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1. Consider the two-dimensional flow u = 1/(1 + t), v = 1 in t > −1. Find and sketch

(i) the streamline at t = 0 which passes through the point (1, 1),

(ii) the path of a fluid particle which is released from (1, 1) at t = 0.

2, A steady two-dimensional flow (pure straining) is given by u = αx, v = −αy with

α > 0 constant.

(i) Find the equation for a general streamline of the flow, and sketch some of them.

(ii) At t = 0 the fluid on the curve x2 + y2 = a2 is marked (by an electro-chemical

technique). Find the equation for this material fluid curve for t > 0.

(iii) Does the area within the curve change in time, and why?

3. Repeat question 2(ii) for the two-dimensional flow (simple shear) given by u = γy,

v = 0 with γ > 0 constant. Sketch the streamlines and the material curve at γt ≈ 0, 1, 2.

4. An incompressible two-dimensional flow is represented by a streamfunction ψ(x, y)

with u = ∂ψ/∂y and v = −∂ψ/∂x. Show that

(i) the streamlines are given by ψ = constant.

(ii) |u| = |∇ψ|, so that the flow is faster where the streamlines are closer,

(iii) the volume flux crossing any curve from x0 to x1 is given by ψ(x1)− ψ(x0),

(iv) ψ = constant on any fixed (i.e. stationary) boundary.

5. Verify that the two-dimensional flow given in Cartesian coordinates by

u =
y − b

(x− a)2 + (y − b)2
, v =

a− x

(x− a)2 + (y − b)2

satisfies ∇ · u = 0, and then find the streamfunction ψ(x, y) such that u = ∂ψ/∂y and

v = −∂ψ/∂x. Sketch the streamlines.
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6. Verify that the two-dimensional flow given in polar coordinates by

ur = U

(
1− a2

r2

)
cos θ, uθ = −U

(
1 +

a2

r2

)
sin θ

satisfies ∇·u = 0 and find the streamfunction ψ(r, θ). Sketch the streamlines, starting

with ψ = 0.

7. Verify that the axisymmetric flow (uniaxial straining) given in cylindrical polar

coordinates by ur = − 2
α
r, uz = αz satisfies ∇ · u = 0, and find the Stokes stream-

function Ψ(r, z). Sketch the streamlines in the (r, z)-plane.

[For axisymmetric flow in coordinates (r, θ, z)

∇ · u =
1

r

∂

∂r
(rur) +

∂uz
∂z

, and ur = −1

r

∂Ψ

∂z
, uz =

1

r

∂Ψ

∂r
. ]

8. An axisymmetric jet of water of speed U = 1m s−1 and cross-section A = 6×10−4m2

strikes a wall at right angles and spreads out over it. By using the momentum integral

equation over a suitable control volume, and neglecting gravity, calculate the force on

the wall due to the jet.

9. Starting from the Euler momentum equation for an incompressible fluid of density

ρ with a potential force −∇χ, show that for a fixed volume V enclosed by surface ∂V

d

dt

∫
V

dV
1

2
ρu2 dV +

∫
∂V

dA H u · n = 0 ,

where H = ρu2/2+P+χ is the Bernoulli quantity, so concluding that Hu is the energy

flux and H is the transportable energy. Comment on the interpretation of u · ∇H = 0

in steady flow.

10. A cylindrical tank of radius a is filled to a depth h0 with fluid of density ρ.

The tank is rotated about its axis with angular velocity Ω for a long time, until the

fluid rotates uniformly with it and u = (Ωy,−Ωx, 0). Use the Euler equation and the

free-surface boundary condition to determine the pressure distribution P (r, z) and the

height of the free surface h(r) for the case h0 ⩾ Ω2a2/4g. Comment on the physical

significance of the term u · ∇u .

11. How high can water rise up one’s arm hanging in the river from a lazily moving

(1m s−1) punt? [Hint: Use Bernoulli on a surface streamline.]

12. Waste water flows into a large open-topped tank with volume flux Q and out

through a small exit pipe of cross-sectional area A into the air. In steady state, how

high above the pipe is the water in the tank?
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13. A water clock is an axisymmetric vessel with a small exit pipe in the bottom. Find

the shape for which the water level falls equal heights in equal intervals of time.

14 A flat-bottomed barge closely fits a canal, so that while it travels slowly it still

generates a fast current with speed U under it. Estimate how much lower the barge

sits in the water as a result of this current when U = 5m s−1. [Hint: Use Archimedes

when stationary. Flow reduces pressure, so have to sit deeper for same pressure on long

bottom.]

15. Calculate the vorticity of the velocity field

u = −αx− yrf(t), v = −αy + xrf(t), w = 2αz

where r2 = x2 + y2. Use the (inviscid) vorticity equation to deduce that f(t) ∝ e3αt.

