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1. Introduction and Background

This talk concerns new constructions of complex hyper-Kähler metrics with a view
to Joyce structures. The motivation for Joyce structures ultimately has its roots in
Donaldson-Thomas (DT) theory. This talk will be mostly concrete but it is nice to
situate this work in a bigger story so we start with some deliberately vague remarks:
DT theory concerns the enumerative geometry of Calabi-Yau 3-folds. One may consider
categories of:

• Holomorphic vector bundles / coherent sheaves
• Lagrangian submanifolds (objects in F(Y ))

DT invariants are associated to subclasses in a category and “count” distinguished ob-
jects: stable bundles of a given Chern character and (maybe conjecturally) special La-
grangians of a fixed class in H3(Y ) respectively. However the definitions of these notions
depend on some input data from outside the category. For F(Y ) the notion of special
requires a choice of complex structure and an associated holomorphic volume form. The
moduli of these extra pieces of data motivate the idea of spaces of stability conditions.
Given certain assumptions, Bridgeland argues [4] the way the DT invariants vary as one
moves around the spaceM = Stab(C) of stability conditions on a CY3 category C should,
after solving a holomorphically varying family of Riemann-Hilbert problems, define a geo-
metric structure (named there a Joyce structure). In [6] this structure is interpreted as
a complex hyper-Kähler metric with extra symmetry on the space X = TM .

Articles by Smith [14] and Smith together with Bridgeland [7] give a nice geometric
realisation of spaces of stability conditions:

Stab(F(Y )) ↔ Quad(g, {m1, ...,mn})(1.1)

when Y is a certain non-compact Calabi-Yau threefold fibreing over surface of genus g and
M = Quad(g, {m1, ...,mn}) is the moduli space of quadratic differentials on a Riemann
surface of genus g with simple zeroes and poles of order {m1, ...,mn}.
Can we see the Joyce structure on X while starting on the right hand side of (1.1)?
The case of a pole of order seven on the Riemann sphere is detailed in [5]. In this talk

I hope to get some way to explaining the construction for a single pole of order 2n + 5
and in fact I hope the methods here can be adapted in a straightforward way to other
moduli of meromorphic quadratic differentials on the Riemann sphere.

2. Complex hyper-Kähler metrics

We will be concerned with complex hyper-Kähler metrics on a complex manifold X of
dimension 4n. These are holomorphic non-degenerate sections g of ⊙2T ∗X where TX
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denotes the holomorphic tangent bundle of X, with holomorphic endomorphisms I, J,K
of TX satisfying

I2 = J2 = K2 = IJK = − IdTX ,(2.1)

I∗g = J∗g = K∗g = g

∇I = ∇J = ∇K = 0.

This differs from (Riemannian) hyper-Kähler geometry and there is no notion of signature.
Let F = X × CP1. An intermediate step on the way to constructing our metrics will

be families of rank-2n subbundles of TF depending on a spectral parameter which I will
provocatively call ℏ ∈ CP1. Here ℏ = u1/u0 where [u0 : u1] ∈ CP1. These are twistor
distributions that are of the form

L = span
{
Lj := Uj +

Vj
ℏ

}2n

j=1
.(2.2)

where Uj, Vj are vector fields on X such that TX = span{Uj, Vj}2nj=1. This setup defines
a parabolic geometry with various names:

• (2n, 2)-paraconformal structure (Bailey-Eastwood [1])
• (2n, 2)-almost-Grassmannian structure [8], dropping the almost if L is integrable
for all ℏ ∈ CP1 (which we will assume).

We have a canonical quaternionic structure I, J,K determined by

J(Uj) = Vj, K(Uj) = iVj(2.3)

and the quaternion relations. The span of the Ui and Vi are the ±i eigenspaces of I.
L Frobenius integrable is equivalent to integrability of the ±i-eigenspaces of the com-

plex structures I, J,K and the existence of the twistor space Z = (X×CP1)/L, potentially
replacing X by a suitable open region to get something Hausdorff.
L also determines a family of metrics Hermitian for the quanternionic structure:

g =
2n∑

i, j=1

eijU
i ⊙ V i.(2.4)

Here (after choice of basis), each metric corresponds to a non-degenerate skew matrix eij
of holomorphic functions on X. When does the family contain a hyper-Kähler metric?
We will give a characterisation in terms of data on the twistor space.

