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1. Show that the effect of three rotations by Euler angles results in the relationship

ea = Rabẽb between the body frame axes {ea} and the space frame axes {ẽ} where the

orthogonal matrix R is

R =

 cosψ cosϕ− cos θ sinϕ sinψ sinϕ cosψ + cos θ sinψ cosϕ sin θ sinψ

− cosϕ sinψ − cos θ cosψ sinϕ − sinψ sinϕ+ cos θ cosψ cosϕ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ


Use this to confirm that the angular velocity ω can be expressed in terms of Euler

angles as

ω = [ϕ̇ sin θ sinψ + θ̇ cosψ]e1 + [ϕ̇ sin θ cosψ − θ̇ sinψ]e2 + [ψ̇ + ϕ̇ cos θ]e3 (1)

in the body frame {ea}. Or, alternatively, as

ω = [ψ̇ sin θ sinϕ+ θ̇ cosϕ]ẽ1 + [−ψ̇ sin θ cosϕ+ θ̇ sinϕ]ẽ2 + [ϕ̇+ ψ̇ cos θ]ẽ3 (2)

in the space frame {ẽa}.

2. The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the

air. As the plate went up in the air I saw it wobble, and I noticed the red

medallion of Cornell on the plate going around. It was pretty obvious to me

that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.

I discover that when the angle is very slight, the medallion rotates twice as

fast as the wobble rate – two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the

electron orbits start to move in relativity. Then there’s the Dirac equation

in electrodynamics. And then quantum electrodynamics. And before I knew

it....the whole business that I got the Nobel prize for came from that piddling

around with the wobbling plate.”

Feynman was right about quantum electrodynamics. But what about the plate?
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Figure 1: The Euler angles for the heavy symmetric top

3. Consider a heavy symmetric top of mass M , pinned at point P which is a distance

l from the centre of mass. The principal moments of inertia about P are I1, I1 and I3
and the Euler angles are shown in the figure. The top is spun with initial conditions

ϕ̇ = 0 and θ = θ0. Show that θ obeys the equation of motion,

I1θ̈ = −∂Veff(θ)
∂θ

(3)

where

Veff(θ) =
I23ω

2
3

2I1

(cos θ − cos θ0)
2

sin2 θ
+Mgl cos θ (4)

Suppose that the top is spinning very fast so that

I3ω3 ≫
√
MglI1 (5)

Show that θ0 is close to the minimum of Veff(θ). Use this fact to deduce that the top

nutates with frequency

Ω ≈ ω3I3
I1

(6)

and draw the subsequent motion.

4. Throw a book in the air. If the principal moments of inertia are I1 > I2 > I3,

convince yourself that the book can rotate in a stable manner about the principal axes

e1 and e3, but not about e2.
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Use Euler’s equations to show that the energy E and the total angular momentum

L2 are conserved. Suppose that the initial conditions are such that

L2 = 2I2E (7)

with the initial angular velocity ω perpendicular to the intermediate principal axes e2.

Show that ω will ultimately end up parallel to e2 and derive the characteristic time

taken to reach this steady state.

5. A rigid lamina (i.e. a two dimensional object) has principal moments of inertia

about the centre of mass given by,

I1 = (µ2 − 1) I2 = (µ2 + 1) , I3 = 2µ2 (8)

Write down Euler’s equations for the lamina moving freely in space. Show that the

component of the angular velocity in the plane of the lamina (i.e.
√
ω2
1 + ω2

2) is constant

in time.

Choose the initial angular velocity to be ω = µNe1 + Ne3. Define tanα = ω2/ω1,

which is the angle the component of ω in the plane of the lamina makes with e1. Show

that it satisfies

α̈ +N2 cosα sinα = 0 (9)

and deduce that at time t,

ω = [µNsechNt]e1 + [µNtanhNt]e2 + [NsechNt]e3 (10)

6. The Lagrangian for the heavy symmetric top is

L = 1
2
I1

(
θ̇2 + ϕ̇2 sin2 θ

)
+ 1

2
I3(ψ̇ + ϕ̇ cos θ)2 −Mgl cos θ (11)

Obtain the momenta pθ, pϕ and pψ and the Hamiltonian H(θ, ϕ, ψ, pθ, pϕ, pψ).

7. A system with two degrees of freedom x and y has the Lagrangian,

L = xẏ + yẋ2 + ẋẏ (12)

Derive Lagrange’s equations. Obtain the Hamiltonian H(x, y, px, py). Derive Hamil-

ton’s equations and show that they are equivalent to Lagrange’s equations.
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