λa + µb + νc) · (b× c)
= λa · (b× c) + µb · (b× c) + νc · (b× c)
= λa · (b× c) ,

since b · (b× c) = c · (b× c) = 0. Hence, and similarly or by permutation,

λ =
[r,b, c]
[a,b, c]

, µ =
[r, c,a]
[a,b, c]

, ν =
[r,a,b]
[a,b, c]

. (2.28)

The uniqueness of λ, µ and ν implies that the set {a,b, c} is linearly independent, and thus since the set
also spans 3D space, we conclude that {a,b, c} is a basis for 3D space.

Remark. {a,b, c} do not have to be mutually orthogonal to be a basis.
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2.6.3 Higher dimensional spaces

We can ‘boot-strap’ to higher dimensional spaces; in n-dimensional space we would find that the basis
had n vectors. However, this is not necessarily the best way of looking at higher dimensional spaces.

Definition. In fact we define the dimension of a space as the numbers of [different] vectors in the basis.

2.7 Components

Definition. If {a,b, c} is a basis for 3D space, and if for a vector r,

r = λa + µb + νc ,

then we call (λ, µ, ν) the components of r with respect to {a,b, c}.

2.7.1 The Cartesian or standard basis in 3D

We have noted that {a,b, c} do not have to be mutually orthogonal (or right-handed) to be a basis.
However, matters are simplified if the basis vectors are mutually orthogonal and have unit magnitude,
in which case they are said to define a orthonormal basis. It is also conventional to order them so that
they are right-handed.

Let OX, OY , OZ be a right-handed set of Cartesian
axes. Let

i be the unit vector along OX ,
j be the unit vector along OY ,
k be the unit vector along OZ ,

where it is not conventional to add a .̂ Then {i, j,k}
form a basis for 3D space satisfying

i · i = j · j = k · k = 1 , (2.29a)
i · j = j · k = k · i = 0 , (2.29b)

i× j = k , j× k = i , k× i = j , (2.29c)
[i, j,k] = 1 . (2.29d)

Definition. If for a vector v and a Cartesian basis {i, j,k},

v = vxi + vyj + vzk , (2.30)

where vx, vy, vz ∈ R, we define (vx, vy, vz) to be the Cartesian components of v with respect to {i, j,k}.

By ‘dotting’ (2.30) with i, j and k respectively, we deduce from (2.29a) and (2.29b) that

vx = v · i , vy = v · j , vz = v · k . (2.31)

Hence for all 3D vectors v
v = (v · i) i + (v · j) j + (v · k)k . (2.32)

Remarks.

(i) Assuming that we know the basis vectors (and remember that there are an uncountably infinite
number of Cartesian axes), we often write

v = (vx, vy, vz) . (2.33)

In terms of this notation

i = (1, 0, 0) , j = (0, 1, 0) , k = (0, 0, 1) . (2.34)
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(ii) If the point P has the Cartesian co-ordinates (x, y, z), then the position vector

→
OP= r = x i + y j + z k , i.e. r = (x, y, z) . (2.35)

(iii) Every vector in 2D/3D space may be uniquely represented by two/three real numbers, so we often
write R2/R3 for 2D/3D space.

2.7.2 Direction cosines

If t is a unit vector with components (tx, ty, tz) with
respect to the basis {i, j,k}, then

tx = t · i = |t| |i| cosα , (2.36a)

where α is the angle between t and i. Hence if β
and γ are the angles between t and j, and t and k,
respectively, the direction cosines of t are defined by

t = (cosα, cosβ, cos γ) . (2.36b)

6/06

2.8 Vector Component Identities

Suppose that

a = axi + ayj + azk , b = bxi + byj + bzk and c = cxi + cyj + czk . (2.37)

Then we can deduce a number of vector identities for components (and one true vector identity).

Addition. From repeated application of (2.8a), (2.8b) and (2.9)

λa + µb = (λax + µbx)i + (λay + µby)j + (λaz + µbz)k . (2.38)

Scalar product. From repeated application of (2.9), (2.15), (2.16), (2.18), (2.29a) and (2.29b)

a · b = (axi + ayj + azk) · (bxi + byj + bzk)
= axi · bxi + axi · byj + axi · bzk + . . .

= ax bx i · i + ax by i · j + ax bz i · k + . . .

= ax bx + ay by + az bz . (2.39)

Vector product. From repeated application of (2.9), (2.20a), (2.20b), (2.20c), (2.20d), (2.29c)

a× b = (axi + ayj + azk)× (bxi + byj + bzk)
= axi× bxi + axi× byj + axi× bzk + . . .

= ax bx i× i + ax by i× j + ax bz i× k + . . .

= (ay bz − az by)i + (az bx − ax bz)j + (ax by − ay bx)k . (2.40)

Scalar triple product. From (2.39) and (2.40)

(a× b) · c = ((ay bz − az by)i + (az bx − ax bz)j + (ax by − ay bx)k) · (cxi + cyj + czk)
= ax by cz + ay bz cx + az bx cy − ax bz cy − ay bx cz − az by cx . (2.41)

Vector triple product. We wish to show that

a× (b× c) = (a · c)b− (a · b)c . (2.42)
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Remark. Identity (2.42) has no component in the direction a, i.e. no component in the direction of the
vector outside the parentheses.

To prove this, begin with the x-component of the left-hand side of (2.42). Then from (2.40)(
a× (b× c)

)
x
≡ (a× (b× c)

)
· i = ay (b× c)z − az (b× c)y

= ay (bx cy − by cx)− az (bz cx − bx cz)
= (aycy + azcz)bx + axbxcx − axbxcx − (ayby + azbz)cx
= (a · c)bx − (a · b)cx
=

(
(a · c)b− (a · b)c

)
· i ≡

(
(a · c)b− (a · b)c

)
x
.

Now proceed similarly for the y and z components, or note that if its true for one component it must be
true for all components because of the arbitrary choice of axes. 7/03

2.9 Polar Co-ordinates

Polar co-ordinates are alternatives to Cartesian co-ordinates systems for describing positions in space.
They naturally lead to alternative sets of orthonormal basis vectors.

2.9.1 2D plane polar co-ordinates

Define 2D plane polar co-ordinates (r, θ) in terms of
2D Cartesian co-ordinates (x, y) so that

x = r cos θ , y = r sin θ , (2.43a)

where 0 6 r < ∞ and 0 6 θ < 2π. From inverting
(2.43a) it follows that

r =
(
x2 + y2

) 1
2 , θ = arctan

(y
x

)
, (2.43b)

where the choice of arctan should be such that
0 < θ < π if y > 0, π < θ < 2π if y < 0, θ = 0 if
x > 0 and y = 0, and θ = π if x < 0 and y = 0.

Remark. The curves of constant r and curves of constant θ intersect at right angles, i.e. are orthogonal.

We use i and j, orthogonal unit vectors in the directions of increasing x and y respectively, as a basis
in 2D Cartesian co-ordinates. Similarly we can use the unit vectors in the directions of increasing r
and θ respectively as ‘a’ basis in 2D plane polar co-ordinates, but a key difference in the case of polar
co-ordinates is that the unit vectors are position dependent.

Define er as unit vectors orthogonal to lines of con-
stant r in the direction of increasing r. Similarly,
define eθ as unit vectors orthogonal to lines of con-
stant θ in the direction of increasing θ. Then

er = cos θ i + sin θ j , (2.44a)
eθ = − sin θ i + cos θ j . (2.44b)

Equivalently

i = cos θ er − sin θ eθ , (2.45a)
j = sin θ er + cos θ eθ . (2.45b)

Exercise. Confirm that
er · er = 1 , eθ · eθ = 1 , er · eθ = 0 . (2.46)
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Given the components of a vector v with respect to a basis {i, j} we can deduce the components with
respect to the basis {er, eθ}:

v = vxi + vyj

= vx(cos θ er − sin θ eθ) + vy(sin θ er + cos θ eθ)
= (vx cos θ + vy sin θ) er + (−vx sin θ + vy cos θ) eθ . (2.47)

Example. For the case of the position vector r = xi + yj it follows from using (2.43a) and (2.47) that

r = (x cos θ + y sin θ) er + (−x sin θ + y cos θ) eθ = rer . (2.48)

Remarks.

(i) It is crucial to note that {er, eθ} vary with θ. This means that even constant vectors have com-
ponents that vary with position, e.g. from (2.45a) the components of i with respect to the basis
{er, eθ} are (cos θ, sin θ).

(ii) The polar co-ordinates of a point P are (r, θ), while the components of r =
→
OP with respect to the

basis {er, eθ} are (r, 0) (in the case of components the θ dependence is ‘hiding’ in the basis).

(iii) An alternative notation to (r, θ) is (ρ, φ), which as shall become clear has its advantages.

2.9.2 Cylindrical polar co-ordinates

Define 3D cylindrical polar co-ordinates (ρ, φ, z)11 in terms of 3D Cartesian co-ordinates (x, y, z) so that

x = ρ cosφ , y = ρ sinφ , z = z , (2.49a)

where 0 6 ρ <∞, 0 6 φ < 2π and −∞ < z <∞. From inverting (2.49a) it follows that

ρ =
(
x2 + y2

) 1
2 , φ = arctan

(y
x

)
, (2.49b)

where the choice of arctan should be such that 0 < φ < π if y > 0, π < φ < 2π if y < 0, φ = 0 if x > 0
and y = 0, and φ = π if x < 0 and y = 0.

eρ

eρ

eφ

eφ

ez

i

k

j
y

x

z

r

z

ρ

O

φ

P

N

11 Note that ρ and φ are effectively aliases for the r and θ of plane polar co-ordinates. However, in 3D there is a good
reason for not using r and θ as we shall see once we get to spherical polar co-ordinates. IMHO there is also a good reason
for not using r and θ in plane polar co-ordinates.
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Remarks.

(i) Cylindrical polar co-ordinates are helpful if you, say, want to describe fluid flow down a long
[straight] cylindrical pipe (e.g. like the new gas pipe between Norway and the UK).

(ii) At any point P on the surface, the vectors orthogonal to the surfaces ρ = constant, φ = constant
and z = constant, i.e. the normals, are mutually orthogonal. 7/02

Define eρ, eφ and ez as unit vectors orthogonal to lines of constant ρ, φ and z in the direction of
increasing ρ, φ and z respectively. Then

eρ = cosφ i + sinφ j , (2.50a)
eφ = − sinφ i + cosφ j , (2.50b)
ez = k . (2.50c)

Equivalently

i = cosφ eρ − sinφ eφ , (2.51a)
j = sinφ eρ + cosφ eφ , (2.51b)
k = ez . (2.51c)

Exercise. Show that {eρ, eφ, ez} are a right-handed triad of mutually orthogonal unit vectors, i.e. show
that (cf. (2.29a), (2.29b), (2.29c) and (2.29d))

eρ · eρ = 1 , eφ · eφ = 1 , ez · ez = 1 , (2.52a)
eρ · eφ = 0 , eρ · ez = 0 , eφ · ez = 0 , (2.52b)

eρ × eφ = ez , eφ × ez = eρ , ez × eρ = eφ , (2.52c)
[eρ, eφ, ez] = 1 . (2.52d)

Remark. Since {eρ, eφ, ez} satisfy analogous relations to those satisfied by {i, j,k}, i.e. (2.29a), (2.29b),
(2.29c) and (2.29d), we can show that analogous vector component identities to (2.38), (2.39),
(2.40) and (2.41) also hold.

Component form. Since {eρ, eφ, ez} form a basis we can write any vector v in component form as

v = vρeρ + vφeφ + vzez . (2.53)

Example. With respect to {eρ, eφ, ez} the position vector r can be expressed as

r =
→
ON +

→
NP = ρ eρ + z ez (2.54a)

= (ρ, 0, z) . (2.54b)
7/06

2.9.3 Spherical polar co-ordinates (cf. height, latitude and longitude)

Define 3D spherical polar co-ordinates (r, θ, φ)12 in terms of 3D Cartesian co-ordinates (x, y, z) so that

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ , (2.55a)

where 0 6 r <∞, 0 6 θ 6 π and 0 6 φ < 2π. From inverting (2.55a) it follows that

r =
(
x2 + y2 + z2

) 1
2 , θ = arctan

(x2 + y2
) 1

2

z

 , φ = arctan
(y
x

)
, (2.55b)

where again some care is needed in the choice of arctan.

12 Note that r and θ here are not the r and θ of plane polar co-ordinates. However, φ is the φ of cylindrical polar
co-ordinates.
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Remarks.

(i) Spherical polar co-ordinates are helpful if you, say, want to describe atmospheric (or oceanic, or
both) motion on the earth, e.g. in order to understand global warming.

(ii) The normals to the surfaces r = constant, θ = constant and φ = constant at any point P are
mutually orthogonal.

eφ

eφ

i

k

j

er

eθ

y

x

z

r

z

ρ

O

φ

N

P

θ

Define er, eθ and eφ as unit vectors orthogonal to lines of constant r, θ and φ in the direction of
increasing r, θ and φ respectively. Then

er = sin θ cosφ i + sin θ sinφ j + cos θ k , (2.56a)
eθ = cos θ cosφ i + cos θ sinφ j− sin θ k , (2.56b)
eφ = − sinφ i + cosφ j . (2.56c)

Equivalently

i = cosφ (sin θ er + cos θ eθ)− sinφ eφ , (2.57a)
j = sinφ (sin θ er + cos θ eθ) + cosφ eφ , (2.57b)
k = cos θ er − sin θ eθ . (2.57c)

Exercise. Show that {er, eθ, eφ} are a right-handed triad of mutually orthogonal unit vectors, i.e. show
that (cf. (2.29a), (2.29b), (2.29c) and (2.29d))

er · er = 1 , eθ · eθ = 1 , eφ · eφ = 1 , (2.58a)
er · eθ = 0 , er · eφ = 0 , eφ · eθ = 0 , (2.58b)

er × eθ = eφ , eθ × eφ = er , eφ × er = eθ , (2.58c)
[er, eθ, eφ] = 1 . (2.58d)

Remark. Since {er, eθ, eφ}13 satisfy analogous relations to those satisfied by {i, j,k}, i.e. (2.29a), (2.29b),
(2.29c) and (2.29d), we can show that analogous vector component identities to (2.38), (2.39), (2.40)
and (2.41) also hold.

13 The ordering of er, eθ, and eφ is important since {er, eφ, eθ} would form a left-handed triad.
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Component form. Since {er, eθ, eφ} form a basis we can write any vector v in component form as

v = vrer + vθeθ + vφeφ . (2.59)

Example. With respect to {er, eθ, eφ} the position vector r can be expressed as

r =
→
OP = r er (2.60a)

= (r, 0, 0) . (2.60b)

2.10 Suffix Notation

So far we have used dyadic notation for vectors. Suffix notation is an alternative means of expressing
vectors (and tensors). Once familiar with suffix notation, it is generally easier to manipulate vectors
using suffix notation.14

In (2.30) we introduced the notation

v = vxi + vyj + vzk = (vx, vy, vz) .

An alternative is to write

v = v1i + v2j + v3k = (v1, v2, v3) (2.61a)
= {vi} for i = 1, 2, 3 . (2.61b)

Suffix notation. Refer to v as {vi}, with the i = 1, 2, 3 understood. i is then termed a free suffix.

Example: the position vector. Write the position vector r as

r = (x, y, z) = (x1, x2, x3) = {xi} . (2.62)

Remark. The use of x, rather than r, for the position vector in dyadic notation possibly seems more
understandable given the above expression for the position vector in suffix notation. Henceforth we
will use x and r interchangeably.

2.10.1 Dyadic and suffix equivalents

If two vectors a and b are equal, we write

a = b , (2.63a)

or equivalently in component form

a1 = b1 , (2.63b)
a2 = b2 , (2.63c)
a3 = b3 . (2.63d)

In suffix notation we express this equality as

ai = bi for i = 1, 2, 3 . (2.63e)

This is a vector equation where, when we omit the for i = 1, 2, 3, it is understood that the one free suffix
i ranges through 1, 2, 3 so as to give three component equations. Similarly

c = λa + µb ⇔ ci = λai + µbi

⇔ cj = λaj + µbj

⇔ cα = λaα + µbα

⇔ cU = λaU + µbU ,

where is is assumed that i, j, α and U, respectively, range through (1, 2, 3).15

14 Although there are dissenters to that view.
15 In higher dimensions the suffices would be assumed to range through the number of dimensions.

Mathematical Tripos: IA Algebra & Geometry (Part I) 30 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

Remark. It does not matter what letter, or symbol, is chosen for the free suffix, but it must be the same
in each term.

Dummy suffices. In suffix notation the scalar product becomes

a · b = a1b1 + a2b2 + a3b3

=
3∑

i=1

aibi

=
3∑

k=1

akbk , etc.,

where the i, k, etc. are referred to as dummy suffices since they are ‘summed out’ of the equation.
Similarly

a · b = λ ⇔
3∑

α=1

aαbα = λ ,

where we note that the equivalent equation on the right hand side has no free suffices since the
dummy suffix (in this case α) has again been summed out.

Further examples.

(i) As another example consider the equation (a · b)c = d. In suffix notation this becomes

3∑
k=1

(akbk) ci =
3∑

k=1

akbkci = di , (2.64)

where k is the dummy suffix, and i is the free suffix that is assumed to range through (1, 2, 3).
It is essential that we used different symbols for both the dummy and free suffices!

(ii) In suffix notation the expression (a · b)(c · d) becomes

(a · b)(c · d) =

(
3∑

i=1

aibi

) 3∑
j=1

cjdj


=

3∑
i=1

3∑
j=1

aibicjdj ,

where, especially after the rearrangement, it is essential that the dummy suffices are different.

2.10.2 Summation convention

In the case of free suffices we are assuming that they range through (1, 2, 3) without the need to explicitly
say so. Under Einstein’s summation the explicit sum,

∑
, can be omitted for dummy suffices. In particular

• if a suffix appears once it is taken to be a free suffix and ranged through,

• if a suffix appears twice it is taken to be a dummy suffix and summed over,

• if a suffix appears more than twice in one term of an equation, something has gone wrong (unless
there is an explicit sum).