Associated to each metric of the form (2.4) we define a 2-form on F :

Ω =
2n∑

i, j=1

eij(V
i − U i/ℏ) ∧ (V j − U j/ℏ)(2.5)

=
2n∑

i, j=1

ℏ−2 eijU
i ∧ U j︸ ︷︷ ︸

Ω−:=

−2ℏ−1eijU
i ∧ V j + eijV

i ∧ V j︸ ︷︷ ︸
Ω+:=

.

One can think of this as an O(2)-valued 2-form relative to the fibration F → CP1 with
kernel L. It is straightforward to see that if Ω is closed with respect to exterior dif-
ferentiation on X for all ℏ then Ω− and Ω+ are both closed two forms on X. Now
g(J ·, ·) = Ω+ + Ω− and g(K, ·) = Ω+ − Ω−. So dΩ+ = dΩ− = 0 implies ∇J = ∇K = 0
which implies ∇I = 0 and the metric (2.4) is complex hyper-Kähler.
AnO(2)-valued relative 2-form of maximal rank on F while annihilating L is necessarily

of the form (2.5) and determines a metric (2.4) which is hyper-Kähler if and only if it is
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relatively closed. Furthermore, in this case

LLi
Ω = 0,

so Ω descends to an O(2)-valued 2-form on Z.
This is basically the argument in [1] where a correspondence between relative symplectic

O(2)-valued 2-forms on Z and complex hyper-Kähler metrics on X is established. A
similar correspondence for hyper-Kähler metrics (in the usual sense) appears in [11].
When one of Ω− or Ω+ is closed the geometry is called null-Kähler [9].

3. Schrödinger equations

Points in the space F = X × CP1 will determine ODE in a complex parameter x of
the following form

ℏ2
d2ψ

dx2
= Q(x)ψ(3.1)

where

Q(x) = Q0(x) + ℏQ1(x) + ℏ2Q2(x)(3.2)

here (the following may at first look mysterious)

Q0(x) = x2n+1 + a2nx
2n−1 + ...+ a1(3.3)

Q1(x) =
n∑

i=1

pi
x− qi

+ rnx
n−1 + ...+ r1(3.4)

where p2i = Q0(qi). Next Q2(x) is determined by the condition that

Q(x) =
3

4(x− qi)2
+

ui
(x− qi)

+ u2i +O((x− qi))(3.5)

at x = qi for some functions ui on F . This is set up so analytic continuation of solutions
around the singularity corresponds to multiplication by −1.

Note that a := (a1, ..., a2n) gives local coordinates on the space M = Quad({2n+ 5}).
To see this note there are 2n + 3 Möbius transforms that put any quadratic differential
ϕ on CP1 with a single pole of order 2n + 5 into the form Q0(x)dx

2 (these differ by
multiplication by a (2n+ 3)rd root of unity).
We letX be the manifold with local coordinates (a, q, r), q := (q1, ..., qn), r := (r1, ..., rn),

parametrising the choice of Q0(x) and Q1(x). There is a map X → Quad({2n+5}) given
by forgetting Q1(x). Time permitting, I will explain how each choice of Q1(x) up to
swapping the qi determines a unique point in TϕM/Γϕ where Γϕ is a lattice determined
by the quadratic differential, and (basically by the Jacobi inversion theorem) that this
map has open dense image. All the data we are about to define doesn’t see the ordering
of the qi and so we can push it down to TϕM/Γϕ.

4. Isomonodromy

We will define a subbundle L by looking for deformations (a(t), q(t), r(t)) (fixing ℏ)
that are isomonodromic. The theory of isomonodromic deformations for equations with
irregular singular points was addressed by Jimbo, Miwa and Ueno in [12]. The end result
in our case is the following:
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Proposition 4.1. A vector field W ∈ Γ(TX) generates a deformation for the ODE (3.1)
that preserves the (generalised) monodromy data if and only if

W (Q(x)) = 2Q(x)
∂A(x)

∂x
+
∂Q(x)

∂x
A(x)− 1

2

∂3A(x)

∂x3
(4.1)

for some meromorphic A(x).

