
An introduction to the sjemea package

S. J. Eglen

September 25, 2013

Installation

To install this package, and then view this introductory vignette, do:

install.packages(c("sjemea"), contriburl = "http://damtp.cam.ac.uk/user/eglen/r/")
vignette("sjemea-intro", package = "sjemea")

Setup

This file is a vignette, written in R, as a reproducible research document.

require(sjemea)
require(knitr)
opts_chunk$set(cache = TRUE)
opts_chunk$set(dev = "pdf")

Introduction

This is a short introduction to the abilities of the sjemea package for analysis of multielectrode
array data. It is not a comprehensive guide, but simply gives examples of what can be done with
the package. The package contains some example data sets which are used here to demonstrate
various routines.

Help pages

A list of help pages associated with the package can be seen by typing:

help(package = sjemea)

Fourplot

The fourplot gives a quick overview for a data file, showing (a) the positions of recorded neurons
(b) the array-wide firing rate, estimated by default every 1 s (c) the spike raster for the entire
recording (d) the correlation index plot (Wong et al., 1993).

1

data.file <- system.file("examples", "P9_CTRL_MY1_1A.txt", package = "sjemea")
s <- jay.read.spikes(data.file)
fourplot(s)

Warning: removing 17 zero entries

0 200 400 600 800 1000

200

400

600

800

spacing (µm)

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

1920

21

2223

24

25

26

0 500 1500 2500 3500

0

2

4

6

8

10

time (s)

m
ea

n
fir

in
g

ra
te

 (
H

z)

0 500 1500 2500 3500

Time (s)

C
ha

nn
el

●

●

●

●

●

●

●
● ●

●
●
●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

● ● ●
●

●

●

●●

●
●
●●

● ●

●●

●

●

●

●

●

●●●●
●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

● ●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●●
●● ●●●

●●●

●●
●

●

●

●●●● ●●●

●
●●

●

●
●

●
●

●

● ● ● ●
● ●

●

●

● ●

●

● ●

●

● ● ●●●●
● ●●

●
●●●

●

●
●

●

●●

● ●

●●
●● ●●
● ●●●

●

●●

●
●

●

●
●

●

●●●● ●●● ●●●

●
●●

●
●

●

●

●

●●

● ● ● ●
●
●

●

●

● ●

●

● ●

●

● ● ●

●

●● ●● ● ● ●
●●

●

●

● ●

●

● ●

●

● ● ●

●

●●
●

●

●●
●
● ●●● ●●● ●●●

●
●

●

●
●

●●
●

●

●

●● ● ●
●

●

●
●

● ●

●

● ●

●

● ● ●

●

●● ●

●

●

● ●●● ●
●●

●●

●●

●

● ●

●

●
● ●

●

●● ●

●

●

●

●

0 200 400 600 800

0

20

40

60

80

100

intercell distance (µm)

co
rr

el
at

io
n

in
de

x

P9_CTRL_MY1_1A

A convention of the program is that all data referring to a recording is stored within an object
of class mm.s, which is actually a list. So, when new data/results are collected for a recording, I
tend to add the new information into that object (e.g. see how burst analysis results are stored).

Burst analysis

We have several routines implemented for burst analysis:

1. Max Interval method, as described by Neuroexplorer (NexTechnologies, 2012)

2. Poisson surprise (Legéndy and Salcman, 1985)

3. Rank suprise (Gourévitch and Eggermont, 2007)

Out of these, the most tested has been the MaxInterval method.

2

data.file <- system.file("examples", "TC89_DIV15_A.nexTimestamps", package = "sjemea")
s <- sanger.read.spikes(data.file)
s$allb <- spikes.to.bursts.surprise(s)

So, for example, for electrode 2, we see the following bursts (just taking the head as there are
many of them. We can also easily plot the number of bursts on each electrode.

head(s$allb[[2]])

beg len SI durn mean.isis
[1,] 1 19 70.76 0.06848 0.003804
[2,] 21 60 103.03 1.95984 0.033218
[3,] 85 14 44.38 0.08668 0.006668
[4,] 100 56 93.56 1.92436 0.034988
[5,] 158 6 15.44 0.05552 0.011104
[6,] 164 68 118.08 2.17580 0.032475

nbursts <- sapply(s$allb, nrow)
plot(nbursts, xlab = "Electrode number", ylab = "Number of bursts", bty = "n",

las = 1)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

0 10 20 30 40 50 60

0

50

100

150

200

250

300

Electrode number

N
um

be
r

of
 b

ur
st

s

3

Once bursts are computed the resulting burst information can be visualized on a raster assum-
ing that the burst information is stored in the s$allb component of the object. Here we ask to see
the burst information for twenty seconds of data from just the first five trains.