Remark. This notation is powerful because it is highly abbreviated (and so aids calculation, especially
in examinations), but the above rules must be followed, and remember to check your answers (e.g.
the free suffices should be identical on each side of an equation).
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Examples. Under suffix notation and the summation convection

a + b = c is written as ai + bi = ci

(a · b)c = d is written as ai bi cj = dj .

The following equations make no sense

ak = bj because the free suffices are different
ak bk ck = dk because k is repeated more than twice on the left-hand side.

8/03

2.10.3 Kronecker delta

The Kronecker delta, δij , i, j = 1, 2, 3, is a set of nine numbers defined by

δ11 = 1 , δ22 = 1 , δ33 = 1 , (2.65a)
δij = 0 if i 6= j . (2.65b)

This can be written as a matrix equation:δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 . (2.65c)

Properties.

1. Using the definition of the delta function:

aiδi1 =
3∑

i=1

aiδi1

= a1δ11 + a2δ21 + a3δ31

= a1 . (2.66a)

Similarly
aiδij = aj . (2.66b)

2.

δijδjk =
3∑

j=1

δijδjk = δik . (2.66c)

3.

δii =
3∑

i=1

δii = δ11 + δ22 + δ33 = 3 . (2.66d)

4.
ap δpq bq = ap bp = aq bq = a · b . (2.66e)

2.10.4 More on basis vectors

Now that we have introduced suffix notation, it is more convenient to write e1, e2 and e3 for the Cartesian
unit vectors i, j and k. An alternative notation is e(1), e(2) and e(3), where the use of superscripts may
help emphasise that the 1, 2 and 3 are labels rather than components.
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Then in terms of the superscript notation

e(i) · e(j) = δij , (2.67a)

a · e(i) = ai , (2.67b)

and hence

e(j) · e(i) =
(
e(j)
)
i

(the ith component of e(j)) (2.67c)

=
(
e(i)
)
j

= δij . (2.67d)

Or equivalently

(ej)i = (ei)j = δij . (2.67e)
8/06

2.10.5 The alternating tensor or Levi-Civita symbol

Definition. We define εijk (i, j, k = 1, 2, 3) to be the set of 27 quantities such that

εijk = 1 if i j k is an even permutation of 1 2 3; (2.68a)
= −1 if i j k is an odd permutation of 1 2 3; (2.68b)
= 0 otherwise. (2.68c)

An ordered sequence is an even/odd permutation if the number of pairwise swaps (or exchanges or
transpositions) necessary to recover the original ordering, in this case 1 2 3, is even/odd. Hence the
non-zero components of εijk are given by

ε123 = ε231 = ε312 = 1 (2.69a)
ε132 = ε213 = ε321 = −1 (2.69b)

Further
εijk = εjki = εkij = −εikj = −εkji = −εjik . (2.69c)

8/02

Example. For a symmetric tensor sij , i, j = 1, 2, 3, such that sij = sji evalulate εijksij . Since

εijksij = εjiksji = −εijksij , (2.70)

we conclude that εijksij = 0.

2.10.6 The vector product in suffix notation

We claim that

(a× b)i =
3∑

j=1

3∑
k=1

εijk aj bk = εijk aj bk , (2.71)

where we note that there is one free suffix and two dummy suffices.

Check.
(a× b)1 = ε123 a2 b3 + ε132 a3 b2 = a2 b3 − a3 b2 ,

as required from (2.40). Do we need to do more?

Example. (
e(j) × e(k)

)
i

= εilm

(
e(j)
)
l

(
e(k)

)
m

= εilm δjl δkm

= εijk . (2.72)
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2.10.7 An identity

Theorem 2.1.
εijkεipq = δjp δkq − δjq δkp . (2.73)

Remark. There are four free suffices/indices on each side, with i as a dummy suffix on the left-hand side.
Hence (2.73) represents 34 equations.

Proof. If j = k = 1, say; then

LHS = εi11εipq = 0 ,
RHS = δ1p δ1q − δ1q δ1p = 0 .

Similarly whenever j = k (or p = q). Next suppose j = 1 and k = 2, say; then

LHS = εi12 εipq

= ε312 ε3pq

=

 1 if p = 1, q = 2
−1 if p = 2, q = 1
0 otherwise

,

while

RHS = δ1p δ2q − δ1q δ2p

=

 1 if p = 1, q = 2
−1 if p = 2, q = 1
0 otherwise

.

Similarly whenever j 6= k.

Example. Take j = p in (2.73) as an example of a repeated suffix; then

εipkεipq = δpp δkq − δpq δkp

= 3δkq − δkq = 2δkq . (2.74)

2.10.8 Scalar triple product

In suffix notation the scalar triple product is given by

a · (b× c) = ai(b× c)i

= εijk ai bj ck . (2.75)

2.10.9 Vector triple product

Using suffix notation for the vector triple product we recover(
a× (b× c)

)
i

= εijk aj (b× c)k

= εijk aj εklm bl cm

= −εkji εklm aj bl cm

= −(δjlδim − δjmδil) aj bl cm

= aj bi cj − aj bj ci

=
(
(a · c)b− (a · b)c

)
i
,

in agreement with (2.42).
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2.11 Vector Equations

When presented with a vector equation one approach might be to write out the equation in components,
e.g. (x− a) · n = 0 would become

x1 n1 + x2 n2 + x3 n3 = a1 n1 + a2 n2 + a3 n3 .

For given a,n ∈ R3 this is a single equation for three unknowns x = (x1, x2, x3) ∈ R3, and hence we
might expect two arbitrary parameters in the solution (as we shall see is the case in (2.81) below). An
alternative, and often better, way forward is to use vector manipulation to make progress.

Worked Exercise. For given a,b, c ∈ R3 find solutions x ∈ R3 to

x− (x× a)× b = c . (2.76)

Solution. First expand the vector triple product using (2.42):

x− a(b · x) + x(a · b) = c ;

then dot this with b:
b · x = b · c ;

then substitute this result into the previous equation to obtain:
x(1 + a · b) = c + a(b · c) ;

now rearrange to deduce that

x =
c + a(b · c)
(1 + a · b)

.

Remark. For the case when a and c are not parallel, we could have alternatively sought a solution
using a, c and a× c as a basis.

2.12 Lines and Planes

Certain geometrical objects can be described by vector equations.

2.12.1 Lines

Consider the line through a point A parallel to a
vector t, and let P be a point on the line. Then the
vector equation for a point on the line is given by

→
OP =

→
OA +

→
AP

or equivalently
x = a + λt , (2.77a)

for some λ ∈ R.

We may eliminate λ from the equation by noting that x− a = λt, and hence

(x− a)× t = 0 . (2.77b)

This is an equivalent equation for the line since the solutions to (2.77b) for t 6= 0 are either x = a or
(x− a) parallel to t.9/03

Remark. Equation (2.77b) has many solutions; the multiplicity of the solutions is represented by a single
arbitrary scalar.
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Worked Exercise. For given u, t ∈ R3 find solutions x ∈ R3 to

u = x× t . (2.78)

Solution. First ‘dot’ (2.78) with t to obtain

t · u = t · (x× t) = 0 .

Thus there are no solutions unless t · u = 0. Next ‘cross’ (2.78) with t to obtain

t× u = t× (x× t) = (t · t)x− (t · x)t .

Hence

x =
t× u
|t|2

+
(t · x)t
|t|2

.

Finally observe that if x is a solution to (2.78) so is x + µt for any µ ∈ R, i.e. solutions of
(2.78) can only be found up to an arbitrary multiple of t. Hence the general solution to (2.78),
assuming that t · u = 0, is

x =
t× u
|t|2

+ µt , (2.79)

i.e. a straight line in direction t through (t× u)/|t|2.
9/02

2.12.2 Planes

Consider a plane that goes through a point A and
that is orthogonal to a unit vector n; n is the normal
to the plane. Let P be any point in the plane. Then

→
AP ·n = 0 ,( →

AO +
→
OP

)
· n = 0 ,

(x− a) · n = 0 . (2.80a)

Let Q be the point in the plane such that
→
OQ is

parallel to n. Suppose that
→
OQ= dn, then d is the

distance of the plane to O. Further, since Q is in the
plane, it follows from (2.80a) that

(dn− a) · n = 0 , and hence a · n = dn2 = d .

The equation of the plane is thus
x · n = a · n = d . (2.80b)

Remarks.

1. If l and m are two linearly independent vectors such that l · n = 0 and m · n = 0 (so that both
vectors lie in the plane), then any point x in the plane may be written as

x = a + λl + µm , (2.81)

where λ, µ ∈ R.

2. (2.81) is a solution to equation (2.80b). The arbitrariness in the two independent arbitrary scalars
λ and µ means that the equation has [uncountably] many solutions.
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9/06

Worked exercise. Under what conditions do the two lines L1 : (x− a)× t = 0 and L2 : (x− b)× u = 0
intersect?

Solution. If the lines are to intersect they cannot be paral-
lel, hence t and u must be linearly independent. L1

passes through a; let L′2 be the line passing through
a parallel to u. Let Π be the plane containing L1

and L′2, with normal t × u. Hence from (2.80a) the
equation specifying points on the plane Π is

Π : (x− a) · (t× u) = 0 . (2.82)

Because L2 is parallel to L′2 and thence Π, either
L2 intersects Π nowhere (in which case L1 does not
intersect L2), or L2 lies in Π (in which case L1 in-
tersects L2). If the latter case, then b lies in Π and
we deduce that a necessary condition for the lines to
intersect is that

(b− a) · (t× u) = 0 . (2.83)

Further, we can show that (2.83) is also a sufficient condition for the lines to intersect. For if (2.83)
holds, then (b− a) must lie in the plane through the origin that is normal to (t× u). This plane
is spanned by t and u, and hence there exists λ, µ ∈ R such that

b− a = λt + µu .

Let
x = a + λt = b− µu ;

then from the equation of a line, (2.77a), we deduce that x is a point on both L1 and L2 (as
required).

2.13 Cones and Conic Sections

A right circular cone is a surface on which every
point P is such that OP makes a fixed angle, say α
(0 < α < 1

2π), with a given axis that passes through
O. The point O is referred to as the vertex of the
cone.
Let n be a unit vector parallel to the axis. Then from
the above description

x · n = |x| cosα . (2.84a)

The vector equation for a cone with its vertex at the
origin is thus

(x · n)2 = x2 cos2 α , (2.84b)

where by squaring the equation we have included the
‘reverse’ cone.

By means of a translation we can now generalise (2.84b) to the equation for a cone with a vertex at a
general point a: [

(x− a) · n
]2 = (x− a)2 cos2 α . (2.84c)
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Component form. Suppose that in terms of a standard Cartesian basis

x = (x, y, z) , a = (a, b, c) , n = (l,m, n) ,

then (2.84c) becomes[
(x− a)l + (y − b)m+ (z − c)n

]2 =
[
(x− a)2 + (y − b)2 + (z − c)2

]
cos2 α . (2.85)

10/03

Intersection of a cone and a plane. Let us consider the intersection of this cone with the plane z = 0. In
that plane [

(x− a)l + (y − b)m− cn
]2 =

[
(x− a)2 + (y − b)2 + c2

]
cos2 α . (2.86)

This is a curve defined by a quadratic polynomial in x and y. In order to simplify the algebra
suppose that, wlog, we choose Cartesian axes so that the axis of the cone is in the yz plane. In
that case l = 0 and we can express n in component form as

n = (l,m, n) = (0, sinβ, cosβ) .

Further, translate the axes by the transformation

X = x− a , Y = y − b+
c sinβ cosβ

cos2 α− sin2 β
,

so that (2.86) becomes[(
Y − c sinβ cosβ

cos2 α− sin2 β

)
sinβ − c cosβ

]2
=
[
X2 +

(
Y − c sinβ cosβ

cos2 α− sin2 β

)2

+ c2
]

cos2 α ,

which can be simplified to

X2 cos2 α+ Y 2
(
cos2 α− sin2 β

)
=
c2 sin2 α cos2 α
cos2 α− sin2 β

. (2.87)

10/02

There are now three cases that need to be considered:
sin2 β < cos2 α, sin2 β > cos2 α and sin2 β = cos2 α.
To see why this is, consider graphs of the intersection
of the cone with theX = 0 plane, and for definiteness
suppose that 0 6 β 6 π

2 .

First suppose that

β + α <
π

2
i.e.

β < 1
2π − α

i.e.
sinβ < sin

(
1
2π − α

)
= cosα .

In this case the intersection of the cone with the
z = 0 plane will yield a closed curve.

Next suppose that

β + α >
π

2
i.e.

sinβ > cosα .

In this case the intersection of the cone with the
z = 0 plane will yield two open curves, while if
sinβ = cosα there will be one open curve.
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Define
c2 sin2 α

| cos2 α− sin2 β|
= A2 and

c2 sin2 α cos2 α(
cos2 α− sin2 β

)2 = B2 . (2.88)

sinβ < cosα. In this case (2.87) becomes

X2

A2
+
Y 2

B2
= 1 . (2.89a)

This is the equation of an ellipse with semi-minor
and semi-major axes of lengths A and B respec-
tively (from (2.88) it follows that A < B).

sinβ > cosα. In this case

−X
2

A2
+
Y 2

B2
= 1 . (2.89b)

This is the equation of a hyperbola, where B is one
half of the distance between the two vertices.

sinβ = cosα. In this case (2.86) becomes

X2 = −2c cotβ Y , (2.89c)

where

X = x− a and Y = y − b− c cot 2β . (2.89d)

This is the equation of a parabola.

Remarks.

(i) The above three curves are known collectively as conic sections.

(ii) The identification of the general quadratic polynomial as representing one of these three types
will be discussed later in the Tripos.

2.14 Maps: Isometries and Inversions

2.14.1 Isometries

Definition. An isometry of Rn is a mapping from Rn to Rn such that distances are preserved (where
n = 2 or n = 3 for the time being). In particular, suppose x1,x2 ∈ Rn are mapped to x′1,x

′
2 ∈ Rn, i.e.

x1 7→ x′1 and x2 7→ x′2, then
|x1 − x2| = |x′1 − x′2| . (2.90)

Examples.

Translation. Suppose that b ∈ Rn, and that

x 7→ x′ = x + b .

Then
|x′1 − x′2| = |(x1 + b)− (x2 + b)| = |x1 − x2| .

Translation is an isometry.
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Reflection. Consider reflection in a plane Π, where
Π = {x ∈ R3 : x · n = 0} and n is a constant
unit vector. For a point P , let N be the foot
of the perpendicular from P to the plane. Sup-
pose also that

x =
→
OP 7→ x′ =

→
OP ′ .

Then →
NP ′=

→
PN=

→
−NP ,

and so
→
OP ′=

→
OP +

→
PN +

→
NP ′=

→
OP −2

→
NP .

But |NP | = |x · n| and

→
NP=

{
|NP |n if

→
NP has the same sense as n, i.e. x · n > 0

−|NP |n if
→
NP has the opposite sense as n, i.e. x · n < 0 .

Hence
→
NP= (x · n)n, and

→
OP ′= x′ = x− 2(x · n)n . (2.91)

Remark. x′ is linear in x, i.e. the mapping is a linear function of the components of x.
Having derived the mapping, we now need to show that distances are preserved by the map-
ping. Suppose

xj 7→ x′j = xj − 2(xj · n)n (j = 1, 2) .

Let x12 = x1 − x2 and x′12 = x′1 − x′2, then since n2 = 1,

|x′12|2 = |x1 − 2(x1 · n)n− x2 + 2(x2 · n)n|2

= |x12 − 2(x12 · n)n|2

= x12x12 − 4(x12 · n)(x12 · n) + 4(x12 · n)2n2

= |x12|2 ,

as required for isometry.

2.15 Inversion in a Sphere

Let Σ = {x ∈ R3 : |x| = k ∈ R(k > 0)}. Then Σ
represents a sphere with centre O and radius k.

Definition. For each point P , the inverse point P ′

with respect to Σ lies on OP and satisfies

OP ′ =
k2

OP
. (2.92)

Let
→
OP= x and

→
OP ′= x′, then

x′ = |x′| x
|x|

=
k2

|x|
x
|x|

=
k2

|x|2
x . (2.93)

Exercise. Show that P ′ has inverse point P .

Remark. Inversion in a sphere is not an isometry, e.g. two points close to the origin map to far from the
sphere, and far from each other. 10/06
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Example: inversion of a sphere. Suppose that the sphere is given by

|x− a| = r , i.e. x2 − 2a · x + a2 − r2 = 0 . (2.94)

From (2.93)

|x′|2 =
k4

|x|2
and so x =

k2

|x′|2
x′ .

(2.94) can thus be rewritten

k4

|x′|2
− 2a · x′ k

2

|x′|2
+ a2 − r2 = 0 ,

or equivalently

k4 − 2a · x′k2 + (a2 − r2)|x′|2 = 0 ,

or equivalently if a2 6= r2 we can complete the square to obtain∣∣∣∣x′ − k2a
a2 − r2

∣∣∣∣2 =
r2k4

(a2 − r2)2
,

which is the equation of another sphere. Hence inversion of a sphere in a sphere gives another
sphere (if a2 6= r2).

Exercise. What happens if a2 = r2?
11/02
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3 Vector Spaces

3.0 Why Study This?

One of the strengths of mathematics, indeed one of the ways that mathematical progress is made, is
by linking what seem to be disparate subjects/results. Often this is done by taking something that we
are familiar with (e.g. real numbers), identifying certain key properties on which to focus (e.g. in the
case of real numbers, say, closure, associativity, identity and the existence of an inverse under addition or
multiplication), and then studying all mathematical objects with those properties (groups in the example
just given). The aim of this section is to ‘abstract’ the previous section. Up to this point you have thought
of vectors as a set of ‘arrows’ in 3D (or 2D) space. However, they can also be sets of polynomials, matrices,
functions, etc.. Vector spaces occur throughout mathematics, science, engineering, finance, etc..

3.1 What is a Vector Space?

We will consider vector spaces over the real numbers. There are generalisations to vector spaces over the
complex numbers, or indeed over any field (see Groups, Rings and Modules in Part IB for the definition
of a field).16

Sets. We have referred to sets already, and I hope that you have covered them in Numbers and Sets. To
recap, a set is a collection of objects considered as a whole. The objects of a set are called elements or
members. Conventionally a set is listed by placing its elements between braces, e.g. {x : x ∈ R} is the
set of real numbers.

