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1. Water fills a square container 0 ⩽ x ⩽ a, 0 ⩽ y ⩽ a to an equilibrium depth h.

Write down the equation and (exact) boundary conditions for the velocity potential and

the motion of the free surface when it is disturbed from equilibrium. Explain how to

linearise the free-surface conditions for small-amplitude disturbances. Seek separable

solutions proportional to exp(−iωt) to the linearised equations, and thence obtain the

frequencies of the ‘normal modes’. Show the sign of the surface displacement in plan

view for the five lowest frequency modes.

2. Fluid of density ρ1 occupies the region z > 0 and overlies another fluid of density ρ2
(with ρ2 > ρ1), which occupies the region z < 0. Show that small-amplitude oscillations

with interfacial displacement ζ(x, t) ∝ exp[i(kx − ωt)], k > 0, satisfy the dispersion

relation

ω2 = gk

(
ρ2 − ρ1
ρ2 + ρ1

)
.

[Hint: You will need different potentials ϕ1 and ϕ2 for the two regions and should apply

the kinematic boundary condition to the flow in each region.]

3. The dispersion relation for water waves of wavenumber k, including the effects of

surface tension, is

ω2 = k(g + Tk2/ρ) tanh kh

Show that for sufficiently large k the group and phase velocities vg and c become

proportional to k1/2 and independent of g and h, and that vg ∼ 3
2
c. What is ‘sufficiently

large’?

In ripple-tank experiments it is desired to keep vg and c as constant as possible for

smallish values of kh. By expanding ω2 about k = 0, determine approximately what

value of h, h0 say, should be used. Show also that for h > h0 there must exist a

minimum value of the group velocity at some finite non-zero value of k.

4. Two semi-infinite layers of fluid with uniform densities ρ0 − ∆ρ and ρ0 + ∆ρ are

separated by a layer of fluid in −H ⩽ z ⩽ H, where ρ(z) = ρ0−(z/H)∆ρ and ∆ρ ≪ ρ0.

Write down the equation governing the vertical velocity of small-amplitude waves and

use it to explain why w and ∂w/∂z should be expected to be continuous at z = ±H.

Show that the dispersion relation for waves trapped by the stratification can be

1



written (
N2

ω2
− 1

)1/2

tan

[(
N2

ω2
− 1

)1/2

kH

]
= 1

under the assumption that w is an even function of z (where N2 is the middle-layer

value).

5. An interface at x = 0 separates fluid of density ρ0 and sound speed c0 in x < 0

from fluid of density ρ1 and sound speed c1 in x > 0. A plane harmonic sound wave

is incident from x < 0 with wavevector k = (k, 0, 0) and amplitude A (of its pressure

perturbation). What is the frequency ω and the wavevector k′ of the transmitted sound

wave in x > 0?

Write down the form of the pressure perturbation in x < 0 and x > 0, find the

corresponding velocity potential and state the interfacial boundary conditions. Hence

find the amplitudes of the reflected and transmitted waves.

Assume that A = 1. Verify that the time-averaged acoustic energy flux is conserved.

When is all the energy flux transmitted? How much is reflected if ρ0 ≫ ρ1 and c0 ≈ c1?

6. Find solutions to the wave equation of the form

ϕ(x, y, t) = exp(ikx− iωt)f(y) (1)

for the case k > ω/c0 > 0. Hence find the solution in y ⩾ 0 in which there is no

disturbance as y → ∞ and waves are forced by the inhomogenous boundary condition

v = Re [v0 exp(ikx− iωt)] on y = 0

Here ∇ϕ = (u, v, 0) and v0 is a real constant. Over what lengthscale do the waves

decay away from the boundary?