Explain the nature of this flow and describe the physical principle illustrated by your

result. (Why is the growth rate 3α?)

16. If u = Ω× x (uniform rotation with angular velocity Ω) show that ω = 2Ω.

For a two-dimensional flow (u(x, y), v(x, y), 0) show that ω = (0, 0,−∇2ψ), where ψ

is the streamfunction.

A long cylinder filled with water has elliptical cross-section with major and minor

semi-axes a and b. While t < 0 both the cylinder and the water within it rotate about

the axis of the cylinder with uniform angular velocity (0, 0,Ω). What is the vorticity

of the flow? Sketch the streamlines noting that they intersect the elliptical boundary

of the cylinder. (Why?).

At t = 0 the cylinder is suddenly brought to rest. What is the vorticity for t > 0?

Verify that the flow can be described by

ψ =
a2b2Ω

a2 + b2

(
1− x2

a2
− y2

b2

)
in suitable coordinates and sketch the streamlines.

17. A sphere of radius a moves with constant velocity U through inviscid fluid oth-

erwise at rest. How far ahead of the sphere is there a disturbance of magnitude 1
20
U?

Show that the acceleration of a fluid particle at distance x ahead of the centre of the

sphere is

3U2

(
a3

x4
− a6

x7

)
.
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18. Write down the velocity potential ϕ(x, y) for the two-dimensional flow produced by

a point source of strength q located at the origin in a uniform stream (U, 0). Show that

there is a stagnation point at (−a, 0), where a = q/2πU . Sketch the streamlines. Show

that the streamfunction is given by ψ = Uy+Uaθ, where θ is the polar angle from the

positive x axis. From the sketch and the streamfunction show that ϕ represents the

flow past a semi-infinite body whose width tends to 2πa far downstream.

19. The velocity in the far-field of steady uniform flow past a stationary two-dimensional

aerofoil with circulation κ takes the form

u = (U, 0) +
κ

2πr
(− sin θ, cos θ) +O(1/r2) ,

where the O(1/r2) dipole term depends on the detailed shape of the object. Deter-

mine the pressure P (r, θ) in the far-field to the same level of approximation. Use the

momentum integral equation to show that the aerofoil experiences a force (0,−ρUκ).

20. An orifice in the side of an open vessel containing water leads smoothly into a

horizontal tube of uniform cross-section and length L. The diameter of the tube is

small compared with L, with the horizontal dimensions of the free surface, and with

the depth h of the orifice below the free surface. A plug at the end of the tube is

suddenly removed and the water begins to flow. Show, using the expression for the

pressure in unsteady irrotational flow, that the outflow velocity at subsequent times t

is approximately √
2gh tanh

(
t
√
2gh

2L

)
.

Estimate the time scale for the flow in a garden hose to accelerate to its maximum

velocity (Assume that tap pressure is equivalent to ρgh with h = 5m.)

21. A rigid circular disc of radius R is at a height h(t) above a fixed horizontal plane

z = 0, and inviscid incompressible fluid fills the gap 0 < z < h(t), r < R between

them. Assume that h ≪ R and that the axisymmetric flow in the thin gap has radial

component ur(r, t) independent of z. Use conservation of mass and the boundary

conditions to deduce that the velocity in the gap is given by

u = ∇ϕ with ϕ =
ḣ

4h

(
2z2 − r2

)
.

Assuming that the pressure at the edge of the disc is a constant P0 (as velocities and

pressures are much larger in the thin gap than elsewhere), find the pressure distribution

in the gap and hence determine the force on the plane due to the motion.
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22. A rigid sphere of radius a executes small-amplitude oscillations with velocity

U(t)ez about the centre r = 0 of a larger fixed sphere of radius b. By linearising the

boundary condition on the smaller sphere onto r = a, find the velocity potential for

the induced irrotational motion of fluid that fills the gap between the two spheres and,

again neglecting terms quadratic in the amplitude, show that the (dynamic) pressure

on the surface of the inner sphere is

a3 + 2
b

3

b3 − a3
ρU̇a cos θ ,

where θ is the angle from ez. Hence find the force exerted by the fluid on the inner

sphere. Why is the force on the outer fixed sphere different? Comment on the case of

a tight fit.

23. A U-tube consists of two long uniform vertical tubes of different cross-sectional

areas A1, A2 connected at the base by a short tube of large cross-section, and contains

an inviscid, incompressible fluid whose surface, in equilibrium, is at height h above the

base. Derive the equation governing the nonlinear oscillations of the displacement ζ(t)

of the surface in the tube of cross-section A2

(h+ rζ)
d2ζ

dt2
+
r

2

(
dζ

dt

)2

+ gζ = 0 where r = 1− A2/A1.
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