The empty set. The empty set, { } or ∅, is the unique set which contains no elements. It is a subset of
every set.

3.1.1 Definition

A vector space over the real numbers is a set V of elements, or ‘vectors’, together with two binary
operations

• vector addition denoted for x,y ∈ V by x + y, where x + y ∈ V so that there is closure under
vector addition;

• scalar multiplication denoted for a ∈ R and x ∈ V by ax, where ax ∈ V so that there is closure
under scalar multiplication;

satisfying the following eight axioms or rules:17

A(i) addition is associative, i.e. for all x,y, z ∈ V

x + (y + z) = (x + y) + z ; (3.1a)

A(ii) addition is commutative, i.e. for all x,y ∈ V

x + y = y + x ; (3.1b)

A(iii) there exists an element 0 ∈ V , called the null or zero vector, such that for all x ∈ V

x + 0 = x , (3.1c)

i.e. vector addition has an identity element;

16 Pedants may feel they have reached nirvana at the start of this section; normal service will be resumed towards the
end of the section.

17 The first four mean that V is an abelian group under addition.
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A(iv) for all x ∈ V there exists an additive negative or inverse vector x′ ∈ V such that

x + x′ = 0 ; (3.1d)

B(v) scalar multiplication of vectors is ‘associative’,18 i.e. for all λ, µ ∈ R and x ∈ V

λ(µx) = (λµ)x , (3.1e)

B(vi) scalar multiplication has an identity element, i.e. for all x ∈ V

1 x = x , (3.1f)

where 1 is the multiplicative identity in R;

B(vii) scalar multiplication is distributive over vector addition, i.e. for all λ ∈ R and x,y ∈ V

λ(x + y) = λx + λy ; (3.1g)

B(viii) scalar multiplication is distributive over scalar addition, i.e. for all λ, µ ∈ R and x ∈ V

(λ+ µ)x = λx + µx . (3.1h)
11/03

3.1.2 Properties.

(i) The zero vector 0 is unique because if 0 and 0′ are both zero vectors in V then from (3.1b) and
(3.1c) 0 + x = x and x + 0′ = x for all x ∈ V , and hence

0′ = 0 + 0′ = 0 .

(ii) The additive inverse of a vector x is unique, for suppose that both y and z are additive inverses of
x then

y = y + 0

= y + (x + z)
= (y + x) + z

= 0 + z

= z .

We denote the unique inverse of x by −x.

(iii) The existence of a unique negative/inverse vector allows us to subtract as well as add vectors, by
defining

y − x ≡ y + (−x) . (3.2)

(iv) Scalar multiplication by 0 yields the zero vector, i.e. for all x ∈ V ,

0x = 0 , (3.3)

since

0x = 0x + 0

= 0x + (x + (−x))
= (0x + x) + (−x)
= (0x + 1x) + (−x)
= (0 + 1)x + (−x)
= x + (−x)
= 0 .

18 Strictly we are not asserting the associativity of an operation, since there are two different operations in question,
namely scalar multiplication of vectors (e.g. µx) and multiplication of real numbers (e.g. λµ).
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(v) Scalar multiplication by −1 yields the additive inverse of the vector, i.e. for all x ∈ V ,

(−1)x = −x , (3.4)

since

(−1)x = (−1)x + 0

= (−1)x + (x + (−x))
= ((−1)x + x) + (−x)
= (−1 + 1)x + (−x)
= 0x + (−x)
= 0 + (−x)
= −x .

(vi) Scalar multiplication with the zero vector yields the zero vector, i.e. for all λ ∈ R, λ0 = 0. To see
this we first observe that λ0 is a zero vector since

λ0 + λx = λ(0 + x)
= λx ,

and then appeal to the fact that the zero vector is unique to conclude that

λ0 = 0 . (3.5)

(vii) Suppose that λx = 0, where λ ∈ R and x ∈ V . One possibility is that λ = 0. However suppose that
λ 6= 0, in which case there exists λ−1 such that λ−1λ = 1. Then we conclude that

x = 1x

= (λ−1λ)x
= λ−1(λx)
= λ−10

= 0 .

So if λx = 0 then either λ = 0 or x = 0.

(viii) Negation commutes freely since for all λ ∈ R and x ∈ V

(−λ)x = (λ(−1))x
= λ((−1)x)
= λ(−x) , (3.6a)

and

(−λ)x = ((−1)λ)x
= (−1)(λx)
= −(λx) . (3.6b)

3.1.3 Examples

(i) Let Rn be the set of all n−tuples {x = (x1, x2, . . . , xn) : xj ∈ R with j = 1, 2, . . . , n}, where n is
any strictly positive integer. If x,y ∈ Rn, with x as above and y = (y1, y2, . . . , yn), define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) , (3.7a)
λx = (λx1, λx2, . . . , λxn) , (3.7b)
0 = (0, 0, . . . , 0) , (3.7c)

−x = (−x1,−x2, . . . ,−xn) . (3.7d)

It is straightforward to check that A(i), A(ii), A(iii) A(iv), B(v), B(vi), B(vii) and B(viii) are
satisfied. Hence Rn is a vector space over R.
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(ii) Consider the set F of real-valued functions f(x) of a real variable x ∈ [a, b], where a, b ∈ R and
a < b. For f, g ∈ F define

(f + g)(x) = f(x) + g(x) , (3.8a)
(λf)(x) = λf(x) , (3.8b)
O(x) = 0 , (3.8c)

(−f)(x) = −f(x) , (3.8d)

where the function O is the zero ‘vector’. Again it is straightforward to check that A(i), A(ii), A(iii)
A(iv), B(v), B(vi), B(vii) and B(viii) are satisfied, and hence that F is a vector space (where each
vector element is a function).11/06

3.2 Subspaces

Definition. A subset U of the elements of a vector space V is called a subspace of V if U is a vector
space under the same operations (i.e. vector addition and scalar multiplication) as are used to define V .

Proper subspaces. Strictly V and {0} (i.e. the set containing the zero vector only) are subspaces of V .
A proper subspace is a subspace of V that is not V or {0}.

Theorem 3.1. A subset U of a vector space V is a subspace of V if and only if under operations defined
on V

(i) for each x,y ∈ U , x + y ∈ U ,

(ii) for each x ∈ U and λ ∈ R, λx ∈ U ,

i.e. if and only if U is closed under vector addition and scalar multiplication.

Remark. We can combine (i) and (ii) as the single condition

for each x,y ∈ U and λ, µ ∈ R, λx + µy ∈ U .

Proof. Only if. If U is a subspace then it is a vector space, and hence (i) and (ii) hold.

If. It is straightforward to show that A(i), A(ii), B(v), B(vi), B(vii) and B(viii) hold since the elements
of U are also elements of V . We need demonstrate that A(iii) (i.e. 0 is an element of U), and A(iv) (i.e.
the every element has an inverse in U) hold.

A(iii). For each x ∈ U , it follows from (ii) that 0x ∈ U ; but since also x ∈ V it follows from (3.3) that
0x = 0. Hence 0 ∈ U .

A(iv). For each x ∈ U , it follows from (ii) that (−1)x ∈ U ; but since also x ∈ V it follows from (3.4)
that (−1)x = −x. Hence −x ∈ U .

3.2.1 Examples

(i) For n > 2 let U = {x : x = (x1, x2, . . . , xn−1, 0) with xj ∈ R and j = 1, 2, . . . , n− 1}. Then U is a
subspace of Rn since, for x,y ∈ U and λ, µ ∈ R,

λ(x1, x2, . . . , xn−1, 0) + µ(y1, y2, . . . , yn−1, 0) = (λx1 + µy1, λx2 + µy2, . . . , λxn−1 + µyn−1, 0) .

Thus U is closed under vector addition and scalar multiplication, and is hence a subspace.
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(ii) For n > 2 consider the set W = {x ∈ Rn :
∑n

i=1 αixi = 0} for given scalars αj ∈ R (j = 1, 2, . . . , n).
W is a subspace of V since, for x,y ∈W and λ, µ ∈ R,

λx + µy = (λx1 + µy1, λx2 + µy2, . . . , λxn + µyn) ,

and
n∑

i=1

αi(λxi + µyi) = λ
n∑

i=1

αixi + µ
n∑

i=1

αiyi = 0 .

Thus W is closed under vector addition and scalar multiplication, and is hence a subspace. Later
we shall see that W is a hyper-plane through the origin (see (3.24)).

(iii) For n > 2 consider the set W̃ = {x ∈ Rn :
∑n

i=1 αixi = 1} for given scalars αj ∈ R (j = 1, 2, . . . , n)
not all of which are zero (wlog α1 6= 0, if not reorder the numbering of the axes). W̃ , which is a
hyper-plane that does not pass through the origin, is not a subspace of Rn. To see this either note
that 0 6∈ W̃ , or consider x ∈ W̃ such that

x = (α−1
1 , 0, . . . , 0) .

Then x ∈ W̃ but x+x 6∈ W̃ since
∑n

i=1 αi(xi+xi) = 2. Thus W̃ is not closed under vector addition,
and so W̃ cannot be a subspace of Rn.12/02

3.3 Spanning Sets, Dimension and Bases

3.3.1 Linear independence

Extend ideas from vectors in R3.

Definition. A set of n vectors {v1,v2, . . . vn}, vj ∈ V (j = 1, 2, . . . , n), is linearly independent if for
all scalars λj ∈ R (j = 1, 2, . . . , n),

n∑
i=1

λivi = 0 ⇒ λi = 0 for i = 1, 2, . . . , n . (3.9)

Otherwise, the vectors are said to be linearly dependent since there exist scalars λj ∈ R (j = 1, 2, . . . , n),
not all of which are zero, such that

n∑
i=1

λivi = 0 .

Remark. With this definition {0} is a linearly dependent set.12/03

3.3.2 Spanning sets

Definition. A subset of S = {u1,u2, . . . un} of vectors in V is a spanning set for V if for every vector
v ∈ V , there exist scalars λj ∈ R (j = 1, 2, . . . , n), such that

v = λ1u1 + λ2u2 + . . .+ λnun . (3.10)

Remark. The λj are not necessarily unique (but see below for when the spanning set is a basis). Further,
we are implicitly assuming here (and in much that follows) that the vector space V can be spanned by
a finite number of vectors (this is not always the case).

Definition. The set of all linear combinations of the uj (j = 1, 2, . . . , n), i.e.

U =

{
u : u =

n∑
i=1

λiui, λj ∈ R, j = 1, 2, . . . , n

}
is closed under vector addition and scalar multiplication, and hence is a subspace of V . The vector space
U is called the span of S (written U = spanS), and we say that S spans U .
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Example. Consider R3, and let

u1 = (1, 0, 0) , u2 = (0, 1, 0) , u3 = (0, 0, 1) , u4 = (1, 1, 1) , u5 = (0, 1, 1) . (3.11)

• The set {u1,u2,u3,u4,u5} is linearly dependent since

u1 + u2 + u3 − u4 = 0 .

This set spans R3 since for any x = (x1, x2, x3) ∈ R3,

3∑
i=1

xiui = (x1, x2, x3) .

• The set {u1,u2,u3} is linearly independent since if

3∑
i=1

λiui = (λ1, λ2, λ3) = 0 ,

then λ1 = λ2 = λ3 = 0. This set spans R3 (as above).

• The set {u1,u2,u4} is linearly independent since if

λ1u1 + λ2u2 + λ4u4 = (λ1 + λ4, λ2 + λ4, λ4) = 0 ,

then λ1 = λ2 = λ4 = 0. This set spans R3 since for any x = (x1, x2, x3) ∈ R3,

(x1 − x3)u1 + (x2 − x3)u2 + x3u4 = (x1, x2, x3) .

• The set {u1,u4,u5} is linearly dependent since

u1 − u4 + u5 = 0 .

This set does not span R3, e.g. the vector (0, 1,−1) cannot be expressed as a linear combination
of u1, u4, u5. (The set does span the plane containing u1, u4 and u5.)

Theorem 3.2. If a set S = {u1,u2, . . . ,un} is linearly dependent, and spans the vector space V , we can
reduce S to a linearly independent set also spanning V .

Proof. If S is linear dependent then there exists λj , j = 1, . . . , n, not all zero such that

n∑
i=1

λiui = 0 .

Suppose that λn 6= 0 (if not reorder the vectors). Then

un = −
n−1∑
i=1

λi

λn
ui .

Since S spans V , and un can be expressed in terms of u1, . . . ,un−1, the set Sn−1 = {u1, . . . ,un−1} spans
V . If Sn−1 is linearly independent then we are done. If not repeat until Sp = {u1, . . . ,up}, which spans
V , is linearly independent.

Example. Consider the set {u1,u2,u3,u4}, for uj as defined in (3.11). This set spans R3, but is linearly
dependent since u4 = u1 +u2 +u3. There are a number of ways by which this set can be reduced to
a linearly independent one that still spans R3, e.g. the sets {u1,u2,u3}, {u1,u2,u4}, {u1,u3,u4}
and {u2,u3,u4} all span R3 and are linearly independent.

Definition. A basis for a vector space V is a linearly independent spanning set of vectors in V .
12/06
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Lemma 3.3. If {u1, . . . ,un} is a basis for a vector space V , then so is {w1,u2, . . . ,un} for

w1 =
n∑

i=1

λiui (3.12)

if λ1 6= 0.

Proof. Let x ∈ V , then since {u1, . . . ,un} spans V there exists µi such that

x =
n∑

i=1

µiui .

It follows from (3.12) that

x =
µ1

λ1

(
w1 −

n∑
i=2

λiui

)
+

n∑
i=2

µiui =
µ1

λ1
w1 +

n∑
i=2

(
µi −

λiµ1

λ1

)
ui ,

and hence that {w1,u2, . . . ,un} spans V . Further, suppose that

ν1w1 +
n∑

i=2

νiui = 0 .

Then from (3.12)

λ1ν1u1 +
n∑

i=2

(ν1λi + νi)ui = 0 .

But {u1, . . . ,un} is a basis so

λ1ν1 = 0 , ν1λi + νi = 0 , i = 2, . . . , n .

Since λ1 6= 0, we deduce that νi = 0 for i = 1, . . . , n, and hence that {w1,u2, . . . ,un} is linearly
independent.

Theorem 3.4. Let V be a finite-dimensional vector space, then every basis has the same number of
elements.

Proof. Suppose that {u1, . . . ,un} and {w1, . . . ,wm} are two bases for V with m > n (wlog). Since the
set {ui, i = 1, . . . , n} is a basis there exist λi, i = 1, . . . , n such that

w1 =
n∑

i=1

λiui

with λ1 6= 0 (if not reorder the ui, i = 1, . . . , n). The set {w1,u2, . . . ,un} is an alternative basis. Hence,
there exists µi, i = 1, . . . , n (at least one of which is non-zero) such that

w2 = µ1w1 +
n∑

i=2

µiui .

Moreover, at least one of the µi, i = 2, . . . , n must be non-zero, otherwise the subset {w1,w2} would
be linearly dependent and so violate the hypothesis that the set {wi, i = 1, . . . ,m} forms a basis.
Assume µ2 6= 0 (otherwise reorder the ui, i = 2, . . . , n). We can then deduce that {w1,w2,u3, . . . ,un}
forms a basis. Continue to deduce that {w1,w2, . . . ,wn} forms a basis, and hence spans V . If m > n
this would mean that {w1,w2, . . . ,wm} was linearly dependent, contradicting the original assumption.
Hence m = n.

Remark. An analogous argument can be used to show that no linearly independent set of vectors can
have more members than a basis.

Definition. The number of vectors in a basis of V is the dimension of V , written dimV .
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Remarks.

• The vector space {0} is said to have dimension 0.

• We shall restrict ourselves to vector spaces of finite dimension (although we have already encoun-
tered one vector space of infinite dimension, i.e. the vector space of real functions defined on [a, b]).

Exercise. Show that any set of dimV linearly independent vectors of V is a basis.

Examples.

(i) The set {e1, e2, . . . , en}, with e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1), is a basis
for Rn, and thus dim Rn = n.

(ii) The subspace U ⊂ Rn consisting of vectors (x, x, . . . , x) with x ∈ R is spanned by e = (1, 1, . . . , 1).
Since {e} is linearly independent, {e} is a basis and thus dimU = 1.

13/02

Theorem 3.5. If U is a proper subspace of V , any basis of U can be extended into a basis for V .

Proof. (Unlectured.) Let {u1,u2, . . . ,u`} be a basis of U (dimU = `). If U is a proper subspace of V then
there are vectors in V but not in U . Choose w1 ∈ V , w1 6∈ U . Then the set {u1,u2, . . . ,u`,w1} is linearly
independent. If it spans V , i.e. (dimV = `+ 1) we are done, if not it spans a proper subspace, say U1, of V .
Now choose w2 ∈ V , w2 6∈ U1. Then the set {u1,u2, . . . ,u`,w1,w2} is linearly independent. If it spans V
we are done, if not it spans a proper subspace, say U2, of V . Now repeat until {u1,u2, . . . ,u`,w1, . . . ,wm},
for some m, spans V (which must be possible since we are only studying finite dimensional vector
spaces).

Example. Let V = R3 and suppose U = {(x1, x2, x3) ∈ R3 : x1 + x2 = 0}. U is a subspace (see example
(ii) on page 46 with α1 = α2 = 1, α3 = 0). Since x1 + x2 = 0 implies that x2 = −x1 with no
restriction on x3, for x ∈ U we can write

x = (x1,−x1, x3) x1, x3 ∈ R
= x1(1,−1, 0) + x3(0, 0, 1) .

Hence a basis for U is {(1,−1, 0), (0, 0, 1)}.
Now choose any y such that y ∈ R3, y 6∈ U , e.g. y = (1, 0, 0), or (0, 1, 0), or (1, 1, 0). Then
{(1,−1, 0), (0, 0, 1)},y} is linearly independent and forms a basis for span {(1,−1, 0), (0, 0, 1)},y},
which has dimension three. But dim R3 = 3, hence

span {(1,−1, 0), (0, 0, 1),y} = R3 ,

and {(1,−1, 0), (0, 0, 1),y} is an extension of a basis of U to a basis of R3.

