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1. A particle of mass m is scattered by the symmetric square well potential given by

V (x) =

{
−V0 |x| < a/2

0 |x| > a/2
with V0 > 0

The incoming and outgoing plane waves of even (+) and odd (−) parity are

I+(k;x) = e−ik|x| , I−(k;x) = sign(x) e−ik|x|

O+(k;x) = e+ik|x| , O−(k;x) = −sign(x) e+ik|x|

The corresponding scattering states for |x| > a/2 are

ψ+(k;x) = I+(k;x) + S++(k)O+(k;x)

ψ−(k;x) = I−(k;x) + S−−(k)O−(k;x)

where S++ and S−− are the diagonal elements of the S-matrix in the parity basis. By

imposing the boundary condition that (dψ/dx)/ψ is continuous at x = a/2 show that

S++ = −e−ika q tan(qa/2)− ik

q tan(qa/2) + ik
, S−− = e−ika q + ik tan(qa/2)

q − ik tan(qa/2)

where q2 = k2 +U0 and U0 = 2mV0/ℏ2.. Interpret the poles and zeros of S++ and S−−

in terms of bound states.

2. Carry out a similar analysis to that in Question 1, this time for the potential

V (x) = V0δ(x− 1) + V0δ(x+ 1)

with V0 > 0. Interpret the poles and zeros of S++ and S−− in the complex k-plane as

resonances, in the case where V0 ≫ 1. Show that, approximately, the pole position in

S++ with the smallest real part lies at

k =
π

2
− π

2U0

+
π

2U2
0

− i
π2

4U2
0

where U0 = 2mV0/ℏ2.
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3. For classical scattering with a repulsive potential V (r) = K/r2 show that the orbits

of particles with energy E are given by

1

r
= A sinα (π − θ) with α2 = 1 +

K

Eb2
,

where b is the impact parameter and θ is measured counterclockwise, with θ = 0

aligned with the positive x-axis. Hence show that the scattering angle is given by

θ∞ = π(1− 1/α).

4. A particle of mass m and energy ℏ2k2/2m scatters off a hard sphere of radius a.

Show that the phase shifts δl obey

tan δl =
jl(ka)

nl(ka)

5. A particle of mass m and energy ℏ2k2/2m scatters off the attractive potential

V (r) =

{
−ℏ2γ2/2m if r < a

0 if r ≥ a

Show that the phase shifts obey

tan δl =
q jl(ka)j

′
l(qa)− k j′l(ka)jl(qa)

q nl(ka)j′l(qa)− k n′
l(ka)jl(qa)

where q2 = k2 + γ2. Hence show that, as k → 0, δl ∼ (ka)2l+1.

[Hint: You will require the small x behaviours of jl(x) and nl(x) given in the handout.

To answer the first part, consider the requirements of regularity of the wavefunction

at r = 0.]

6. Consider a particle of essentially zero energy scattering off a repulsive spherical

potential

V (r) =

{
+ℏ2γ2/2m if r < a

0 if r ≥ a

From the linear behaviour of the s-wave wavefunction rψ(r) for r ≥ a, show that the

scattering length is positive.

Consider now the attractive potential from Question 3. Show that for a sufficiently

small the scattering length is negative. Show further that as a increases to a critical

value a0, the scattering length becomes infinite. What occurs for a > a0?
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7. Consider the spherical shell of delta-functions,

V (r) =
ℏ2λ
2m

δ(r − a)

Show that the phase shifts are given by

tan δl = − kλa2[jl(ka)]
2

1− kλa2jl(ka)nl(ka)

[Hint: The δ-function leads to two continuity conditions at r = a. Either take

appropriate ratios of these conditions, or arrange them as two linear equations for the

unknown amplitudes and recognise that the determinant of coefficients must vanish.

You will need the Wronskian condition that x2(jl(x)n
′
l(x)− j′l(x)nl(x)) = 1.]