Proposition 4.2 ([10]). There is are 2n-linearly independent vector fields that satisfy
the equation (4.1) for each ℏ that define a twistor distribution L of the form (2.2). They
correspond to flows with

A(x) =
n∑

i=1

ζi
(x− qi)

(4.2)

for some functions ζi on X.

5. An intersection form as a twistor 2-form

How do we see the hyper-Kähler metric? We need to realise L as the kernel of a closed
relative O(2)-valued 2-form. I will sketch the construction:

Note that for generic (p, ℏ) ∈ X × CP1, Φ := ydx defines a 1-form on a genus-2n
Riemann surface Σp,ℏ defined by y2 = Q(x) with residues that are constant on X (it has
a pole at infinity and simple poles at the points corresponding to x = qi). Accordingly
differentiating Φ with respect to the coordinates on X will produce a 1-form with no
residues and thus represent a cohomology class. We therefore get a map

µp,ℏ : TpX → H1(Σp,ℏ,C)(5.1)

given by

W 7→ W (Φ).(5.2)

Inspect (4.1) and note that the first two terms on the right hand side resemble the product
rule but with the wrong factors. This suggests we should write (4.1) in terms of Ψ by
substituting y2 = Q(x). We get the nice simplification:

W (Φ) = d
(
y · A

)
− 1

4y

∂3A

∂x3
dx.(5.3)

This says that the derivative of Φ in the direction of an isomonodromic flow W ∈ Lℏ is
equal in cohomology H1(Σp,ℏ,C) to

κA :=
1

4y

∂3A

∂x3
dx.(5.4)

We have the usual intersection form

H1(Σp,ℏ,C)×H1(Σp,ℏ,C) → C(5.5)

given by, for smooth cohomology representatives α, β

⟨α|β⟩ =
∫
Σp,ℏ

α ∧ β

or, via Stokes’ theorem, given meromorphic representatives µ, ν with vanishing residues
(also called differentials of the second kind) this can be evaluated as a finite sum

⟨µ|ν⟩ = 2πi
∑

x∈Σp,ℏ

Resx(µ d
−1ν).(5.6)

Here by d−1ν I mean we take local meromorphic antiderivatives of ν around x ∈ Σp,ℏ.

4



Proposition 5.1. κA is orthogonal to the image of µp,ℏ := TpX → H1(Σp,ℏ,C) and hence
Lℏ = kerΩℏ where Ωℏ := ℏ−2µ∗⟨·|·⟩.

Explicitly we may write

Ωℏ(W1,W2) =
∑

x∈Σp,ℏ

2πiResx
(
W1(Ψ) d−1W2(Ψ)

)
.(5.7)

This formula implies Ω is closed for fixed ℏ by the Schwarz rule and integration by parts.
We can also check it is of maximal rank while annihilating L.
The proof of Proposition 5.1 uses the fact κA vanishes to high enough order at infinity,

as well as the fact the Laurent expansion of y at the two points on Σp,ℏ corresponding to
x = qi is determined by (3.5).

Proposition 5.2. Ω defines a O(2)-valued 2-form on F = X × CP1.

The proof of Proposition 5.2 can be sketched as follows: Sufficiently close to the pole
x = ∞ we have the expansion

Ψ =
√
Q0(x)dx+ ℏ

Q1(x)

2
√
Q0(x)

dx+ ℏ2
4Q0(x)Q2(x)−Q1(x)

8Q0(x)3/2
dx+O(ℏ3).(5.8)

The omitted terms have zeroes of high enough order at infinity to not contribute to any
residue at ∞ in (5.7). Meanwhile a product of terms coming from each of the ℏ and ℏ2
terms above does not contribute to (5.7) for the same reason so the residue at infinity
only picks up terms of order ℏ0, ℏ1, ℏ2. We also need to check we only get contribution to
these orders at the pair of poles corresponding to each x = qi separately but using (3.5)
this is a direct calculation which is not too hard.
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