plot(s, beg = 100, end = 200, show.bursts = TRUE, whichcells = 1:5)

100 120 140 160 180 200

TC89_DIV15_A.nexTimestamps

Time (s)

C
ha

nn
el

172 13 7 12952727 11 1051743 8 6199 4 20

6 68 5 67 68 13

1174 10 6733 11 120 114 15

4 53 3 63 636 6

11 3374141410 9 102 3964 9

Bursts are indicated with a red horizontal line, and the blue number indicates the number of
spikes in the burst.

Note: a Hidden-Markov Model (HMM) for burst analysis in R (Tokdar et al., 2010) is available
in the following package: http://www.stat.duke.edu/~st118/Software/.

can be used within this package, but in principle (computation time aside as I expect an HMM
to be slow) there should be no issue. There is also a generic “bursts” package: http://cran.
r-project.org/web/packages/bursts/bursts.pdf.

Log interspike intervals

To help determine burst parameters, it is often helpful to look at a histogram of the interspike
interval, plotted on a log scale.

TODO: add this code from ~/proj/sangermea/pdn/logisi_condtable.R.

4

Network spikes

Network spikes are periodic elevations in activity across the whole array (Eytan and Marom,
2006). The following example shows how they are computed. In the resulting graph, the popula-
tion “firing rate” (the number of active electrodes here) is shown on the y axis, time (in seconds)
on the x axis. The horizontal red line is a threshold set for the minimum number of active elec-
trodes to determine a “network spike”. The blue dots are the peak of each network spikes.

The mean network spike is also shown, averaged across all the network spikes in the record-
ing.

example(compute.ns)

##
cmpt.n> data.file <- system.file("examples", "TC89_DIV15_A.nexTimestamps",
cmpt.n+ package = "sjemea")
##
cmpt.n> s <- sanger.read.spikes(data.file, beg=400, end=700)
##
cmpt.n> s$ns <- compute.ns(s, ns.T=0.003, ns.N=10,sur=100)
##
cmpt.n> plot(s$ns, ylab='Count', xlab='Time (s)')

Time (s)

C
ou

nt

400 450 500 550 600 650 700

0
10

20
30

40
50

●

●

●

●

●

●

●
●

●
●●
●
●●
●

●

●

●

●
●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

5

##
cmpt.n> plot(s$ns, xlim=c(450, 500),
cmpt.n+ xlab='Time (s)', ylab='Count')

Time (s)

C
ou

nt

450 460 470 480 490 500

0
10

20
30

40
50

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

##
cmpt.n> plot(snsmean, xlab='Time (s)', ylab='Count', main='Mean NS')

6

Mean NS

Time (s)

C
ou

nt

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

5
10

15
20

25

##
cmpt.n> summary(s$ns)
167 network spikes
recruitment 27.23 +/- 10.52
FWHM 0.023 +/- 0.013 (s)
##
cmpt.n> snsbrief
n peak.m peak.sd durn.m durn.sd
167.00000 27.23353 10.51559 0.02315 0.01264
##
cmpt.n> ## show.ns(s$ns) # This shows each network spike! Can take a long time.
cmpt.n>
cmpt.n>
cmpt.n>

7

Correlation index

The correlation index plot was devised by Wong et al. (1993) as a method to estimate how corre-
lation between any pair of neurons on the array depends (if at all) upon the distance separating
the pair. For retinal waves, the correlation index usually has an exponentially-decaying profile.
For other recordings, (e.g. hippocampal cultures), the profile tends to be flatter.

jay.data.file <- system.file("examples", "P9_CTRL_MY1_1A.txt", package = "sjemea")
jay.s <- jay.read.spikes(jay.data.file)
plot.corr.index(jay.s)