3.4 Components

Theorem 3.6. Let V be a vector space and let S = {e1, . . . , en} be a basis of V . Then each v ∈ V can
be expressed as a linear combination of the ei, i.e.

v =
n∑

i=1

viei , (3.13)

where the vi are unique for each v.
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Proof. If S is a basis then, from the definition of a basis, for all v ∈ V there exist vi ∈ R, i = 1, . . . , n,
such that

v =
n∑

i=1

viei .

Suppose also there exist v′i ∈ R, i = 1, . . . , n, such that

v =
n∑

i=1

v′iei .

Then
n∑

i=1

viei −
n∑

i=1

v′iei =
n∑

i=1

(vi − v′i)ei = 0 .

But the ei are linearly independent, hence (vi − v′i) = 0, i = 1, . . . , n, and hence the vi are unique.

Definition. We call the vi the components of v with respect to the basis S.

Remark. For a given basis, we conclude that each vector x in a vector space V of dimension n is associated
with a unique set of real numbers, namely its components x = (x1, . . . , xn) ∈ Rn. Further, if y is
associated with components y = (y1, . . . , yn) ∈ Rn then (λx + µy) is associated with components
(λx + µy) = (λx1 + µy1, . . . , λxn + µyn) ∈ Rn. A little more work then demonstrates that that all
dimension n vector spaces over the real numbers are the ‘same as’ Rn. To be more precise, it is
possible to show that every real n-dimensional vector space V is isomorphic to Rn. Thus Rn is the
prototypical example of a real n-dimensional vector space.13/03

3.5 Intersection and Sum of Subspaces

Let U and W be subspaces of a vector space V over R.

Definition. U ∩W is the intersection of U and W and consists of all vectors v such that v ∈ U and
v ∈W .

Remark. U ∩W contains at least 0 so is not empty.

Theorem 3.7. U ∩W is a subspace of V .

Proof. If x,y ∈ U ∩ W , then x,y ∈ U and x,y ∈ W , hence for any λ, µ ∈ R, λx + µy ∈ U and
λx + µy ∈W (since both U and W are subspaces). Hence λx + µy ∈ U ∩W , and U ∩W is a subspace
of V .

Remark. U ∩W is also a subspace of U and a subspace of W . 13/06

Definition. U +W is called the sum of subspaces U
and W , and consists of all vectors u + w ∈ V where
u ∈ U and w ∈W .

Remark. U +W is not the same as U ∪ W . If
U = span{(1, 0)} and W = span{(0, 1)}, then U ∪W
is the abscissa and the ordinate, while U +W is the
2D-plane.

Theorem 3.8. U +W is a subspace of V .

Proof. If v1,v2 ∈ U + W , then there exist u1,u2 ∈ U and w1,w2 ∈ W such that v1 = u1 + w1 and
v2 = u2 + w2. For any λ, µ ∈ R, λu1 + µu2 ∈ U and λw1 + µw2 ∈W . Hence

λv1 + µv2 = λ(u1 + w1) + µ(u2 + w2) = (λu1 + µu2) + (λw1 + µw2) ∈ U +W ,

and thus U +W is a subspace.

Remark. Since U ⊆ U +W and W ⊆ U +W , both U and W are subspaces of U +W .
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3.5.1 dim(U +W )

Let {u1, . . . ,u`} and {w1, . . . ,wm} be bases for U and W respectively. Then

U +W = span{u1, . . . ,u`,w1, . . . ,wm} ,

and hence dim(U +W ) 6 dimU + dimW . However, we can say more than this.

Theorem 3.9.
dim(U +W ) + dim(U ∩W ) = dimU + dimW . (3.14)

Proof. Let {e1, . . . , er} be a basis for U ∩W (OK if empty). Extend this to a basis {e1, . . . , er, f1, . . . , fs}
for U and a basis {e1, . . . , er,g1, . . . ,gt} for W . Then {e1, . . . , er, f1, . . . , fs,g1, . . . ,gt} spans U+W . For
λi ∈ R, i = 1, . . . , r, µi ∈ R, i = 1, . . . , s and νi ∈ R, i = 1, . . . , t, seek solutions to

r∑
i=1

λiei +
s∑

i=1

µifi +
t∑

i=1

νigi = 0 . (3.15)

Define v by

v =
s∑

i=1

µifi = −
r∑

i=1

λiei −
t∑

i=1

νigi ,

where the first sum is a vector in U , while the RHS is a vector in W . Hence v ∈ U ∩W , and so

v =
r∑

i=1

αiei for some αi ∈ R, i = 1, . . . , r.

We deduce that
r∑

i=1

(αi + λi)ei +
t∑

i=1

νigi = 0 .

But {e1, . . . , er,g1, . . . ,gt} is a basis (for W ) and hence linearly independent, and so νi = 0, i = 1, . . . , t.
Similarly µi = 0, i = 1, . . . , s. Further λi = 0, i = 1, . . . , r from (3.15) since {e1, . . . , er} is a basis (for
U ∩W ).

It follows that {e1, . . . , er, f1, . . . , fs,g1, . . . ,gt} is linearly independent and is thus a basis for U + W .
Thus

dim(U +W ) = r + s+ t = (r + s) + (r + t)− r = dim(U) + dim(W )− dim(U ∩W ) .

14/02

3.5.2 Examples

(i) Suppose that U = {x ∈ R4 : x1 = 0} and W = {x ∈ R4 : x1 + 2x2 = 0} (both are subspaces of R4

from example (ii) on page 46). Then, say,

U = span{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} ⇒ dimU = 3 ,
W = span{(−2, 1, 0, 0), (0, 0, 1, 1), (0, 0, 1,−1)} ⇒ dimW = 3 .

If x ∈ U ∩W then

x1 = 0 and x1 + 2x2 = 0 , and hence x1 = x2 = 0 .

Thus

U ∩W = span{(0, 0, 1, 0), (0, 0, 0, 1)} = span{(0, 0, 1, 1), (0, 0, 1,−1)} and dimU ∩W = 2 .

On the other hand

U +W = span{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−2, 1, 0, 0), (0, 0, 1, 1), (0, 0, 1,−1)}
= span{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−2, 1, 0, 0)} ,
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after reducing the linearly dependent spanning set to a linearly independent spanning set. Hence
dimU +W = 4. Hence, in agreement with (3.14),

dimU + dimW = 3 + 3 = 6 ,
dim(U ∩W ) + dim(U+W ) = 2 + 4 = 6 .

(ii) Let V be the vector space of real-valued functions on {1, 2, 3}, i.e. V = {f : (f(1), f(2), f(3)) ∈ R3}.
Define addition, scalar multiplication, etc. as in (3.8a), (3.8b), (3.8c) and (3.8d). Let e1 be the
function such that e1(1) = 1, e1(2) = 0 and e1(3) = 0; define e2 and e3 similarly (where we have
deliberately not used bold notation). Then {ei, i = 1, 2, 3} is a basis for V , and dimV = 3.

Let

U = {f : (f(1), f(2), f(3)) ∈ R3 with f(1) = 0}, then dimU = 2 ,
W = {f : (f(1), f(2), f(3)) ∈ R3 with f(2) = 0}, then dimW = 2 .

Then

U +W = V so dim(U+W ) = 3 ,
U ∩W = {f : (f(1), f(2), f(3)) ∈ R3 with f(1) = f(2) = 0}, so dimU ∩W = 1 ;

again verifying (3.14).
14/03

3.6 Scalar Products (a.k.a. Inner Products)

3.6.1 Definition of a scalar product

The three-dimensional linear vector space V = R3 has the additional property that any two vectors u
and v can be combined to form a scalar u ·v. This can be generalised to an n-dimensional vector space V
over the reals by assigning, for every pair of vectors u, v ∈ V , a scalar product, or inner product, u ·v ∈ R
with the following properties.

(i) Symmetry, i.e.
u · v = v · u . (3.16a)

(ii) Linearity in the second argument, i.e. for λ, µ ∈ R

u · (λv1 + µv2) = λu · v1 + µu · v2 . (3.16b)

(iii) Non-negativity, i.e. a scalar product of a vector with itself should be positive, i.e.

v · v > 0 . (3.16c)

This allows us to write v ·v = |v|2, where the real positive number |v| is a norm (cf. length) of the
vector v.

(iv) Non-degeneracy, i.e. the only vector of zero norm should be the zero vector, i.e.

|v| = 0 ⇒ v = 0 . (3.16d)

Remark. Properties (3.16a) and (3.16b) imply linearity in the first argument, i.e. for λ, µ ∈ R

(λu1 + µu2) · v = v · (λu1 + µu2)
= λv · u1 + µv · u2

= λu1 · v + µu2 · v . (3.17)

Alternative notation. An alternative notation for scalar products and norms is

〈u |v 〉 ≡ u · v , (3.18a)

‖v‖ ≡ |v| = (v · v)
1
2 . (3.18b)
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3.6.2 Schwarz’s inequality

Schwarz’s inequality states that
|u · v| 6 ‖u‖ ‖v‖ , (3.19)

with equality only when u is a scalar multiple of v.

Proof. For λ ∈ R consider

0 6 ‖u + λv‖2 = (u + λv) · (u + λv) from (3.18b)

= u · u + λu · v + λv · u + λ2v · v from (3.16b) and (3.17)

= ‖u‖2 + 2λu · v + λ2‖v‖2 from (3.16a).

We have two cases to consider: v = 0 and v 6= 0. First, suppose that v = 0, so that ‖v‖ = 0. The
right-hand-side then simplifies from a quadratic in λ to an expression that is linear in λ. If u · v 6= 0 we
have a contradiction since for certain choices of λ this simplified expression can be negative. Hence we
conclude that

u · v = 0 if v = 0 ,

in which case (3.19) is satisfied as an equality.

Second, suppose that v 6= 0. The right-hand-side is
then a quadratic in λ that, since it is not negative,
has at most one real root. Hence ‘b2 6 4ac’, i.e.

(2u · v)2 6 4‖u‖2‖v‖2 .

Schwarz’s inequality follows on taking the positive
square root, with equality only if u = −λv for some λ.

Remark. A more direct way of proving that u · 0 = 0 is to set λ = µ = 0 in (3.16b). Then, since 0 = 0+0
from (3.1c) and 0 = 0vj from (3.3),

u · 0 = u · (0v1 + 0v2) = 0 (u · v1) + 0 (u · v2) = 0 .

3.6.3 Triangle inequality

This triangle inequality is a generalisation of (1.13a) and (2.5) and states that

‖u + v‖ 6 ‖u‖+ ‖v‖ . (3.20)

Proof. This follows from taking square roots of the following inequality:

‖u + v‖2 = ‖u‖2 + 2u · v + ‖v‖2 from above with λ = 1

6 ‖u‖2 + 2|u · v|+ ‖v‖2

6 ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 from (3.19)

6 (‖u‖+ ‖v‖)2 .

Remark and exercise. In the same way that (1.13a) can be extended to (1.13b) we can similarly deduce
that

‖u− v‖ >
∣∣ ‖u‖ − ‖v‖ ∣∣ . (3.21)14/06
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3.6.4 The scalar product for Rn

In example (i) on page 44 we saw that the space of all n-tuples of real numbers forms an n-dimensional
vector space over R, denoted by Rn (and referred to as real coordinate space).

We define the scalar product on Rn as (cf. (2.39))

x · y =
n∑

i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn . (3.22)

Exercise. Confirm that (3.22) satisfies (3.16a), (3.16b), (3.16c) and (3.16d), i.e. for x,y, z ∈ Rn and
λ, µ ∈ R,

x · y = y · x ,
x · (λy + µz) = λx · y + µx · z ,
‖x‖2 = x · x > 0 ,

‖x‖ = 0 ⇒ x = 0 .

Remarks.

• The length, or Euclidean norm, of a vector x ∈ Rn is defined as

‖x‖ =

(
n∑

i=1

x2
i

) 1
2

,

while the interior angle θ between two vectors x and y is defined to be

θ = arccos
(

x · y
‖x‖‖y‖

)
.

• We need to be a little careful with the definition (3.22). It is important to appreciate that the
scalar product for Rn as defined by (3.22) is consistent with the scalar product for R3 defined in
(2.13) only when the xi and yi are components with respect to an orthonormal basis. To this end
we might view (3.22) as the scalar product with respect to the standard basis

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

For the case when the xi and yi are components with respect to a non-orthonormal basis (e.g. a
non-orthogonal basis), the scalar product in Rn equivalent to (2.13) has a more complicated form
than (3.22) (and for which we need matrices). The good news is that for any scalar product defined
on a vector space over R, orthonormal bases always exist.15/02

3.6.5 Examples

Hyper-sphere in Rn. The (hyper-)sphere in Rn with centre a ∈ Rn and radius r ∈ R is given by

Σ = {x ∈ Rn : ‖x− a‖ = r > 0, r ∈ R, a ∈ Rn}. (3.23)

Remark. Σ is not a subspace of Rn.

Hyper-plane in Rn. The (hyper-)plane in Rn that passes through b ∈ Rn and has normal n ∈ Rn, is
given by

Π = {x ∈ Rn : (x− b) · n = 0, b,n ∈ Rn with ‖n‖ = 1}. (3.24)

Remark. If b · n = 0 so that Π = {x ∈ Rn :
∑n

i=1 xini = 0}, i.e. so that the hyper-plane passes
through the origin, then Π is a subspace of dimension (n− 1) (see example (ii) of §3.2.1).
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4 Linear Maps and Matrices

4.0 Why Study This?

Many problems in the real world are linear, e.g. electromagnetic waves satisfy linear equations, and
almost all sounds you hear are ‘linear’ (exceptions being sonic booms). Moreover, many computational
approaches to solving nonlinear problems involve ‘linearisations’ at some point in the process (since com-
puters are good at solving linear problems). The aim of this section is to construct a general framework
for viewing such linear problems.

4.1 General Definitions

Definition. Let A,B be sets. A map f of A into B is a rule that assigns to each x ∈ A a unique x′ ∈ B.
We write

f : A→ B and/or x 7→ x′ = f(x)

Examples. Möbius maps of the complex plane, translation, inversion with respect to a sphere.

Definition. A is the domain of f .

Definition. B is the range, or codomain, of f .

Definition. f(x) = x′ is the image of x under f .

Definition. f(A) is the image of A under f , i.e. the set of all image points x′ ∈ B of x ∈ A.

Remark. f(A) ⊆ B, but there may be elements of B that are not images of any x ∈ A.

4.2 Linear Maps

We shall consider maps from a vector space V to a vector space W , focussing on V = Rn and W = Rm,
for m,n ∈ Z+.

Remark. This is not unduly restrictive since every real n-dimensional vector space V is isomorphic to Rn

(recall that any element of a vector space V with dimV = n corresponds to a unique element
of Rn).

Definition. Let V,W be vector spaces over R. The map T : V →W is a linear map or linear transfor-
mation if

(i)
T (a + b) = T (a) + T (b) for all a,b ∈ V , (4.1a)

(ii)
T (λa) = λT (a) for all a ∈ V and λ ∈ R , (4.1b)

or equivalently if

T (λa + µb) = λT (a) + µT (b) for all a,b ∈ V and λ, µ ∈ R . (4.2)
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Property. T (V ) is a subspace of W , since for T (a), T (b) ∈ T (V )

λT (a) + µT (b) = T (λa + µb) ∈ T (V ) for all λ, µ ∈ R. (4.3)

Now apply Theorem 3.1 on page 45.

The zero element. Since T (V ) is a subspace, it follows that 0 ∈ T (V ). However, we can say more than
that. Set b = 0∈ V in (4.1a), to deduce that

T (a) = T (a + 0) = T (a) + T (0) for all a ∈ V .

Thus from the uniqueness of the zero element it follows that T (0) = 0∈W .

Remark. T (b) = 0∈W does not imply b = 0∈ V .
15/03

4.2.1 Examples

(i) Consider translation in R3 (an isometry), i.e. consider

x 7→ x′ = T (x) = x + a , where a ∈ R3 and a 6= 0 .

This is not a linear map by the strict definition of a linear map since

T (x) + T (y) = x + a + y + a = T (x + y) + a 6= T (x + y) .

(ii) Next consider the isometric map HΠ : R3 → R3 consisting of reflections in the plane Π : x.n = 0
where x,n ∈ R3 and |n| = 1; then from (2.91)

x 7→ x′ = HΠ(x) = x− 2(x · n)n .

Hence for x1,x2 ∈ R3 under the map HΠ

x1 7→ x′1 = x1 − 2(x1 · n)n = HΠ(x1) ,

x2 7→ x′2 = x2 − 2(x2 · n)n = HΠ(x2) ,

and so for all λ, µ ∈ R

HΠ(λx1 + µx2) = (λx1 + µx2)− 2 ((λx1 + µx2) · n)n
= λ(x1 − 2(x1 · n)n) + µ(x2 − 2(x2 · n)n)
= λHΠ(x1) + µHΠ(x2) .

Thus (4.2) is satisfied, and so HΠ is a linear map.

(iii) As another example consider projection onto a line with direction t ∈ R3 as defined by (cf. (2.17b))

P : R3 → R3 x 7→ x′ = P (x) = (x · t)t where t · t = 1 .

From the observation that

P (λx1 + µx2) = ((λx1 + µx2) · t)t
= λ(x1 · t)t + µ(x2 · t)t
= λP (x1) + µP (x2)

we conclude that this is a linear map.

Remarks.

(i) The range of P is given by P (R3) = {x ∈ R3 : x = λt for λ ∈ R}, which is a 1-dimensional
subspace of R3.

(ii) A projection is not an isometry.
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(iv) As another example of a map where the domain of T has a higher dimension than the range of T
consider T : R3 → R2 where

(x, y, z) 7→ (u, v) = T (x) = (x+ y, 2x− z) .

We observe that T is a linear map since

T (λx1 + µx2) = ((λx1 + µx2) + (λy1 + µy2), 2(λx1 + µx2)− (λz1 + µz2))
= λ(x1 + y1, 2x1 − z1) + µ(x2 + y2, 2x2 − z2)
= λT (x1) + µT (x2) .

Remarks.

• The standard basis vectors for R3, i.e. e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) are mapped
to the vectors

T (e1) = (1, 2)
T (e2) = (1, 0)
T (e3) = (0,−1)

 which are linearly dependent and span R2.

