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1. A harmonic oscillator of mass m, frequency ω and electric charge e is perturbed

by a constant electric field of strength E , resulting in a new term H ′ = −eEx in the

Hamiltonian. Calculate the change in the energy levels to order E2 and compare with

the exact result.

2. A particle of spin 1
2
is at rest in a magnetic field B parallel to the z-axis. A small

additional magnetic field B′ is then switched on parallel to the x-axis, so that the

Hamiltonian becomes

H = −1
2
ℏµ(Bσ3 +B′σ1)

where µ is a constant.

Starting from the energy levels and eigenstates when B′ = 0, use perturbation theory

to calculate the corrections to the energies to order B′2 and compare with the exact

answer.

3a. Using a non-Gaussian trial wavefunction of your choice, estimate the ground state

energy of the quartic oscillator with Hamiltonian

H = − d2

dx2
+ x4

and compare your result with that obtained with a Gaussian wavefunction. What

motivated your choice?

[Suggestions: You could try ψ = cos(πx/2α) or ψ = (α2−x2) for |x| < α and vanishing

outside this interval.]

b. Use the Gaussian-type wavefunction ψ(x) = xe−αx2/2 to obtain an estimate of the

energy of the first excited state of the quartic oscillator

[Hint: A handy way to do the integrals is to define In =
∫∞
−∞ dx x2ne−αx2

and to show

that In+1 = − d
dα
In.]

4. A Hamiltonian takes the form H = T + V , with T the kinetic energy and V the

potential energy. Assuming a discrete energy spectrum, E0 < E1 < E2 < ..., show that

the quantity ⟨ψ|H|ψ⟩, where |ψ⟩ is normalized but otherwise arbitrary, is stationary

whenever |ψ⟩ is an energy eigenstate of H.

Suppose now that V is a homogeneous potential, satisfying V (λx) = λnV (x). Show

that the virial theorem 2⟨ψ|T |ψ⟩ = n⟨ψ|V |ψ⟩ holds for any energy eigenstate of H.
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Show that there can be no localised states for n < −3.

5a. The Hamiltonian for a single electron orbiting a nucleus of charge Z is

H =
p2

2m
− Ze2

4πϵ0r

Use the variational method with the trial wavefunction ψα(r) = e−αr/a0 where α is

a variational parameter and a0 = 4πϵ0ℏ2/me2 is the Bohr radius. Show that the

minimum energy using this ansatz is

E0 = − ℏ2

2m

Z2

a20

Compare this to the true ground state energy.

b. The Hamiltonian for two electrons orbiting a nucleus of charge Z is

H =
p2
1

2m
− Ze2

4πϵ0

1

r1
+

p2
2

2m
− Ze2

4πϵ0

1

r2
+

e2

4πϵ0

1

|r1 − r2|

Use the variational method with ansatz Ψ(r1, r2) = ψα(r1)ψα(r2) to estimate the

ground state energy. What physical effect underlies the new minimum value of α?

Hint: You will need the following integral∫
d3r1d

3r2
|ψα(r1)|2|ψα(r2)|2

|r1 − r2|2
=

5π2

8

a50
α5

c. Derive this integral.

6. A covalent bond forms because two ions can lower their energy by sharing an

electron. The simplest example occurs for the hydrogen moleculeH−
2 . The Hamiltonian

for a single electron, with position r, orbiting two protons which are separated by

distance R is given by

H =
p2

2m
+

e2

4πϵ0

[
1

R
− 1

r
− 1

|r−R|

]
Use the un-normalised ansatz

Ψ = ψ(r) + ψ(r−R) with ψ =

√
1

πa30
e−r/a0
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and the integrals

u(R) =

∫
d3r ψ(r)ψ(r−R) =

(
1 +

R

a0
+
R2

3a20

)
e−R/a0

v(R) =

∫
d3r

ψ(r)ψ(r−R)

r
=

1

a0

(
1 +

R

a0

)
e−R/a0

w(R) =

∫
d3r

ψ(r)2

|r−R|
=

1

R
− 1

R

(
1 +

R

a0

)
e−2R/a0

to show that the energy can be written as

⟨E⟩ − E0 =
e2

4πϵ0

(
1

R
− v(R) + w(R)

1 + u(R)

)
where E0 is the ground state energy of hydrogen. Sketch ⟨E⟩ − E0 as a function of

R (you may need to do this numerically) and comment on the implications for the

binding of two protons.

7. Suppose a system has a basis of just two orthonormal states |1⟩ and |2⟩, with respect

to which the total Hamiltonian has the matrix representation(
E1 V0e

iωt

V0e
−iωt E2

)
where V0 is independent of time. At t = 0, the system is in state |1⟩. Show that the

probability of a transition from state |1⟩ to state |2⟩ in time interval t is

P (t) =
4V 2

0

(E1 − E2 + ℏω)2
sin2

(
(E1 − E2 + ℏω)t

2ℏ

)
+O(V 4

0 ),

to lowest non–trivial order in V0. Solve this two–state problem exactly to find the true

value of P (t) and hence state conditions necessary for the perturbative approach to be

valid here.

8. A particle of mass m and charge e is contained within a cubical box of side a.

Initially the particle is in the stationary state of energy 3π2ℏ2/2ma2. At time t = 0 a

uniform electric field of strength E is switched on parallel to one of the edges of the

cube. Obtain an expression to second order in e for the probability of measuring the

particle to have energy 3π2ℏ2/ma2 at time t.

9. A harmonic oscillator of angular frequency ω is acted on by the time–dependent

perturbation
qE x̂√
πτ

exp

(
− t2

τ 2

)
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for all t, where x̂ is the position operator and q, E and τ are constants. Show that

in first–order perturbation theory, the only allowed transition from the ground state is

to the first excited state. If the perturbation acts from very early times to very late

times, find the probability that this transition takes place, correct to order E2.

By expanding UI(t) to second non–trivial order, calculate the corresponding proba-

bility for a transition from the ground state to the second excited state.

10. A particle travelling in one dimension with momentum p = ℏk > 0 encounters

the steep–sided potential well V (x) = −V0 < 0 for |x| < a. Use Fermi’s golden rule to

show that the probability the particle will be reflected by the well is

Preflect ≈
V 2
0

4E2
sin2(2ka),

where E = p2

2m
. Show that in the limit E ≫ V0 this result is consistent with the

exact result for the reflection probability. [Hint: adopt periodic boundary conditions to

normalise the wavefunctions of the initial and final states.]

11. Consider the driven quantum harmonic oscillator with Hamiltonian

H = ℏω
(
a†a+

1

2

)
+ ℏ

(
f ∗(t)a+ f(t)a†

)
.

Taking H0 to be the standard oscillator Hamiltonian, show that the perturbation in

the interaction picture is

VI(t) = ℏ
(
f̃ ∗(t)a+ f̃(t)a†

)
, where f̃(t) = eiωtf(t).

Show that U(g) := ega
†−g∗a = e−

|g|2
2 ega

†
e−g∗a where g = g(t). By taking the time–

derivative of this expression, deduce that the time evolution operator in the interaction

picture can be written as

UI(t) = U(g)e−i
∫ t
0 Im(ġ∗g) dt′ for the choice g(t) = −i

∫ t

0

f̃(t′)dt′.

At t = 0 the oscillator is initially in its ground state |0⟩. In the case that f(t) = e−iωtf0
where f0 is constant, show that at time t the oscillator is in the coherent state

|ψS(t)⟩ = e−|f0|2t2/2e−iωt/2e−itf(t)a†|0⟩

in the Schrödinger picture. Comment on the relevance of this model to the operation

of a laser.
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