Warning: removing 17 zero entries

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●● ●●
●

●●●

●
●

●

●

●

●●●
●

●●
●

●

●
●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

●
●

●

●
●

●

● ● ●●
●

●

● ●●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●● ●●● ●●
●

●

●●

●

●

●

●

●

●●

● ● ● ●

●

●

●

●

● ●

●

● ●

●

●
● ●

●

●●
●●

● ● ●

●●

●

●

● ●

●

● ●

●

●
● ●

●

●●

●

●

●●

●

● ●
●
●

●●● ●●
●

●

●

●

●

●

●●

●

●

●

●● ● ●

●

●

●
●

● ●

●

● ●

●

●
● ●

●

●● ●

●

●

● ●
● ● ●

●
●

●
●

●
●

●

● ●

●

●

● ●

●

●● ●

●

●

●

●

0 200 400 600 800

0
20

40
60

80
10

0

P9_CTRL_MY1_1A.txt dt: 0.05

intercell distance (µm)

co
rr

el
at

io
n

in
de

x

##
Call:
lm(formula = y.log ~ x)
##
Coefficients:
(Intercept) x
3.89108 -0.00424

8

Batch analysis

As this code is all written in the R progamming language, it scales itself well to the notion that the
analysis can be automated to run over many data files in batch, rather than running one at a time.
To this end, for the Genes to Cognition project, we devised a system where data files were ex-
pected in one directory, and output files would be written to a particular directory. See the R func-
tion sanger.init and in particular the variables mea.data.dir, mea.table.dir, mea.op.dir.
A spreadsheet containing the files to be analysed is passed to a script that analyses each row of
the spreadsheet independently. This system was used to analyse several hundreds of files simul-
taneously.

Data readers

The examples above have used example data stored within the package to read in data. Here are
the names of some (not all) other readsers that are available in the package.

ncl.read.spikes – Multi-Channel system MCS output of spike times and cut outs. (Named “ncl”,
as the data came from Newcastle.)

jay.read.spikes – Used for Demas et al. (2003) (Named “jay” as the data was recorded by Jay
Demas.)

h5.read.spikes – HDF5 format, as described in the current “waverepo” project.

sql.read.spikes – Prototype using SQL to store data.

sanger.read.spikes – Multi-channel system from the Sanger Genes to Cognition project.

Handling new data

Although these old readers still work, where possible, we should use the HDF5 format for data
storage. The preferred approach (as taken with the “waverepo” project), is to convert data as soon
as possible into HDF5.

Some older routines exist for reading in binary format (e.g. mm.read.spikes) but these are
quite old now and cumbersome to maintain. Whenever possible, data collected from laboratories
should either be text or HDF5.

Converting neuroexplorer timestamp files

Neuroexplorer timestamp files can be converted into plain text using the routines provided on
their web site: http://www.neuroexplorer.com/code.html Example code for C and matlab are
given. Future work could include converting this code to R if there is demand.

Multi-well arrays

Through a collaboration with Dr Tim Shafer’s group at EPA, we are developing code for handling
multi-well data. (For example, so that each well can be analysed independently in an efficient
manner.) This introduces an extra layer of abstraction into the geometry of the array, in that an
electrode is part of a well, and there are many wells on one array (or “plate”).

9

Other features

Interactive facilities for viewing spike times were in earlier versions of the code, but Tk() widgets
conflicted with the use of parallel() code. I think this has now been fixed, so we might be able to
return to adding interactive features.

History

This package was originally written for research that was published in (Demas et al., 2003). Since
then it has been used by several other research groups.

Acknowledgements

This work has been financially supported by grants from the Wellcome Trust, BBSRC and EPSRC.
Zhengzheng Zhang provided the logisi function. I thank Paul Charlesworth for many discus-
sions about electrophysiological analysis.

References

Demas J, Eglen SJ, Wong ROL (2003) Developmental loss of synchronous spontaneous activity in
the mouse retina is independent of visual experience. J. Neurosci. 23:2851–2860.

Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in net-
works of cortical neurons. J. Neurosci. 26:8465–8476.

Gourévitch B, Eggermont JJ (2007) A nonparametric approach for detection of bursts in spike
trains. J. Neurosci. Methods 160:349–358.

Legéndy CR, Salcman M (1985) Bursts and recurrences of bursts in the spike trains of sponta-
neously active striate cortex neurons. J. Neurophysiol. 53:926–939.

NexTechnologies (2012) NeuroExplorer Manual.

Tokdar S, Xi P, Kelly RC, Kass RE (2010) Detection of bursts in extracellular spike trains using
hidden semi-markov point process models. J. Comput. Neurosci. 29:203–212.

Wong ROL, Meister M, Shatz CJ (1993) Transient period of correlated bursting activity during
development of the mammalian retina. Neuron 11:923–938.

Compiling this document

require(knitr)
knit2pdf("sjemea-intro.Rnw")

10