Hence T (R3) = R2.

• We observe that

R3 = span{e1, e2, e3} and T (R3) = R2 = span{T (e1), T (e2), T (e3)}.

• We also observe that

T (e1)− T (e2) + 2T (e3) = 0∈ R2 which means that T (λ(e1 − e2 + 2e3)) = 0∈ R2 ,

for all λ ∈ R. Thus the whole of the subspace of R3 spanned by {e1 − e2 + 2e3}, i.e. the
1-dimensional line specified by λ(e1 − e2 + 2e3), is mapped onto 0∈ R2.

(v) As an example of a map where the domain of T has a lower dimension than the range of T consider
T : R2 → R4 where

(x, y) 7→ (s, t, u, v) = T (x, y) = (x+ y, x, y − 3x, y) .

T is a linear map since

T (λx1 + µx2) = ((λx1 + µx2) + (λy1 + µy2), λx1 + µx2, λy1 + µy2 − 3(λx1 + µx2), λy1 + µy2)
= λ(x1 + y1, x1, y1 − 3x1, y1) + µ(x2 + y2, x2, y2 − 3x2, y2)
= λT (x1) + µT (x2) .

Remarks.

• In this case we observe that the standard basis vectors of R2 are mapped to the vectors

T (e1) = T ((1, 0)) = (1, 1,−3, 0)
T (e2) = T ((0, 1)) = (1, 0, 1, 1)

}
which are linearly independent,

and which form a basis for T (R2).

• The subspace T (R2) = span{(1, 1,−3, 0), (1, 0, 1, 1)} of R4 is a 2-D hyper-plane through the
origin.
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4.3 Rank, Kernel and Nullity

Let T : V →W be a linear map. Recall that T (V ) is the image of V under T and that T (V ) is a subspace
of W .

Definition. The rank of T is the dimension of the image, i.e.

r(T ) = dimT (V ) . (4.4)

Examples. In both example (iv) and example (v) of §4.2.1, r(T ) = 2.

Definition. The subset of V that maps to the zero element in W is call the kernel, or null space, of T ,
i.e.

K(T ) = {v ∈ V : T (v) = 0 ∈W} . (4.5)
15/06

Theorem 4.1. K(T ) is a subspace of V .

Proof. Suppose that u,v ∈ K(T ) and λ, µ ∈ R then from (4.2)

T (λu + µv) = λT (u) + µT (v)
= λ0 + µ0

= 0 ,

and hence λu + µv ∈ K(T ). The proof then follows from invoking Theorem 3.1 on page 45.

Remark. Since T (0) = 0∈W , 0 ∈ K(T ) ⊆ V , so K(T ) contains at least 0.

Definition. The nullity of T is defined to be the dimension of the kernel, i.e.

n(T ) = dim K(T ) . (4.6)

Examples. In example (iv) on page 57 n(T ) = 1, while in example (v) on page 57 n(T ) = 0.

4.3.1 Examples

(i) Consider the map T : R2 → R3 such that

(x, y) 7→ T (x, y) = (2x+ 3y, 4x+ 6y,−2x− 3y) = (2x+ 3y)(1, 2,−1) .

Hence T (R2) is the line x = λ(1, 2,−1) ∈ R3, and so the rank of the map is such that

r(T ) = dim T (R2) = 1 .
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Further, x = (x, y) ∈ K(T ) if 2x+ 3y = 0, so

K(T ) = {x = (−3s, 2s) : s ∈ R} ,

which is a line in R2. Thus
n(T ) = dim K(T ) = 1 .

For future reference we note that

r(T ) + n(T ) = 2 = dimension of domain, i.e. R2.

(ii) Next consider projection onto a line, P : R3 → R3, where as in (2.17b)

x 7→ x′ = P (x) = (x · n)n ,

where n is a fixed unit vector. Then

P (R3) = {x ∈ R3 : x = λn, λ ∈ R}

which is a line in R3; thus r(P ) = 1. Further, the kernel is given by

K(P ) = {x ∈ R3 : x · n = 0} ,

which is a plane in R3; thus n(P ) = 2. Again we note that

r(P ) + n(P ) = 3 = dimension of domain, i.e. R3. (4.7)

Theorem 4.2 (The Rank-Nullity Theorem). Let V and W be real vector spaces and let T : V →W
be a linear map, then

r(T ) + n(T ) = dim V . (4.8)

Proof. See Linear Algebra in Part IB.

4.4 Composition of Maps

Suppose that S : U → V and T : V →W are linear maps such that

u 7→ v = S(u) , v 7→ w = T (v) . (4.9)

Definition. The composite or product map TS is
the map TS : U →W such that

u 7→ w = T (S(u)) ,

where we note that S acts first, then T . For the map
to be well-defined the domain of T must include the
image of S.

16/03

4.4.1 Examples

(i) Let HΠ be reflection in a plane

HΠ : R3 → R3 .

Since the range ⊆ domain, we may apply map twice.
Then by geometry (or exercise and algebra) it follows
that

HΠHΠ = H2
Π = I , (4.10)

where I is the identity map.
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(ii) Let P be projection onto a line

P : R3 → R3 .

Again we may apply the map twice, and in this case
we can show (by geometry or algebra) that

P P = P 2 = P . (4.11)

(iii) Let S : R2 → R3 and T : R3 → R be linear maps such that

(u, v) 7→ S(u, v) = (−v, u, u+ v)

and

(x, y, z) 7→ T (x, y, z) = x+ y + z ,

respectively. Then TS : R2 → R is such that

(u, v) 7→ T (−v, u, u+ v) = 2u .

Remark. ST not well defined because the range of T is not the domain of S.
16/02

4.5 Bases and the Matrix Description of Maps

Let ei, i = 1, 2, 3, be a basis for R3 (it may help to think of it as the standard orthonormal basis
e1 = (1, 0, 0), etc.). Using Theorem 3.6 on page 49 we note that any x ∈ R3 has a unique expansion in
terms of this basis, namely

x =
3∑

j=1

xjej ,

where the xj are the components of x with respect to the given basis.

Let M : R3 → R3 be a linear map (where for the time being we take the domain and range to be the
same). From the definition of a linear map, (4.2), it follows that

M(x) = M

 3∑
j=1

xjej

 =
3∑

j=1

xjM(ej) . (4.12)

Now consider the action of M on a basis vector, say ej . Then

M(ej) ≡ e′j =
3∑

i=1

(e′j)i ei =
3∑

i=1

Mij ei , j = 1, 2, 3, (4.13)

where e′j is the image of ej , (e′j)i is the ith component of e′j with respect to the basis {ei} (i = 1, 2, 3,
j = 1, 2, 3), and we have set

Mij = (e′j)i = (M(ej))i . (4.14)

It follows that for general x ∈ R3

x 7→ x′ = M(x) =
3∑

j=1

xjM(ej)

=
3∑

j=1

xj

3∑
i=1

Mijei

=
3∑

i=1

 3∑
j=1

Mijxj

 ei . (4.15)
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Thus in component form

x′ =
3∑

i=1

x′iei where x′i =
3∑

j=1

Mijxj , i = 1, 2, 3 . (4.16a)

Alternatively, in terms of the suffix notation and summation convention introduced earlier

x′i = Mijxj . (4.16b)

Since x was an arbitrary vector, what this means is that once we know the Mij we can calculate the
results of the mapping M : R3 → R3 for all elements of R3. In other words, the mapping M : R3 → R3

is, once the standard basis (or any other basis) has been chosen, completely specified by the 9 quantities
Mij , i = 1, 2, 3, j = 1, 2, 3.

The explicit relation between x′i, i = 1, 2, 3, and xj , j = 1, 2, 3 is

x′1 = M11x1 +M12x2 +M13x3 ,

x′2 = M21x1 +M22x2 +M23x3 ,

x′3 = M31x1 +M32x2 +M33x3 .

4.5.1 Matrix notation

The above equations can be written in a more convenient form by using matrix notation. Let x and x′

be the column matrices, or column vectors,

x =

x1

x2

x3

 and x′ =

x′1x′2
x′3

 (4.17a)

respectively, and let M be the 3× 3 square matrix

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (4.17b)

Remarks.

• We call the Mij , i, j = 1, 2, 3 the elements of the matrix M.

• Sometimes we write (a) M = {Mij} and (b) Mij = (M)ij .

• The first suffix i is the row number, while the second suffix j is the column number.

• We now have bold x denoting a vector, italic xi denoting a component of a vector, and sans serif
x denoting a column matrix of components.

• To try and avoid confusion we have introduced for a short while a specific notation for a column
matrix, i.e. x. However, in the case of a column matrix of vector components, i.e. a column vector,
an accepted convention is to use the standard notation for a vector, i.e. x. Hence we now have

x =

x1

x2

x3

 = (x1, x2, x3) ,

where we draw attention to the commas on the RHS.

Equation (4.16a), or equivalently (4.16b), can now be expressed in matrix notation as

x′ = Mx or equivalently x′ = Mx , (4.18a)

where a matrix multiplication rule has been defined in terms of matrix elements as

x′i =
3∑

j=1

Mijxj . (4.18b)
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Remarks.

(i) For i = 1, 2, 3 let ri be the vector with components equal to the elements of the ith row of M, i.e.

ri = (Mi1,Mi2,Mi3) , for i = 1, 2, 3.

Then in terms of the scalar product for vectors

ith row of x′ = x′i = ri · x , for i = 1, 2, 3.

(ii) From (4.14)

M =

(e′1)1 (e′2)1 (e′3)1
(e′1)2 (e′2)2 (e′3)2
(e′1)3 (e′2)3 (e′3)3

 =
(
e′1 e′2 e′3

)
, (4.19)

where the e′i on the RHS are to be interpreted as column vectors.

(iii) The elements of M depend on the choice of basis. Hence when specifying a matrix M associated
with a map M, it is necessary to give the basis with respect to which it has been constructed.

4.5.2 Examples (including some important new definitions of maps)

(i) Reflection. Consider reflection in the plane Π = {x ∈ R3 : x · n = 0 and |n| = 1}. From (2.91) we
have that

x 7→ HΠ(x) = x′ = x− 2(x · n)n .

We wish to construct matrix H, with respect to the standard basis, that represents HΠ. To this end
consider the action of HΠ on each member of the standard basis. Then, recalling that ej · n = nj ,
it follows that

HΠ(e1) = e′1 = e1 − 2n1n =

1
0
0

− 2n1

n1

n2

n3

 =

1− 2n2
1

−2n1n2

−2n1n3

 .

This is the first column of H. Similarly we obtain

H =

1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 −2n2n3 1− 2n2
3

 . (4.20a)

Alternatively we can obtain this same result using suffix notation since from (2.91) 16/06

(HΠ(x))i = xi − 2xjnjni

= δijxj − 2xjnjni

= (δij − 2ninj)xj

≡ Hijxj .

Hence
(H)ij = Hij = δij − 2ninj , i, j = 1, 2, 3. (4.20b)

(ii) Consider the map Pb : R3 → R3 defined by

x 7→ x′ = Pb(x) = b× x . (4.21)

In order to construct the map’s matrix P with respect to the standard basis, first note that

Pb(e1) = (b1, b2, b3)× (1, 0, 0) = (0, b3,−b2) .

Now use formula (4.19) and similar expressions for Pb(e2) and Pb(e3) to deduce that

Pb =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 . (4.22a)

Mathematical Tripos: IA Algebra & Geometry (Part I) 62 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

The elements {Pij} of Pb could also be derived as follows. From (4.16b) and (4.21)

Pijxj = x′i = εijkbjxk = (εikjbk)xj .

Hence, in agreement with (4.22a),

Pij = εikjbk = −εijkbk . (4.22b)

(iii) Rotation. Consider rotation by an angle θ about the x3 axis.

Under such a rotation

e1 7→ e′1 = e1 cos θ + e2 sin θ ,
e2 7→ e′2 = −e1 sin θ + e2 cos θ ,
e3 7→ e′3 = e3 .

Thus the rotation matrix, R(θ), is given by

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (4.23)

(iv) Dilatation. Consider the mapping R3 → R3 defined by x 7→ x′ where

x′1 = λx1 , x′2 = µx2 , x′3 = νx3 where λ, µ, ν ∈ R and λ, µ, ν > 0.

Then
e′1 = λe1 , e′2 = µe2 , e′3 = νe3 ,

and so the map’s matrix with respect to the standard basis, say D, is given by

D =

λ 0 0
0 µ 0
0 0 ν

 . (4.24)

The effect on the unit cube 0 6 x1 6 1, 0 6 x2 6 1,
0 6 x3 6 1, of this map is to send it to 0 6 x′1 6 λ,
0 6 x′2 6 µ, 0 6 x′3 6 ν, i.e. to a cuboid that has
been stretched or contracted by different factors
along the different Cartesian axes. If λ = µ = ν
then the transformation is called a pure dilatation.

17/03

(v) Shear. A simple shear is a transformation in the plane, e.g. the x1x2-plane, that displaces points in
one direction, e.g. the x1 direction, by an amount proportional to the distance in that plane from,
say, the x1-axis. Under this transformation

e1 7→ e′1 = e1 , e2 7→ e′2 = e2 + λe1 , e3 7→ e′3 = e3 , where λ ∈ R. (4.25)
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For this example the map’s matrix (with respect to the standard basis), say Sλ, is given by

Sλ =

1 λ 0
0 1 0
0 0 1

 . (4.26)

17/02

4.5.3 dim(domain) 6= dim(range)

So far we have considered matrix representations for maps where the domain and the range are the same.
For instance, we have found that a map M : R3 → R3 leads to a 3× 3 matrix M. Consider now a linear
map N : Rn → Rm where m,n ∈ Z+, i.e. a map x 7→ x′ = N (x), where x ∈ Rn and x′ ∈ Rm.

Let {ek} be a basis of Rn, so

x =
n∑

k=1

xkek , (4.27a)

and

N (x) =
n∑

k=1

xk N (ek) . (4.27b)

Let {fj} be a basis of Rm, then there exist Njk ∈ R (j = 1, . . . ,m, k = 1, . . . , n) such that

N (ek) =
m∑

j=1

Njk fj . (4.28a)

Hence

x′ = N (x) =
n∑

k=1

xk

 m∑
j=1

Njk fj


=

m∑
j=1

(
n∑

k=1

Njk xk

)
fj , (4.28b)

and thus

x′j = (N (x))j =
n∑

k=1

Njk xk = Njk xk (s.c.) . (4.28c)

Using the same rules of multiplication as before we write
x′1
x′2
...
x′m


︸ ︷︷ ︸

m× 1 matrix
(column vector
with m rows)

=


N11 N12 . . . N1n

N21 N22 . . . N2n

...
...

. . .
...

Nm1 Nm2 . . . Nmn


︸ ︷︷ ︸

m× n matrix
(m rows, n columns)


x1

x2

...
xn


︸ ︷︷ ︸

n× 1 matrix
(column vector
with n rows)

(4.29a)

i.e.

x′ = Nx where N = {Nij} . (4.29b)
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4.6 Algebra of Matrices

4.6.1 Multiplication by a scalar

Let A : Rn → Rm be a linear map. Then for given λ ∈ R define (λA) such that

(λA)(x) = λ(A(x)) . (4.30)

This is also a linear map. Let A = {aij} be the matrix of A (with respect to given bases of Rn and Rm,
or a given basis of Rn if m = n). Then from (4.28b)

(λA)(x) = λA(x) = λ

 m∑
j=1

n∑
k=1

ajkxkfj


=

m∑
j=1

n∑
k=1

(λajk)xkfj .

Hence, for consistency the matrix of λA must be

λA = {λaij} , (4.31)

which we use as the definition of a matrix multiplied by a scalar.

4.6.2 Addition

Similarly, if A = {aij} and B = {bij} are both m× n matrices associated with maps Rn → Rm, then for
consistency we define

A + B = {aij + bij} . (4.32)

4.6.3 Matrix multiplication

Let S : Rn → Rm and T : Rm → R` be linear maps. Let

S = {Sij} be the m× n matrix of S with respect to a given basis,
T = {Tij} be the `×m matrix of T with respect to a given basis.

Now consider the composite map W = T S : Rn → R`, with associated `× n matrix W = {Wij}. If

x′ = S(x) and x′′ = T (x′) , (4.33a)

then from (4.28c), and using the summation convention,

x′j = Sjkxk and x′′i = Tijx
′
j (s.c.), (4.33b)

and thus
x′′i = Tij(Sjkxk) = (TijSjk)xk (s.c.). (4.34a)

However,
x′′ = T S(x) = W(x) and x′′i = Wikxk (s.c.), (4.34b)

and hence because (4.34a) and (4.34b) must identical for arbitrary x, it follows that

Wik = TijSjk (s.c.) ; (4.35)

We interpret (4.35) as defining the elements of the matrix product TS. In words,

the ikth element of TS is equal to the scalar product of the ith row of T with the kth column of S.
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Remarks.

(i) For the scalar product to be well defined, the number of columns of T must equal the number of
rows of S; this is the case above since T is a `×m matrix, while S is a m× n matrix.

(ii) The above definition of matrix multiplication is consistent with the n = 1 special case considered
in (4.18a) and (4.18b), i.e. the special case when S is a column matrix (or column vector).

(iii) If A is a p× q matrix, and B is a r × s matrix, then

AB exists only if q = r, and is then a p× s matrix;
BA exists only if s = p, and is then a r × q matrix.

For instance (
p q r
s t u

)a b
c d
e f

 =
(
pa+ qc+ re pb+ qd+ rf
sa+ tc+ ue sb+ td+ uf

)
,

while a b
c d
e f

(p q r
s t u

)
=

ap+ bs aq + bt ar + bu
cp+ ds cq + dt cr + du
ep+ fs eq + ft er + fu

 .

(iv) Even if p = q = r = s, so that both AB and BA exist and have the same number of rows and
columns,

AB 6= BA in general. (4.36)

For instance (
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
,

while (
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
.

Lemma 4.3. The multiplication of matrices is associative, i.e. if A = {aij}, B = {bij} and C = {cij}
are matrices such that AB and BC exist, then

A(BC) = (AB)C . (4.37)

Proof. In terms of suffix notation (and the summation convention)

(A(BC))ij = aik(BC)kj = aikbk`c`j = ai£b£UcUj ,

((AB)C)ij = (AB)ikckj = ai`b`kckj = ai£b£UcUj .