Calculate the time-averaged acoustic energy flux ⟨ I ⟩ and verify that:

(i) the energy flux perpendicular to the boundary y = 0 satisfies ⟨ Iy ⟩ = 0;

(ii) the energy flux parallel to the boundary satisfies ⟨ Ix ⟩ = c ⟨E ⟩ at any position

y, where E is the acoustic energy density and c = ω/k is the phase velocity in

the x-direction. [Since c < c0, the disturbance and its energy travel subsonically

along the boundary.]

Assuming that surface tension and gravity are negligible, determine whether a non-

zero solution can exist in which evanescent sound waves propagate along both sides of
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an (unforced) interface between two fluids with different physical properties in y < 0

and y > 0,

7. Find solutions to the wave equation of the form (1) for a region 0 < y < h with a

rigid boundary at y = 0 and a free boundary at y = h. (Take ω > 0, but make no a

priori assumption about k.) Show that a wave can propagate in the x-direction only

if ω exceeds a critical value ωc. What happens if a disturbance is generated at x = 0

with frequency ω < ωc?

8. Explain why the general spherically symmetric solution ϕ(r, t) to the wave equation

can be written as

ϕ =
−1

4πρ0

(
Q−(t− r/c0)

r
+

Q+(t+ r/c0)

r

)
where Q± are arbitrary functions. Assume from now on that there are only outgoing

waves. Calculate the radial velocity ur and the pressure perturbation P̃ .

(i) By considering the volume flux through a sphere of radius ϵ as ϵ → 0, show that

Q−(t) is the mass flux out of r = 0. Show also that ϕ actually satisfies

∇2ϕ− 1

c20

∂2ϕ

∂t2
= Q−(t)δ(x)/ρ0

where δ is the Dirac delta function. (Hint: integrate this differential equation

over r ⩽ ϵ and let ϵ → 0.)

(ii) Show that in the far-field, i.e. for ‘large’ r, the kinetic energy density K, the

potential energy density W , and the acoustic-energy flux I = P̃u, approximately

satisfy the same equations, K = W and I = (K + W )c0, as in a plane wave.

Similarly, show that the total power radiated across a ‘large’ sphere of radius R

is approximately

(Q̇−(t−R/c0))
2/4πρ0c0

What does ‘large r’ mean for a time-harmonic source with Q−(t) = Re(q0e
iωt)?

9. A bubble makes small spherically symmetric oscillations in a compressible inviscid

fluid. When the radius a(t) is perturbed slightly from its mean value a0, the internal

dynamics of the bubble are such that the bubble exerts a perturbation pressure −β(a−
a0) on the fluid, where β is a constant. Derive the linearised equation of motion for

the oscillations

ρ0a0ä+
βa0
c0

ȧ+ β(a− a0) = 0
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where ρ0 is the undisturbed density of the fluid and c0 is the sound speed (you may use

results from Question 8). What is the mechanism of energy loss from the oscillations

represented by the ‘damping’ term in this ODE for a?

10. At time t = 0 the velocity u(x, t) in a one-dimensional simple wave, propagating

in the positive x direction through a perfect gas, has the form u = um sin kx , where

um and k are positive constants. Find the time t∗ at which shocks form. Sketch u(x)

at times t = 0, t = 1
2
t∗ and t = t∗. Show that in the time interval (0, t∗) a single

wave-crest (i.e. a local maximum of u(x, t)) travels a distance

1

k

(
2c0

(γ + 1)um

+ 1

)
.

11. A perfect gas, initially at rest, occupies the region to the right of a piston whose

position is X(t) = 1
2
at2 for t > 0. Find the time and position where a shock first forms.

12. An artery is modelled as a long straight tube with elastic walls and cross-sectional

area A(x, t), which contains incompressible, inviscid blood of density ρ. On the assump-

tion that the fluid velocity u and pressure P do not vary across the artery, conservation

of mass and momentum imply that

At + (uA)x = 0 and ρut + ρuux = −px.

The area A is related to the fluid pressure by an elastic ‘tube law’ of the form P = P (A),

where P (A) is some given, strictly increasing function. Find the Riemann invariants

and their corresponding propagation speeds.