For λ large, show that δl is close to the result given in Question 2 unless k ≃ k0
where jl(k0a) = 0. In the latter case, show that we can write tan δl ≈ −A/(k − k′0)

where k′0 = k0 +O(λ−1) and A = O(λ−2). What is the interpretation of this result?

8. The s-wave wavefunction ψk(r) = χk(r)/r obeys the Schrödinger equation

−d
2χk

dr2
+ V (r)χk = k2χk ,

with k ∈ C and where χk(r) satisfies the boundary conditions χk(0) = 0 and χ′
k(0) = 1.

Show that

χk(r) = χ−k(r) and [χk(r)]
∗ = χk∗(r)

For large r

χk(r) ∼
i

2k

[
f(k) eikr − f(−k) e−ikr

]
.

Identify the S-matrix element S(k) for scattering in the l = 0 sector in terms of f(k).

What conditions do S(k) obey?
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9. Show that the S-matrix in the l = 0 sector can be written as

S(k) = e2iδ0(k) =
cot δ0(k) + i

cot δ0(k)− i
.

Suppose that, for k small,

cot δ0(k) ≃ − 1

ask
+

1

2
r0k

with as positive and r0 small and positive. Verify that S(k) satisfies the expected

symmetry and reality conditions. Deduce from the form of S(k) that there is a bound

state, and find its energy.

10. Resonance scattering in the l = 0 sector is modelled by an S-matrix

S(k) =
k −K0 − iγ

k −K0 + iγ

with K0 ≫ γ > 0. For k real, S(k) = e2iδ0(k). Show that

tan δ0(k) =
γ

K0 − k
and σ ≃ 4πγ2

K2
0

1

(K0 − k)2 + γ2
.

Show that for k = K0 − iγ, the magnitude of the complex wavefunction has an expo-

nential growth for large r at fixed t and, including the time-dependent factor e−iEt/ℏ,

that it decays with time at fixed r.

11. Calculate, in the Born approximation, the differential cross-section dσ/dΩ for a

particle of mass m scattering off the potential

V (r) =
Ae−µr

r

as a function of the momentum transfer. Express this as a function of energy E and

scattering angle θ, and show that, for large E, dσ/dΩ is proportional to E−2 at fixed

θ ̸= 0. Show that dσ/dΩ is independent of E at θ = 0. Show that the total cross

section σ is proportional to E−1 for large E.

12. Calculate the Born approximation to the differential cross-section for the following

potentials:

−V0 e−λ2r2 ,
V0
r2

, V0 δ(r − a) , V (r) =

{
V0, r < a

0 , r > a .

[Note:
∫∞
0
(sinx/x) dx = π/2.]
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13. For an atom at the origin, the elastic scattering amplitude for incident waves with

wavevector k and outgoing waves with wavevector k′ = kr̂ is f(r̂). Show that the

scattering amplitude for an atom at d is

eiq·df(r̂) with q = k− k′

A crystal has n atoms in each unit cell, located relative to the origin of the unit cell at

dj, for which the scattering amplitudes are fj, j = 1, . . . , n. Show that the scattering

amplitude due to the whole crystal is

∆(q)
n∑

j=1

eiq·djfj(r̂)

with |∆(q)| sharply peaked where q is equal to a reciprocal lattice vector.

14. A diamond is a lattice of identical carbon atoms located at r =
∑

i niai and

r =
∑

i niai + d, ni ∈ Z where

a1 =
a

2
(0, 1, 1) , a2 =

a

2
(1, 0, 1) , a3 =

a

2
(1, 1, 0) , d =

a

4
(1, 1, 1) .

Show that the nearest neighbours of each atom form a regular tetrahedron and that

there are two atoms in each unit cell.

The reciprocal lattice vectors {b} are defined by b · r ∈ 2πZ for any r =
∑

i niai

with ni ∈ Z. Show that the scattering amplitude for scattering of waves on a diamond

is proportional to

(1 + eiq·d)∆(q)

where ∆(q) is strongly peaked on the reciprocal lattice. Determine the four lowest

values of |q| for which there is non-zero scattering.
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