18/03

4.6.4 Transpose

Definition. If A = {aij} is a m× n matrix, then its transpose AT is defined to be a n×m matrix with
elements

(AT)ij = (A)ji = aji . (4.38a)

Remark.
(AT)T = A . (4.38b)
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Examples.

(i) 1 2
3 4
5 6

T

=
(

1 3 5
2 4 6

)
.

(ii)

If x =


x1

x2

...
xn

 is a column vector, xT =
(
x1 x2 . . . xn

)
is a row vector.

Remark. Recall that commas are sometimes important:

x =


x1

x2

...
xn

 = (x1, x2, . . . , xn) ,

xT =
(
x1 x2 . . . xn

)
.

Lemma 4.4. If A = {aij} and B = {bij} are matrices such that AB exists, then

(AB)T = BTAT . (4.39)

Proof.

((AB)T)ij = (AB)ji

= ajkbki

= (B)ki(A)jk

= (BT)ik(AT)kj

= (BTAT)ij .

Example. Let x and y be 3× 1 column vectors, and let A = {aij} be a 3× 3 matrix. Then

xTAy = xiaijyj = x£a£UyU .

is a 1× 1 matrix, i.e. a scalar. It follows that

(xTAy)T = yTATx = yiajixj = yUa£Ux£ = xTAy .

4.6.5 Symmetry

Definition. A square n× n matrix A = {aij} is symmetric if

AT = A , i.e. aji = aij . (4.40)
18/02

Definition. A square n× n matrix A = {aij} is antisymmetric if

AT = −A , i.e. aji = −aij . (4.41a)

Remark. For an antisymmetric matrix, a11 = −a11, i.e. a11 = 0. Similarly we deduce that all the diagonal
elements of an antisymmetric matrix are zero, i.e.

a11 = a22 = . . . = ann = 0 . (4.41b)
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Examples.

(i) A symmetric 3× 3 matrix S has the form

S =

a b c
b d e
c e f

 ,

i.e. it has six independent elements.

(ii) An antisymmetric 3× 3 matrix A has the form

A =

 0 a −b
−a 0 c
b −c 0

 ,

i.e. it has three independent elements.

Remark. Let a = v3, b = v2 and c = v1, then (cf. (4.22a) and (4.22b))

A = {aij} = {εijkvk} . (4.42)

Thus each antisymmetric 3× 3 matrix corresponds to a unique vector v in R3.

4.6.6 Trace

Definition. The trace of a square n× n matrix A = {aij} is equal to the sum of the diagonal elements,
i.e.

Tr(A) = aii (s.c.) . (4.43)

Remark. Let B = {bij} be a m×n matrix and C = {cij} be a n×m matrix, then BC and CB both exist,
but are not usually equal (even if m = n). However

Tr(BC) = (BC)ii = bijcji ,

T r(CB) = (CB)ii = cijbji = bijcji ,

and hence Tr(BC) = Tr(CB) (even if m 6= n so that the matrices are of different sizes).

4.6.7 The unit or identity matrix

Definition. The unit or identity n× n matrix is defined to be

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , (4.44)

i.e. all the elements are 0 except for the diagonal elements that are 1.

Example. The 3× 3 identity matrix is given by

I =

1 0 0
0 1 0
0 0 1

 = {δij} . (4.45)
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Property. Define the Kronecker delta in Rn such that

δij =
{

1 if i = j
0 if i 6= j

for i, j = 1, 2, . . . , n. (4.46)

Let A = {aij} be a n× n matrix, then

(IA)ij = δikakj = aij ,

(AI)ij = aikδkj = aij ,

i.e.

IA = AI = A . (4.47)

4.6.8 The inverse of a matrix

Definition. Let A be a square n× n matrix. B is a left inverse of A if BA = I. C is a right inverse of A
if AC = I.

Lemma 4.5. If B is a left inverse of A and C is a right inverse of A then B = C and we write
B = C = A−1.

Proof. From (4.37), (4.47), BA = I and AC = I it follows that

B = BI = B(AC) = (BA)C = IC = C .

Remark. The lemma is based on the premise that both a left inverse and right inverse exist. In general,
the existence of a left inverse does not necessarily guarantee the existence of a right inverse, or
vice versa. However, in the case of a square matrix, the existence of a left inverse does imply the
existence of a right inverse, and vice versa (see Part IB Linear Algebra for a general proof). The
above lemma then implies that they are the same matrix.

Definition. Let A be a n×n matrix. A is said to be invertible if there exists a n×n matrix B such that

BA = AB = I . (4.48)

The matrix B is called the inverse of A, is unique (see above) and is denoted by A−1 (see above).

Property. From (4.48) it follows that A = B−1 (in addition to B = A−1). Hence

A = (A−1)−1 . (4.49)

Lemma 4.6. Suppose that A and B are both invertible n× n matrices. Then

(AB)−1 = B−1A−1 . (4.50)

Proof. From using (4.37), (4.47) and (4.48) it follows that

B−1A−1(AB) = B−1(A−1A)B = B−1IB = B−1B = I ,

(AB)B−1A−1 = A(BB−1)A−1 = AIA−1 = AA−1 = I .
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4.6.9 Determinants (for 3× 3 and 2× 2 matrices)

Recall that the signed volume of the R3 parallelepiped defined by a, b and c is a · (b× c) (positive if a,
b and c are right-handed, negative if left-handed).

Consider the effect of a linear map, A : R3 → R3, on the volume of the unit cube defined by standard
orthonormal basis vectors ei. Let A = {aij} be the matrix associated with A, then the volume of the
mapped cube is, with the aid of (2.67e) and (4.28c), given by

e′1 · e′2 × e′3 = εijk(e′1)i(e′2)j(e′3)k

= εijkai`(e1)` ajm(e2)m akn(e3)n

= εijkai`δ1` ajmδ2m akmδ3n

= εijkai1aj2ak3 . (4.51)

Definition. The determinant of a 3× 3 matrix A is given by

det A = εijkai1aj2ak3 (4.52a)
= a11(a22a33 − a32a23) + a21(a32a13 − a12a33) + a31(a12a23 − a22a13) (4.52b)
= a11(a22a33 − a23a32) + a12(a23a31 − a21a33) + a13(a21a32 − a22a31) (4.52c)
= εijka1ia2ja3k (4.52d)
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31 . (4.52e)

Alternative notation. Alternative notations for the determinant of the matrix A include

det A = |A | =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = ∣∣ e′1 e′2 e′3
∣∣ . (4.53)

Remarks.

• A linear map R3 → R3 is volume preserving if and only if the determinant of its matrix with
respect to an orthonormal basis is ±1 (strictly ‘an’ should be replaced by ‘any’, but we need
some extra machinery before we can prove that).

• If {ei} is a standard right-handed orthonormal basis then the set {e′i} is right-handed if∣∣ e′1 e′2 e′3
∣∣ > 0, and left-handed if

∣∣ e′1 e′2 e′3
∣∣ < 0.

18/06

Exercises.

(i) Show that the determinant of the rotation matrix R defined in (4.23) is +1.

(ii) Show that the determinant of the reflection matrix H defined in (4.20a), or equivalently (4.20b),
is −1 (since reflection sends a right-handed set of vectors to a left-handed set).

2× 2 matrices. A map R3 → R3 is effectively two-dimensional if a33 = 1 and a13 = a31 = a23 = a32 = 0
(cf. (4.23)). Hence for a 2 × 2 matrix A we define the determinant to be given by (see (4.52b) or
(4.52c))

detA = |A | =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 . (4.54)

A map R2 → R2 is area preserving if det A = ±1.

An abuse of notation. This is not for the faint-hearted. If you are into the abuse of notation show that

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ , (4.55)

where we are treating the vectors i, j and k, as ‘components’.
19/03
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4.7 Orthogonal Matrices

Definition. An n× n matrix A = {aij} is orthogonal if

AAT = I = ATA , (4.56a)

i.e. if A is invertible and A−1 = AT.

Property: orthogonal rows and columns. In components (4.56a) becomes

(A)ik(AT)kj = aikajk = δij . (4.56b)

Thus the scalar product of the ith and jth rows of A is zero unless i = j in which case it is 1. This
implies that the rows of A form an orthonormal set. Similarly, since ATA = I,

(AT)ik(A)kj = akiakj = δij , (4.56c)

and so the columns of A also form an orthonormal set.

Property: map of orthonormal basis. Suppose that the map A : R3 → R3 has a matrix A with respect to
an orthonormal basis. Then from (4.19) we recall that

e1 7→ Ae1 the first column of A,
e2 7→ Ae2 the second column of A,
e3 7→ Ae3 the third column of A.

Thus if A is an orthogonal matrix the {ei} transform to an orthonormal set (which may be right-
handed or left-handed depending on the sign of detA).

Examples.

(i) We have already seen that the application of a reflection map HΠ twice results in the identity
map, i.e.

H2
Π = I . (4.57)

From (4.20b) the matrix of HΠ with respect to a standard basis is specified by

(H)ij = {δij − 2ninj} .

From (4.57), or a little manipulation, it follows that

H2 = I . (4.58a)

Moreover H is symmetric, hence

H = HT , and so H2 = HHT = HTH = I . (4.58b)

Thus H is orthogonal.

(ii) With respect to the standard basis, rotation by an angle θ about the x3 axis has the matrix
(see (4.23))

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (4.59a)

R is orthogonal since both the rows and the columns are orthogonal vectors, and thus

RRT = RTR = I . (4.59b)
19/02
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Preservation of the scalar product. Under a map represented by an orthogonal matrix with respect to an
orthonormal basis, a scalar product is preserved. For suppose that, in component form, x 7→ x′ = Ax
and y 7→ y′ = Ay (note the use of sans serif), then

x′ · y′ = x′Ty′ (since the basis is orthonormal)
= (xTAT)(Ay)
= xT I y

= xTy

= x · y (since the basis is orthonormal) .

Isometric maps. If a linear map is represented by an orthogonal matrix A with respect to an orthonormal
basis, then the map is an isometry since

|x′ − y′|2 = (x′ − y′) · (x′ − y′)
= (x− y) · (x− y)
= |x− y|2 .

Hence |x′ − y′| = |x− y|, i.e. lengths are preserved.

Remark. The only length preserving maps of R3 are translations (which are not linear maps) and
reflections and rotations (which we have already seen are associated with orthogonal matrices).

4.8 Change of basis

We wish to consider a change of basis. To fix ideas it may help to think of a change of basis from the
standard orthonormal basis in R3 to a new basis which is not necessarily orthonormal. However, we will
work in Rn and will not assume that either basis is orthonormal (unless stated otherwise).

4.8.1 Transformation matrices

Let {ei : i = 1, . . . , n} and {ẽi : i = 1, . . . , n} be two sets of basis vectors for an n-dimensional real vector
space V . Since the {ei} is a basis, the individual basis vectors of the basis {ẽi} can be written as

ẽj =
n∑

i=1

eiAij (j = 1, . . . , n) , (4.60)

for some numbers Aij , where Aij is the ith component of the vector ẽj in the basis {ei}. The numbers
Aij can be represented by a square n× n transformation matrix A

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

 =
(
ẽ1 ẽ2 . . . ẽn

)
, (4.61)

where in the final matrix the ẽj are to be interpreted as column vectors of the components of the ẽj in
the {ei} basis (cf. (4.19)).

Similarly, since the {ẽi} is a basis, the individual basis vectors of the basis {ei} can be written as

ei =
n∑

k=1

ẽkBki (i = 1, 2, . . . , n) , (4.62)

for some numbers Bki, where Bki is the kth component of the vector ei in the basis {ẽk}. Again the Bki

can be viewed as the entries of a matrix B

B =


B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn

 =
(
e1 e2 . . . en

)
, (4.63)
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where in the final matrix the ej are to be interpreted as column vectors of the components of the ej in
the {ẽi} basis.

4.8.2 Properties of transformation matrices

From substituting (4.62) into (4.60) we have that

ẽj =
n∑

i=1

[ n∑
k=1

ẽkBki

]
Aij =

n∑
k=1

ẽk

[ n∑
i=1

BkiAij

]
. (4.64)

However, the set {ẽj} is a basis and so linearly independent. Thus, from noting that

ẽj =
n∑

k=1

ẽk δkj ,

or otherwise, it follows that
n∑

i=1

BkiAij = δkj . (4.65)

Hence in matrix notation, BA = I, where I is the identity matrix. Conversely, substituting (4.60) into
(4.62) leads to the conclusion that AB = I (alternatively argue by a relabeling symmetry). Thus

B = A−1 . (4.66)

4.8.3 Transformation law for vector components

Consider a vector v, then in the {ei} basis it follows from (3.13) that

v =
n∑

i=1

viei .

Similarly, in the {ẽi} basis we can write

v =
n∑

j=1

ṽj ẽj (4.67)

=
n∑

j=1

ṽj

n∑
i=1

eiAij from (4.60)

=
n∑

i=1

ei

n∑
j=1

(Aij ṽj) swap summation order.

Since a basis representation is unique it follows that

vi =
n∑

j=1

Aij ṽj , (4.68a)

i.e. that

v = Aṽ , (4.68b)

where we have deliberately used a sans serif font to indicate the column matrices of components (since
otherwise there is serious ambiguity). By applying A−1 to either side of (4.68b) it follows that

ṽ = A−1v . (4.68c)

Equations (4.68b) and (4.68c) relate the components of v with respect to the {ei} basis to the components
with respect to the {ẽi} basis.
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Worked Example. Let {e1 = (1, 0), e2 = (0, 1)} and {ẽ1 = (1, 1), ẽ2 = (−1, 1)} be two sets of basis vectors
in R2. Find the transformation matrix A that connects them. Verify the transformation law for the
components of an arbitrary vector v in the two coordinate systems.

Answer. We have that

ẽ1 = ( 1, 1) = (1, 0) + (0, 1) = e1 + e2 ,

ẽ2 = (−1, 1) = −1 (1, 0) + (0, 1) = −e1 + e2 .

Hence from comparison with (4.60)

A11 = 1 , A21 = 1 , A12 = −1 and A22 = 1 ,

i.e.

A =
(

1 −1
1 1

)
.

Similarly, since

e1 = (1, 0) = 1
2 ( (1, 1)− (−1, 1) ) = 1

2 (ẽ1 − ẽ2) ,

e2 = (0, 1) = 1
2 ( (1, 1) + (−1, 1) ) = 1

2 (ẽ1 + ẽ2) ,

it follows from (4.62) that

B = A−1 = 1
2

(
1 1

−1 1

)
.

Moreover A−1A = AA−1 = I.

Now consider an arbitrary vector v. Then

v = v1e1 + v2e2

= 1
2v1(ẽ1 − ẽ2) + 1

2v2(ẽ1 + ẽ2)

= 1
2 (v1 + v2) ẽ1 − 1

2 (v1 − v2) ẽ2 .

Thus
ṽ1 = 1

2 (v1 + v2) and ṽ2 = − 1
2 (v1 − v2) ,

and thus from (4.68c), i.e. ṽ = A−1v, we deduce that (as above)

A−1 = 1
2

(
1 1

−1 1

)
.

4.8.4 Transformation law for matrices representing linear maps

Now consider a linear map M : Rn → Rn under which v 7→ v′ = M(v) and (in terms of column vectors)

v′ = Mv ,

where v′ and v are the component column matrices of v′ and v, respectively, with respect to the basis
{ei}, and M is the matrix of M with respect to this basis.

Let ṽ′ and ṽ be the component column matrices of v′ and v with respect to the alternative basis {ẽi}.
Then it follows from from (4.68b) that

Aṽ′ = MAṽ , i.e. ṽ′ = (A−1MA) ṽ .

We deduce that the matrix of M with respect to the alternative basis {ẽi} is given by

M̃ = A−1MA . (4.69)
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Maps from Rn to Rm (unlectured). A similar approach may be used to deduce the matrix of the map
N : Rn → Rm (where m 6= n) with respect to new bases of both Rn and Rm.

Suppose {ei} is a basis of Rn, {fi} is a basis of Rm, and N is matrix of N with respect to these
two bases. then from (4.29b)

v 7→ v′ = N v

where v and v′ are component column matrices of v and v′ with respect to bases {ei} and {fi}
respectively.

Now consider new bases {ẽi} of Rn and {f̃i} of Rm, and let

A =
(
ẽ1 . . . ẽn

)
and C =

(
f̃1 . . . f̃m

)
.

where A is a n × n matrix of components (see (4.61)) and C is a m ×m matrix of components.
Then

v = Aṽ , and v′ = Cṽ′ ,

where ṽ and ṽ′ are component column matrices of v and v′ with respect to bases {ẽi} and {f̃i}
respectively. Hence

Cṽ′ = NAṽ , and so ṽ′ = C−1NAṽ .

It follows that C−1NA is map’s matrix with respect to the new bases {ẽi} and {f̃i}, i.e.

Ñ = C−1NA . (4.70)
19/06

Example. Consider a simple shear with magnitude γ in the x1 direction within the (x1, x2) plane. Then
from (4.26) the matrix of this map with respect to the standard basis {ei} is

Sγ =

 1 γ 0
0 1 0
0 0 1

 .

Let {ẽ} be the basis obtained by rotating the stan-
dard basis by an angle θ about the x3 axis. Then

ẽ1 = cos θ e1 + sin θ e2 ,

ẽ2 = − sin θ e1 + cos θ e2 ,

ẽ3 = e3 ,

and thus

A =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

We have already deduced that rotation matrices are orthogonal, see (4.59a) and (4.59b), and hence

A−1 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

The matrix of the shear map with respect to new basis is thus given by

S̃γ = A−1SγA

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

cos θ + γ sin θ − sin θ + γ cos θ 0
sin θ cos θ 0

0 0 1


=

1 + γ sin θ cos θ γ cos2 θ 0
−γ sin2 θ 1− γ sin θ cos θ 0

0 0 1

 .

20/03
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5 Determinants, Matrix Inverses and Linear Equations

5.0 Why Study This?

This section continues our study of linear mathematics. The ‘real’ world can often be described by
equations of various sorts. Some models result in linear equations of the type studied here. However,
even when the real world results in more complicated models, the solution of these more complicated
models often involves the solution of linear equations. We will concentrate on the case of three linear
equations in three unknowns, but the systems in the case of the real world are normally much larger
(often by many orders of magnitude).