Now suppose that

P (A) = p0 +
ρc20
2κ

(
A

A0

)2κ

where p0, A0, c0 and κ are positive constants. For t < 0 the artery has uniform area

A0 and there is no flow. Blood is then pumped into the artery (x > 0) with velocity

U(t) at x = 0, where

U(t) =
U0t

t1

(
2− t

t1

)
when 0 ⩽ t ⩽ 2t1

and U(t) = 0 for t > 2t1, where U0(1− κ) < c0. Calculate the time and place at which

a ‘shock’ first forms.
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13. A piston moves with constant positive velocity u1 into a perfect gas of specific

heat ratio γ > 1, generating a shock wave which moves ahead of the piston. Show

that a possible solution of all the relevant equations is one in which the gas is at rest

beyond the shock, at pressure p0, and is moving with constant velocity u1 in the region

between the piston and the shock, throughout which region the density and pressure

also take constant values ρ1, p1 which are determined by

ρ1
ρ0

=
2γ + (γ + 1)β

2γ + (γ − 1)β
and

1

β2
+

γ + 1

2γβ
=

c20
γ2u2

1

where β is the shock strength defined as (p1−p0)/p0 > 0, and ρ0 and c0 are the density

and sound speed of the undisturbed gas. Show also that the shock speed

V = c0

(
1 +

1 + γ

2γ
β

)1/2

14. Assume that the speed of cars down a long straight (one-way) road is a known,

monotonically decreasing function u(ρ) of the local density ρ of traffic. The flux of

cars is thus given by q(ρ) = ρu. From conservation of cars deduce that ρ is constant

on characteristics dx/dt = c(ρ), where c = dq/dρ. Deduce also that if a shock develops

between regions of density ρ1 and ρ2 then it propagates with speed [q(ρ1)−q(ρ2)]/(ρ1−
ρ2).

Consider the case u(ρ) = U(1− ρ/ρ0) where U is (10% faster than) the speed limit

and ρ0 is the density of a nose-to-tail traffic jam. Sketch the functions q(ρ) and c(ρ).

Explain why shocks only form when light traffic is behind heavy traffic, and why the

shocks can travel either forwards or backwards depending on the density of traffic.

A queue of cars with density ρ0 is waiting in −L < x < 0 behind a red traffic light

at x = 0. There are no other cars on the road. The light turns green at t = 0. Find

the time T when the last car starts to move, and determine the velocity of the last car

for t > T .

15. A bistable system with diffusion is given by

∂p

∂t
=

∂2p

∂x2
− p(p− r)(p− 1),

where 0 < r < 1. Seek a travelling wave solution by setting ξ = x−ct and p(x, t) = f(ξ),

and find the differential equation satisfied by f .

a) Rewrite your differential equation as two first order equations. Suppose that c

takes the exact value that allows a travelling wave solution (you will need to

consider r < 1/2 and r > 1/2 separately). Sketch the phase plane for the system,

marking the trajectory that corresponds to the travelling wave.
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b) Impose the (slightly odd requirement) that the solution to the original second-

order differential equation also satisfies f ′ = af(f − 1). What values of a and

c yield a valid solution? By solving this first-order equation for f , give the

corresponding solution for p(x, t).

16. The spread of an disease in one spatial dimension can be modelled by considering

the susceptible population S(t, x) and infected population I(t, x), which obey

∂S

∂t
= −βIS +D

∂2S

∂x2

∂I

∂t
= +βIS − νI +D

∂2I

∂x2
.

Suppose that an disease wave arrives in a previously uninfected region (so S ≈ N , the

total population, and I ≈ 0). Consider the dynamics near this wave front by taking

S = N − u(ξ) and I = v(ξ)

with ξ = x− ct, and linearise in u and v. You may assume that the system will settle

to the slowest possible wave speed. Find the wave speed of the epidemic.
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