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1. A dielectric sphere of radius a and permittivity ε is placed at rest at the origin

in a constant electric field which takes a uniform value E0 far from the origin. Show

that Maxwell’s equations with the appropriate boundary conditions are solved by an

electric field which is uniform inside the sphere, with value:

Eint =
3

2 + εr
E0

where εr = ε/ε0, and a field outside the sphere which is the superposition of E0 and

the field

E(x) =
1

4πε0

(
3(p · x̂)x̂− p

|x|3

)
of an electric dipole at the origin, with dipole moment

p = 4πε0

(
εr − 1

εr + 2

)
a3E0.

By considering the macroscopic polarisation P inside the sphere, calculate the bound

surface charge density σ. Verify explicitly that the electric dipole moment of σ is p.

2. A permanent bar magnet can be modelled as a long cylinder of length l and radius

a with uniform macroscopic magnetisation M along its axis. By considering the bound

surface current due to M, or otherwise, show that for a ≪ l, the magnetic field on axis

at the centre of the cylinder is B = µ0M. Show further that the magnetic field on axis

at the end of the cylinder is B = µ0M/2. Sketch the field lines of the magnetic field

B and the magnetising field H both inside and outside the cylinder.

3. Two plane, semi-infinite dielectric slabs with refractive index n are separated by a

vacuum region of width d. A plane wave of wavenumber k is incident on the vacuum

region from one of the slabs at an angle of incidence θI to the normal, with n sin θI > 1.

The electric field of the incident radiation is normal to the plane of incidence (normal

polarisation).

Show that some of the radiation is transmitted across the gap, and that the ratio of

the amplitudes of the electric fields of the transmitted and incident waves satisfies:∣∣∣∣ET

EI

∣∣∣∣2 = 1

1 + α2 sinh2 κd
,
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where

α =
k(1− 1/n2)

2κ cos θI
and κ = k

√
sin2 θI − 1/n2.

(This process is known as frustrated total internal reflection and is analogous to quan-

tum tunnelling.)

[Hint: you will need to consider both growing and decaying evanescent waves in the

gap since it is of finite width.]

4. Consider a Gaussian wavepacket propagating in a dispersive medium, taking the

form

E(t, z) = Re

[∫ ∞

−∞

dk√
2π

E0(k)e
i(kz−ω(k)t)

]
where E0(k) ∝ exp[−(k−k0)

2/(2σ2)]. Ignore any dissipative effects so that k and ω(k)

are real-valued. Expanded to second order about k0, the dispersion relation takes the

form

ω(k) ≈ ω(k0) + (k − k0)ω
′(k0) +

1

2
(k − k0)

2ω′′(k0)

= k0vp(k0) + (k − k0)vg(k0) +
1

2
(k − k0)

2v′g(k0)

where primes denote derivatives with respect to k, and vp and vg are the phase and

group velocities at k0. Show that:

E(t, z) ∝
√

σ

σz(t)
e
− (z−vgt)

2

2σ2
z(t) cos

[
k0(z − vpt) +

σ2v′gt(z − vgt)

2σ2
z(t)

− ϕ(t)

2

]
where σ2

z(t) = 1/σ2+(σv′gt)
2 and tanϕ(t) = σ2v′gt. Note that the Gaussian modulation

of the wavepacket has a width σz(t) that spreads in time for non-zero v′g.

Show that while the fractional increase in the width of the wavepacket is small, the

terms involving v′g have a negligible effect on the phase of the oscillation for |z− vgt| ≤
σz(t).

5. Suppose that space is filled with a uniform, non-dispersive dielectric medium such

that the refractive index is n. Write the macroscopic Maxwell equations in terms of

the magnetic vector potential A (such that B = ∇×A) and electric potential ϕ (with

E = −∂A/∂t−∇ϕ), to show that, with a suitable choice of gauge:

∇2A− n2

c2
∂2A

∂t2
= −µ0Jfree, and ∇2ϕ− n2

c2
∂2ϕ

∂t2
= − ρfree

ε0n2
.

Construct the Green’s function for the wave operator in these equations to show that

the (retarded) vector potential generated by the free current is:

A(t,x) =
µ0

4π

∫
d3x′ Jfree(t− n|x− x′|/c,x′)

|x− x′|
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A point charge q moves through the dielectric with velocity v, so that Jfree(t,x) =

qvδ(3)(x− vt). Show that

A(t,x) =
µ0q

4π
vf(x− vt)

where

f(x) =

∫
d3r

1

|r|
δ(3)(x+ r+ nv|r|/c) .

(Note: the integration variable here is r = x′ −x.) Taking the velocity to be along the

positive z-direction, v = βcẑ, show that

f(ρ, z) =

∫ ∞

−∞
dr∥

1√
ρ2 + r2∥

δ
(
z + r∥ + nβ

√
ρ2 + r2∥

)

where ρ =
√

x2 + y2. For the case nβ > 1 (i.e. the speed of the particle exceeds the

speed of light in the dielectric), show that f(ρ, z) vanishes unless z ≤ −ρ
√
n2β2 − 1.

Show further that

A(t,x) = v
µ0q

4π

2√
(z − vt)2 + ρ2(1− n2β2)

for z − vt ≤ −ρ
√

n2β2 − 1

where v = |v|. These shock-like fields describe Cherenkov radiation.
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