5.1 Solution of Two Linear Equations in Two Unknowns

Consider two linear equations in two unknowns:

a11x1 + a12x2 = d1 (5.1a)
a21x1 + a22x2 = d2 (5.1b)

or equivalently
Ax = d (5.2a)

where

x =
(
x1

x2

)
, d =

(
d1

d2

)
, and A = {aij} (a 2× 2 matrix). (5.2b)

Now solve by forming suitable linear combinations of the two equations (e.g. a22× (5.1a)− a12× (5.1b))

(a11a22 − a21a12)x1 = a22d1 − a12d2 ,

(a21a12 − a22a11)x2 = a21d1 − a11d2 .

From (4.54) we have that

(a11a22 − a21a12) = det A =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .
Thus, if detA 6= 0, the equations have a unique solution

x1 = (a22d1 − a12d2)/detA ,

x2 = (−a21d1 + a11d2)/det A ,

i.e. (
x1

x2

)
=

1
det A

(
a22 −a12

−a21 a11

)(
d1

d2

)
. (5.3a)

However, from left multiplication of (5.2a) by A−1 (if it exists) we have that

x = A−1d . (5.3b)

We therefore conclude that

A−1 =
1

detA

(
a22 −a12

−a21 a11

)
. (5.4)

Exercise. Check that AA−1 = A−1A = I.

5.2 Determinants for 3× 3 Matrices

For a 3× 3 matrix A we already have that (see (4.52a) and following)

det A ≡ |A | ≡

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ (5.5a)

= εijkai1aj2ak3 (5.5b)
= εijka1ia2ja3k (5.5c)
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31) (5.5d)
= a11(a22a33 − a23a32)− a21(a12a33 − a13a32) + a31(a12a23 − a22a13) . (5.5e)
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We observe that the last line, i.e. (5.5e), can be rewritten

det A = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣ . (5.6)

Remarks.

• Note the sign pattern in (5.6).

• (5.6) is an expansion of det A in terms of elements of the first column of A and determinants of
2× 2 sub-matrices. This observation can be used to generalise the definition (using recursion), and
evaluation, of determinants to larger (n× n) matrices (but is left undone)20/02

5.2.1 Properties of 3× 3 determinants

(i) Since εijkai1aj2ak3 = εijka1ia2ja3k

detA = detAT . (5.7)

This means that an expansion equivalent to (5.6) in terms of the elements of the first row of A and
determinants of 2× 2 sub-matrices also exists. Hence from (5.5d), or otherwise,

detA = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ . (5.8)

Remark. (5.7) generalises to n× n determinants (but is left unproved).

(ii) Let ai1 = αi, aj2 = βj , ak3 = γk, then from (5.5b)

det

 α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = εijkαiβjγk = α · (β × γ) .

Now α ·(β×γ) = 0 if and only if α, β and γ are coplanar, i.e. if α, β and γ are linearly dependent.
Similarly det A = 0 if and only if there is linear dependence between the columns of A, or from
(5.7) if and only there is linear dependence between the rows of A.

Remark. This property generalises to n× n determinants (but is left unproved).

(iii) If we interchange any two of α, β and γ we change the sign of α · (β×γ). Hence if we interchange
any two columns of A we change the sign of detA; similarly if we interchange any two rows of A we
change the sign of det A.

Remark. This property generalises to n× n determinants (but is left unproved).

(iv) Suppose that we construct a matrix, say Ã, by adding to a given column of A linear combinations
of the other columns. Then

det Ã = det A .

This follows from the fact that∣∣∣∣∣∣
α1 + λβ1 + µγ1 β1 γ1

α2 + λβ2 + µγ2 β2 γ2

α3 + λβ3 + µγ3 β3 γ3

∣∣∣∣∣∣ = (α + λβ + µγ) · (β × γ)

= α · (β × γ) + λβ · (β × γ) + µγ · (β × γ)
= α · (β × γ) .

From invoking (5.7) we can deduce that a similar result applies to rows.

Remarks.

• This property generalises to n× n determinants (but is left unproved).
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• This property is useful in evaluating determinants. For instance, if a11 6= 0 add multiples of
the first row to subsequent rows to make ai1 = 0 for i = 2, . . . , n; then det A = a11∆11 (see
(5.13b)).

(v) If we multiply any single row or column of A by λ, to give Â, then

det Â = λ detA ,

since
(λα) · (β × γ) = λ(α · (β × γ)) .

Remark. This property generalises to n× n determinants (but is left unproved).

(vi) If we multiply the matrix A by λ, then

det(λA) = λ3 detA , (5.9a)

since
λα · (λβ × λγ) = λ3(α · (β × γ)) .

Remark. This property generalises for n× n determinants to

det(λA) = λn detA , (5.9b)

but is left unproved.

Theorem 5.1. If A = {aij} is 3× 3, then

εpqr detA = εijkapiaqjark , (5.10a)
εpqr detA = εijkaipajqakr . (5.10b)

Proof. Start with (5.10a), and suppose that p = 1, q = 2, r = 3. Then (5.10a) is just (5.5c). Next suppose
that p and q are swapped. Then the sign of the left-hand side of (5.10a) reverses, while the right-hand
side becomes

εijkaqiapjark = εjikaqjapiark = −εijkapiaqjark ,

so the sign of right-hand side also reverses. Similarly for swaps of p and r, or q and r. It follows that
(5.10a) holds for any {pqr} that is a permutation of {123}.

Suppose now that two (or more) of p, q and r in (5.10a) are equal. Wlog take p = q = 1, say. Then the
left-hand side is zero, while the right-hand side is

εijka1ia1jark = εjika1ja1iark = −εijka1ia1jark ,

which is also zero. Having covered all cases we conclude that (5.10a) is true.

Similarly for (5.10b) starting from (5.5b)

Remark. This theorem generalises to n× n determinants (but is left unproved). 20/06

Theorem 5.2. If A and B are both square matrices, then

detAB = (det A)(detB) . (5.11)

Proof. We prove the result only for 3× 3 matrices. From (5.5b) and (5.10b)

det AB = εijk (AB)i1 (AB)j2 (AB)k3

= εijk aipbp1 ajqbq2 akrbr3

= εijk aipajqakr bp1bq2br3

= εpqr detA bp1bq2br3

= detA det B .
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Theorem 5.3. If A is orthogonal then
detA = ±1 . (5.12)

Proof. If A is orthogonal then AAT = I. It follows from (5.7) and (5.11) that

(detA)2 = (det A)(detAT) = det(AAT) = det I = 1 .

Hence det A = ±1.

Remark. You have already verified this for some reflection and rotation matrices.21/03

5.3 The Inverse of a 3× 3 Matrix

5.3.1 Minors and cofactors

For a square n× n matrix A = {aij}, define Aij to be the square matrix obtained by eliminating the ith

row and the jth column of A. Hence

Aij =



a11 . . . a1(j−1) a1(j+1) . . . a1n

...
. . .

...
...

. . .
...

a(i−1)1 . . . a(i−1)(j−1) a(i−1)(j+1) . . . a(i−1)n

a(i+1)1 . . . a(i+1)(j−1) a(i+1)(j+1) . . . a(i+1)n

...
. . .

...
...

. . .
...

an1 . . . an(j−1) an(j+1) . . . ann


.

Definition. Define the minor, Mij , of the ijth element of square matrix A to be the determinant of the
square matrix obtained by eliminating the ith row and the jth column of A, i.e.

Mij = detAij . (5.13a)

Definition. Define the cofactor ∆ij of the ijth element of square matrix A as

∆ij = (−1)i+jMij = (−1)i+j det Aij . (5.13b)

The above definitions apply for n × n matrices, but henceforth assume that A is a 3 × 3 matrix. Then
from (5.6) and (5.13b)

detA = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
= a11∆11 + a21∆21 + a31∆31

= aj1∆j1 . (5.14a)

Similarly, after noting from an interchanges of columns that

detA =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a12 a11 a13

a22 a21 a23

a32 a31 a33

∣∣∣∣∣∣ ,
we have that

detA = −a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a22

∣∣∣∣a11 a13

a31 a33

∣∣∣∣− a32

∣∣∣∣a11 a13

a21 a23

∣∣∣∣
= a12∆12 + a22∆22 + a32∆32

= aj2∆j2 . (5.14b)
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Analogously (or by a relabelling symmetry)

det A = aj3∆j3 . (5.14c)

Similarly, but starting from (5.8) and subsequently interchanging rows,

det A = a1j∆1j = a2j∆2j = a3j∆3j . (5.15)

Next we wish to show that
aij∆ik = 0 if j 6= k. (5.16a)

To this end consider j = 2 and k = 1, then

ai2∆i1 = a12∆11 + a22∆21 + a32∆31

= a12

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a22

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a32

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
=

∣∣∣∣∣∣
a12 a12 a13

a22 a22 a23

a32 a32 a33

∣∣∣∣∣∣
= 0 ,

since two columns are linearly dependent (actually equal). Proceed similarly for other choices of j and k
to obtain (5.16a). Further, we can also show that

aji∆ki = 0 if j 6= k, (5.16b)

since two rows turn out to be linearly dependent.

We can combine all the above results in a lemma.

Lemma 5.4.

aij∆ik = δjk detA , (5.17a)
aji∆ki = δjk detA . (5.17b)

Proof. See (5.14a), (5.14b), (5.14c), (5.15), (5.16a) and (5.16b).

5.3.2 Construction of the inverse

Theorem 5.5. Given a 3× 3 matrix A with det A 6= 0, define B by

(B)ij =
1

det A
∆ji , (5.18a)

then

AB = BA = I . (5.18b)

Proof. From (5.17b) and (5.18a),

(AB)ij = aik(B)kj

=
aik∆jk

detA

=
δij detA

detA
= δij .

Hence AB = I. Similarly from (5.17a) and (5.18a), BA = I. It follows that B = A−1 and A is invertible.
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Remark. The formula for the elements of the inverse of A, i.e.

(A−1)ij =
1

det A
∆ji , (5.19)

holds for n× n matrices (including 2× 2 matrices) for suitably defined cofactors.

Example. Consider the simple shear

Sγ =

1 γ 0
0 1 0
0 0 1

 .

Then det Sγ = 1, and after a little manipulation

∆11 = 1 , ∆12 = 0 , ∆13 = 0 ,
∆21 = −γ , ∆22 = 1 , ∆23 = 0 ,

∆31 = 0 , ∆32 = 0 , ∆33 = 1 .

Hence

S−1
γ =

∆11 ∆21 ∆31

∆12 ∆22 ∆32

∆13 ∆23 ∆33

 =

1 −γ 0
0 1 0
0 0 1

 ,

which makes physical sense in that the effect of a shear γ is reversed by changing the sign of γ.
21/02

5.4 Solving Linear Equations: Gaussian Elimination

Suppose that we wish to solve the system of equations

Ax = d , (5.20a)

where A is a n×n matrix, x is a n×1 column vector of unknowns, and d is a given n×1 column vector.
Assuming that detA 6= 0, this has the formal solution

x = A−1d . (5.20b)

Hence if we wished to solve (5.20a) numerically, then one method would be to calculate A−1 using (5.19),
and then form A−1d. However, this is actually very inefficient.

A better method is Gaussian elimination, which we will illustrate for 3× 3 matrices. Hence suppose we
wish to solve

a11 x1 + a12 x2 + a13 x3 = d1 , (5.21a)
a21 x1 + a22 x2 + a23 x3 = d2 , (5.21b)
a31 x1 + a32 x2 + a33 x3 = d3 . (5.21c)

Assume a11 6= 0, otherwise re-order the equations so that a11 6= 0, and if that is not possible then stop
(since there is then no unique solution). Now use (5.21a) to eliminate x1 by forming

(5.21b)− a21

a11
× (5.21a) and (5.21c)− a31

a11
× (5.21a) ,

so as to obtain (
a22 −

a21

a11
a12

)
x2 +

(
a23 −

a21

a11
a13

)
x3 = d2 −

a21

a11
d1 , (5.22a)(

a32 −
a31

a11
a12

)
x2 +

(
a33 −

a31

a11
a13

)
x3 = d3 −

a31

a11
d1 . (5.22b)
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In order to simplify notation let

a′22 =
(
a22 −

a21

a11
a12

)
, a′23 =

(
a23 −

a21

a11
a13

)
, d′2 = d2 −

a21

a11
d1 ,

a′32 =
(
a32 −

a31

a11
a12

)
, a′33 =

(
a33 −

a31

a11
a13

)
, d′3 = d3 −

a31

a11
d1 ,

so that (5.22a) and (5.22b) become

a′22x2 + a′23x3 = d′2 , (5.23a)
a′32x2 + a′33x3 = d′3 . (5.23b)

Assume a22 6= 0, otherwise re-order the equations so that a22 6= 0, and if that is not possible then stop
(since there is then no unique solution). Now use (5.23a) to eliminate x2 by forming

(5.23b)− a′32
a′22

× (5.23a) ,

so as to obtain (
a′33 −

a′32
a′22

a′23

)
x3 = d′3 −

a′32
a′22

d′2 . (5.24a)

Now, providing that (
a′33 −

a′32
a′22

a′23

)
6= 0 , (5.24b)

(5.24a) gives x3, then (5.23a) gives x2, and finally (5.21a) gives x1. If(
a′33 −

a′32
a′22

a′23

)
= 0 ,

there is no unique solution (if there is a solution at all).

Remark. It is possible to show that this method fails only if A is not invertible, i.e. only if det A = 0.

5.5 Solving linear equations

5.5.1 Inhomogeneous and homogeneous problems

If det A 6= 0 (and A is a 2× 2 or a 3× 3 matrix) then we know from (5.4) and Theorem 5.5 on page 80
that A is invertible and A−1 exists. In such circumstances it follows that the system of equations Ax = d
has a unique solution x = A−1d.

This section is about what can be deduced if det A = 0, where as usual we specialise to the case where
A is a 3× 3 matrix.

Definition. If d 6= 0 then the system of equations

Ax = d (5.25a)

is said to be a system of inhomogeneous equations.

Definition. The system of equations
Ax = 0 (5.25b)

is said to be a system of homogeneous equations. If det A 6= 0 then the unique solution is A−10 = 0.21/06
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5.5.2 Geometrical view of Ax = 0

For i = 1, 2, 3 let ri be the vector with components equal to the elements of the ith row of A, in which
case

A =

rT
1

rT
2

rT
3

 . (5.26)

Equations (5.25a) and (5.25b) may then be expressed as

rT
i x = ri · x = di (i = 1, 2, 3) , (5.27a)

rT
i x = ri · x = 0 (i = 1, 2, 3) , (5.27b)

respectively. Since each of these individual equations represents a plane in R3, the solution of each set
of 3 equations is the intersection of 3 planes.

For the homogeneous equations (5.27b) the three planes each pass through the origin, O. There are three
possibilities:

(i) the three planes intersect only at O;

(ii) the three planes have a common line (including O);

(iii) the three planes coincide.
22/03

We consider each of these cases in turn.

(i) If det A 6= 0 then r1 · (r2 × r3) 6= 0 and the set {r1, r2, r3} consists of three linearly independent
vectors; hence span{r1, r2, r3} = R3. The first two equations of (5.27b) imply that x must lie on
the intersection of the planes r1 · x = 0 and r2 · x = 0, i.e. x must lie on the line

{x ∈ R3 : x = λt, λ ∈ R, t = r1 × r2}.

The final condition r3 ·x = 0 then implies that λ = 0 (since we have assumed that r1 ·(r2×r3) 6= 0),
and hence x = 0, i.e. the three planes intersect only at the origin. The solution space thus has zero
dimension.

(ii) Next suppose that det A = 0. In this case the set {r1, r2, r3} is linearly dependent with the dimension
of span{r1, r2, r3} being equal to 2 or 1; first we consider the case when it is 2. Assume wlog that r1

and r2 are the two linearly independent vectors. Then as above the first two equations of (5.27b)
again imply that x must lie on the line

{x ∈ R3 : x = λt, λ ∈ R, t = r1 × r2}.

Since r1 · (r2 × r3) = 0, all points in this line satisfy r3 · x = 0. Hence the intersection of the three
planes is a line, i.e. the solution for x is a line. The solution space thus has dimension one.

(iii) Finally we need to consider the case when the dimension of span{r1, r2, r3} is 1. The three row
vectors r1, r2 and r3 must then all be parallel. This means that r1 · x = 0, r2 · x = 0 and r3 · x = 0
all imply each other. Thus the intersection of the three planes is a plane, i.e. solutions to (5.27b)
lie on a plane. If a and b are any two linearly independent vectors such that a · r1 = b · r1 = 0,
then we may specify the plane, and thus the solution space, by

{x ∈ R3 : x = λa + µb where λ, µ ∈ R} . (5.28)

The solution space thus has dimension two.

Mathematical Tripos: IA Algebra & Geometry (Part I) 83 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

5.5.3 Linear mapping view of Ax = 0

Consider the linear map A : R3 → R3, such that x 7→ x′ = Ax, where A is the matrix of A with respect
to the standard basis. From our earlier definition (4.5), the kernel of A is given by

K(A) = {x ∈ R3 : Ax = 0} . (5.29)

K(A) is the solution space of Ax = 0, with a dimension denoted by n(A). The three cases studied in
our geometric view of §5.5.2 correspond to

(i) n(A) = 0,

(ii) n(A) = 1,

(iii) n(A) = 2.

Remark. We do not need to consider the case n(A) = 3 as long as we exclude the map with A = 0.

Next recall that if {u,v,w} is a basis for R3, then the image of A is spanned by {A(u),A(v),A(w)},
i.e.

A(R3) = span{A(u),A(v),A(w)} .
We now consider the three different possibilities for the value of the nullity in turn.

(i) If n(A) = 0 then {A(u),A(v),A(w)} is a linearly independent set since

{λA(u) + µA(v) + νA(w) = 0} ⇔ {A(λu + µv + νw) = 0}
⇔ {λu + µv + νw = 0} ,

and so λ = µ = ν = 0 since {u,v,w} is basis. It follows that the rank of A is three, i.e. r(A) = 3.

(ii) If n(A) = 1 choose non-zero u ∈ K(A); u is a basis for the proper subspace K(A). Next choose
v,w 6∈ K(A) to extend this basis to form a basis of R3 (recall from Theorem 3.5 on page 49 that
this is always possible). We claim that {A(v),A(w)} are linearly independent. To see this note that

{µA(v) + νA(w) = 0} ⇔ {A(µv + νw) = 0}
⇔ {µv + νw = αu} ,

for some α ∈ R. Hence −αu + µv + νw = 0, and so α = µ = ν = 0 since {u,v,w} is basis. We
conclude that A(v) and A(w) are linearly independent, and that the rank of A is two, i.e. r(A) = 2
(since the dimension of span{A(u),A(v),A(w)} is two).

(iii) If n(A) = 2 choose non-zero u,v ∈ K(A) such that the set {u,v} is a basis for K(A). Next choose
w 6∈ K(A) to extend this basis to form a basis of R3. Since Au = Av = 0 and Aw 6= 0, it follows
that

dim span{A(u),A(v),A(w)} = r(A) = 1 .

Remarks.

(a) In each of cases (i), (ii) and (iii) we have in accordance of the rank-nullity Theorem (see Theorem
4.2 on page 59)

r(A) + n(A) = 3 .

(b) In each case we also have from comparison of the results in this section with those in §5.5.2,

r(A) = dim span{r1, r2, r3}
= number of linearly independent rows of A (row rank).

Suppose now we choose {u,v,w} to be the standard basis {e1, e2, e3}. Then the image of A is
spanned by {A(e1),A(e2),A(e3)}, and the number of linearly independent vectors in this set must
equal r(A). It follows from (4.14) and (4.19) that

r(A) = dim span{Ae1,Ae2,Ae3}
= number of linearly independent columns of A (column rank).
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5.5.4 Implications for the solution of the inhomogeneous equation Ax = d

If detA 6= 0 then r(A) = 3 and I(A) = R3 (where I(A) is notation for the image of A). Since d ∈ R3,
there must exist x ∈ R3 for which d is the image under A, i.e. x = A−1d exists and unique.

If detA = 0 then r(A) < 3 and I(A) is a proper subspace of R3. Then

• either d /∈ I(A), in which there are no solutions and the equations are inconsistent ;

• or d ∈ I(A), in which case there is at least one solution and the equations are consistent.

The latter case is described by Theorem 5.6 below.

Theorem 5.6. If d ∈ I(A) then the general solution to Ax = d can be written as x = x0 + y where x0

is a particular fixed solution of Ax = d and y is the general solution of Ax = 0.

Proof. First we note that x = x0 + y is a solution since Ax0 = d and Ay = 0, and thus

A(x0 + y) = d + 0 = d .

Further, from §5.5.2 and §5.5.3, if

(i) n(A) = 0 and r(A) = 3, then y = 0 and the solution is unique.

(ii) n(A) = 1 and r(A) = 2, then y = λt and x = x0 + λt (representing a line).

(iii) n(A) = 2 and r(A) = 1, then y = λa + µb and x = x0 + λa + µb (representing a plane).

Example. Consider the (2× 2) inhomogeneous case of Ax = d where(
1 1
a 1

)(
x1

x2

)
=
(

1
b

)
. (5.30)

Since det A = (1− a), if a 6= 1 then det A 6= 0 and A−1 exists and is unique. Specifically

A−1 =
1

1− a

(
1 −1
−a 1

)
, and the unique solution is x = A−1

(
1
b

)
. (5.31)

If a = 1, then det A = 0, and

Ax =
(
x1 + x2

x1 + x2

)
.

Hence

I(A) = span
{(

1
1

)}
and K(A) = span

{(
1
−1

)}
,

and so r(A) = 1 and n(A) = 1. Whether there is a solution now depends on the value of b.

• If b 6= 1 then
(

1
b

)
/∈ I(A), and there are no solutions because the equations are inconsistent.

• If b = 1 then
(

1
b

)
∈ I(A) and solutions exist (the equations are consistent). A particular

solution is

x0 =
(

1
0

)
.

The general solution is then x = x0 + y, where y is any vector in K(A), i.e.

x =
(

1
0

)
+ λ

(
1
−1

)
,

where λ ∈ R.22/06
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6 Complex Vector Spaces

6.0 Why Study This?

In the same way that complex numbers are a natural extension of real numbers, and allow us to solve
more problems, complex vector spaces are a natural extension of real numbers, and allow us to solve
more problems. Inter alia they are important in quantum mechanics.

6.1 Vector Spaces Over The Complex Numbers

We have considered vector spaces with real scalars. We now generalise to vector spaces with complex
scalars.

6.1.1 Definition

We just adapt the definition for a vector space over the real numbers by exchanging ‘real’ for ‘complex’
and ‘R’ for ‘C’. Hence a vector space over the complex numbers is a set V of elements, or ‘vectors’,
together with two binary operations

• vector addition denoted for x,y ∈ V by x + y, where x + y ∈ V so that there is closure under
vector addition;

• scalar multiplication denoted for a ∈ C and x ∈ V by ax, where ax ∈ V so that there is closure
under scalar multiplication;

satisfying the following eight axioms or rules:

A(i) addition is associative, i.e. for all x,y, z ∈ V

x + (y + z) = (x + y) + z ; (6.1a)

A(ii) addition is commutative, i.e. for all x,y ∈ V

x + y = y + x ; (6.1b)

A(iii) there exists an element 0 ∈ V , called the null or zero vector, such that for all x ∈ V

x + 0 = x , (6.1c)

i.e. vector addition has an identity element;

A(iv) for all x ∈ V there exists an additive negative or inverse vector x′ ∈ V such that

x + x′ = 0 ; (6.1d)

B(v) scalar multiplication of vectors is ‘associative’, i.e. for all λ, µ ∈ C and x ∈ V

λ(µx) = (λµ)x , (6.1e)

B(vi) scalar multiplication has an identity element, i.e. for all x ∈ V

1 x = x , (6.1f)

where 1 is the multiplicative identity in C;

B(vii) scalar multiplication is distributive over vector addition, i.e. for all λ ∈ C and x,y ∈ V

λ(x + y) = λx + λy ; (6.1g)

B(viii) scalar multiplication is distributive over scalar addition, i.e. for all λ, µ ∈ C and x ∈ V

(λ+ µ)x = λx + µx . (6.1h)

Mathematical Tripos: IA Algebra & Geometry (Part I) 86 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

6.1.2 Properties

Most of the properties and theorems of §3 follow through much as before, e.g.

(i) the zero vector 0 is unique;

(ii) the additive inverse of a vector is unique;

(iii) if x ∈ V and λ ∈ C then
0x = 0, (−1)x = −x and λ0 = 0;

(iv) Theorem 3.1 on when a subset U of a vector space V is a subspace of V still applies if we exchange
‘real’ for ‘complex’ and ‘R’ for ‘C’.

6.1.3 Cn

Definition. For fixed positive integer n, define Cn to be the set of n-tuples (z1, z2, . . . , zn) of complex
numbers zi ∈ C, i = 1, . . . , n. For λ ∈ C and complex vectors u,v ∈ Cn, where

u = (u1, . . . , un) and v = (v1, . . . , vn),

define vector addition and scalar multiplication by

u + v = (u1 + v1, . . . , un + vn) ∈ Cn , (6.2a)
λu = (λu1, . . . , λun) ∈ Cn . (6.2b)

Lemma 6.1. Cn is a vector space over C

Proof by exercise. Check that A(i), A(ii), A(iii), A(iv), B(v), B(vi), B(vii) and B(viii) of §6.1.1 are
satisfied. 2

Remarks.

(i) Rn is a subset of Cn, but it is not a subspace of the vector space Cn, since Rn is not closed under
multiplication by an arbitrary complex number.

(ii) The standard basis for Rn, i.e.

e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1), (6.3a)

also serves as a standard basis for Cn. Hence Cn has dimension n when viewed as a vector space
over C. Further we can express any z ∈ Cn in terms of components as

z = (z1, . . . , zn) =
n∑

i=1

ziei . (6.3b)

6.2 Scalar Products for Complex Vector Spaces

In generalising from real vector spaces to complex vector spaces, we have to be careful with scalar
products.

6.2.1 Definition

Let V be a n-dimensional vector space over the complex numbers. We will denote a scalar product, or
inner product, of the ordered pair of vectors u, v ∈ V by

〈u , v 〉 ∈ C , (6.4)

Mathematical Tripos: IA Algebra & Geometry (Part I) 87 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2006



T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
It

is
no

t
to

be
di

st
ri

bu
te

d
to

st
ud

en
ts

.

where alternative notations are u · v and 〈u |v 〉. A scalar product of a vector space over the complex
numbers must have the following properties.

(i) Conjugate symmetry, i.e.
〈u , v 〉 = 〈v , u 〉∗ , (6.5a)

where a ∗ is an alternative notation for a complex conjugate (we shall swap between ¯ and ∗ freely).
Implicit in this equation is the assumption that for a complex vector space the ordering of the
vectors in the scalar product is important (whereas for Rn this is not important). Further, if we let
u = v, then (6.5a) implies that

〈v , v 〉 = 〈v , v 〉∗ , (6.5b)

i.e. 〈v , v 〉 is real.

(ii) Linearity in the second argument, i.e. for λ, µ ∈ C

〈u , (λv1 + µv2) 〉 = λ 〈u , v1 〉+ µ 〈u , v2 〉 . (6.5c)

(iii) Non-negativity, i.e. a scalar product of a vector with itself should be positive, i.e.

〈v , v 〉 > 0 . (6.5d)

This allows us to write 〈v , v 〉 = ‖v‖2, where the real positive number ‖v‖ is the norm of the
vector v.

(iv) Non-degeneracy, i.e. the only vector of zero norm should be the zero vector, i.e.

‖v‖2 ≡ 〈v , v 〉 = 0 ⇒ v = 0 . (6.5e)

6.2.2 Properties

Scalar product with 0. We can again show that

〈u , 0 〉 = 〈0 , u 〉 = 0 . (6.6)

Anti-linearity in the first argument. Properties (6.5a) and (6.5c) imply so-called ‘anti-linearity’ in the
first argument, i.e. for λ, µ ∈ C

〈 (λu1 + µu2) , v 〉 = 〈v , (λu1 + µu2) 〉∗

= λ∗ 〈v , u1 〉∗ + µ∗ 〈v , u2 〉∗

= λ∗ 〈u1 , v 〉+ µ∗ 〈u2 , v 〉 . (6.7)

Schwarz’s inequality and the triangle inequality. It is again true that

|〈u , v 〉| 6 ‖u‖ ‖v‖ , (6.8a)
‖u + v‖ 6 ‖u‖+ ‖v‖ . (6.8b)

with equality only when u is a scalar multiple of v.

6.2.3 Scalar Products in Terms of Components

Suppose that we have a scalar product defined on a complex vector space with a given basis {ei},
i = 1, . . . , n. We claim that the scalar product is determined for all pairs of vectors by its values for all
pairs of basis vectors. To see this first define the complex numbers Gij by

Gij = 〈 ei , ej 〉 (i, j = 1, . . . , n) . (6.9)

Then, for any two vectors

v =
n∑

i=1

viei and w =
n∑

j=1

wjej , (6.10)
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we have that

〈v , w 〉 =

〈( n∑
i=1

viei

)
,
( n∑

j=1

wjej

)〉

=
n∑

i=1

n∑
j=1

v∗iwj 〈 ei , ej 〉 from (6.5c) and (6.7)

=
n∑

i=1

n∑
j=1

v∗iGijwj . (6.11)

We can simplify this expression (which determines the scalar product in terms of the Gij), but first it
helps to have a definition.

Hermitian conjugates.

Definition. The Hermitian conjugate or conjugate transpose or adjoint of a matrix A = {aij},
where aij ∈ C, is defined to be

A† = (AT)∗ = (A∗)T , (6.12)

where, as before, T denotes a transpose.

Example.

If A =
(
a11 a12

a21 a22

)
then A† =

(
a∗11 a∗21
a∗12 a∗22

)
.

Properties. For matrices A and B recall that (AB)T = BTAT. Hence (AB)T∗ = BT∗AT∗, and so

(AB)† = B†A† . (6.13a)

Also, from (6.12),
A†† =

(
A∗T

)T∗
= A . (6.13b)

Let w be the column matrix of components,

w =


w1

w2

...
wn

 , (6.14a)

and let v† be the adjoint of the column matrix v, i.e. v† is the row matrix

v† ≡ (v∗)T =
(
v∗1 v∗2 . . . v∗n

)
. (6.14b)

Then in terms of this notation the scalar product (6.11) can be written as

〈v , w 〉 = v†Gw , (6.15)

where G is the matrix, or metric, with entries Gij .

Remark. If the {ei} form an orthonormal basis, i.e. are such that

Gij = 〈 ei , ej 〉 = δij , (6.16a)

then (6.11), or equivalently (6.15), reduces to (cf. (3.22))

〈v , w 〉 =
n∑

i=1

v∗iwi . (6.16b)

Exercise. Confirm that the scalar product given by (6.16b) satisfies the required properties of a scalar
product, namely (6.5a), (6.5c), (6.5d) and (6.5e).
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6.3 Linear Maps

Similarly, we can extend the theory of §4 on linear maps and matrices to vector spaces over complex
numbers.

Example. Consider the linear map N : Cn → Cm. Let {ei} be a basis of Cn and {fi} be a basis of Cm.
Then under N ,

ej → e′j = Nej =
m∑

i=1

Nijfi,

where Nij ∈ C. As before this defines a matrix, N = {Nij}, with respect to bases {ei} of Cn and
{fi} of Cm. N will in general be a complex (m× n) matrix.

Real linear transformations. We have observed that the standard basis, {ei}, is both a basis for Rn and
Cn. Consider a linear map T : Rn → Rm, and let T be the associated matrix with respect to the
standard bases of both domain and range; T is a real matrix. Extend T to a map

T̂ : Cn → Cm ,

where T̂ has the same effect as T on real vectors. If ei → e′i, then as before

(T̂)ij = (e′i)j and hence T̂ = T .

Further real components transform as before, but complex components are now also allowed. Thus
if v ∈ Cn, then the components of v with respect to the standard basis transform to components
of v′ with respect to the standard basis according to

v′ = Tv .

Maps such as T̂ are referred to as real linear transformations of Cn → Cm.

Change of bases. Under a change of bases {ei} to {ẽi} and {fi} to {f̃i} the transformation law (4.70)
follows through for a linear map N : Cn → Cm, i.e.

Ñ = C−1NA . (6.17)

Remark. If N is a real linear transformation so that N is real, it is not necessarily true that Ñ is
real, e.g. this will not be the case if we transform from standard bases to bases consisting of
complex vectors.

Example. Consider the map R : R2 → R2 consisting of a rotation by θl; from (4.23)(
x
y

)
7→
(
x′

y′

)
=
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
= R(θ)

(
x
y

)
.

Since diagonal matrices have desirable properties (e.g. they are straightforward to invert) we might
ask whether there is a change of basis under which

R̃ = A−1RA (6.18)

is a diagonal matrix. One way (but emphatically not the best way) to proceed would be to [partially]
expand out the right-hand side of (6.18) to obtain

A−1RA =
1

det A

(
a22 −a12

−a21 a11

)(
a11 cos θ − a21 sin θ a12 cos θ − a22 sin θ
a11 sin θ + a21 cos θ a12 sin θ + a22 cos θ

)
,

and so

(A−1RA)12 =
1

detA
(a22(a12 cos θ − a22 sin θ)− a12(a12 sin θ + a22 cos θ))

= − sin θ
detA

(
a2
12 + a2

22

)
,

and
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(A−1RA)21 =
sin θ
detA

(
a2
11 + a2

21

)
.

Hence R̃ is a diagonal matrix if a12 = ±ia22 and a21 = ±ia11. A convenient normalisation (that
results in an orthonormal basis) is to choose

A =
1√
2

(
1 −i
−i 1

)
. (6.19)

Thence from (4.61) it follows that

ẽ1 =
1√
2

(
1
−i

)
, ẽ2 =

1√
2

(
−i
1

)
, (6.20a)

where we note from using (6.16b) that

〈 ẽ1 , ẽ1 〉 = 1 , 〈 ẽ1 , ẽ2 〉 = 0 , 〈 ẽ2 , ẽ2 〉 = 1 , i.e. 〈 ẽi , ẽj 〉 = δij . (6.20b)

Moreover, from (6.3), (6.18) and (6.19) it follows that, as required, R̃ is diagonal:

R̃ =
1
2

(
1 i
i 1

)(
cos θ − sin θ
sin θ cos θ

)(
1 −i
−i 1

)
=

(
eiθ 0
0 e−iθ

)
. (6.21)

Remark. We know from (4.59b) that real rotation matrices are orthogonal, i.e. RRT = RTR = I;
however, it is not true that R̃R̃T = R̃TR̃ = I. Instead we note from (6.21) that

R̃R̃† = R̃†R̃ = I , (6.22a)

i.e.
R̃† = R̃−1 . (6.22b)

Definition. A complex square matrix U is said to be unitary if its Hermitian conjugate is equal to its
inverse, i.e. if

U† = U−1 . (6.23)

Unitary matrices are to complex matrices what orthogonal matrices are to real matrices. Similarly, there
is an equivalent for complex matrices to symmetric matrices for real matrices.

Definition. A complex square matrix A is said to be Hermitian if it is equal to its own Hermitian
conjugate, i.e. if

A† = A . (6.24)

Example. The metric G is Hermitian since from (6.5a), (6.9) and (6.12)

(G†)ij = G∗ji = 〈 ej , ei 〉∗ = 〈 ei , ej 〉 = (G)ij . (6.25)

Remark. As mentioned above, diagonal matrices have desirable properties. It is therefore useful to know
what classes of matrices can be diagonalized by a change of basis. You will learn more about this
in in the second part of this course (and elsewhere). For the time being we state that Hermitian
matrices can always be diagonalized, as can all normal matrices, i.e. matrices such that A†A = AA†

. . . a class that includes skew-symmetric Hermitian matrices (i.e. matrices such that A† = −A) and
unitary matrices, as well as Hermitian matrices.
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