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1. A quantum system has Hamiltonian H with normalised eigenstates x,, and cor-
responding energies F,, (n = 1,2,3,...) . A linear operator () associated with the
quantity () is defined by its action on these states:

QX1=X2, QX2=X1, anzo n>2.

Show that Q has eigenvalues +1 (in addition to zero) and find the corresponding

normalised eigenstates x4, in terms of energy eigenstates. Calculate (H) in each of the
states .

A measurement of () is made at time zero, and the result +1 is obtained. The
system is then left undisturbed for a time ¢, at which instant another measurement
of @@ is made. What is the probability that the result will again be +17 Show that
the probability is zero if the measurement is made when a time 7' = wh/(Ey—FE;) has
elapsed (assume Er—E; > 0).

2. In the previous example, suppose that an experimenter makes n successive mea-
surements of ) at regular time intervals T)/n. If the result +1 is obtained for one
measurement, show that the amplitude for the next measurement to give +1 is

An:1—M+O(1).

2hn n?
The probability that all n measurements give the result +1 is then P, = (|A,|*)".

Show that
lim P,=1.

n—oo
Interpreting x+ as the ‘not-boiling’ and ‘boiling’ states of a two-state ‘quantum pot’, this
shows that a watched quantum pot never boils (also called the Quantum Zeno Paradox).

3. Write down the Hamiltonian H for a harmonic oscillator of mass m and frequency
w. Express (H) in terms of (), (p), Az and Ap, all defined for some normalised state
1. Use the Uncertainty Relation to deduce that £ > %hw for any energy eigenvalue F.



4. The energy levels of the harmonic oscillator are E,, = (n—i—%)hw forn=20,1,2,...
and the corresponding stationary state wavefunctions are

Xn(@) = ho(y)e/? where y = (mw/h)"/z

and h,, is a polynomial of degree n with h,(—y) = (—1)"h,(y). Using only the orthog-
onality relations

(va Xn) = 0mn

determine y, and x3 up to an overall constant in each case.

Give an expression for the quantum state of the oscillator ¢ (z, t) if the initial state
is (x,0) = > 7 ¢uxn(z), where ¢, are complex constants. Deduce that

|z, 2pr/fw) | = [¥(~2, (2¢+1)7/w) |*

for any integers p, ¢ > 0. Comment on this result, considering the particular case in
which ¢(z,0) is sharply peaked around position z = a.

5. A particle of mass m is in a one-dimensional infinite square well (a potential box)
with U =0 for 0 < x < a and U = oo otherwise. The normalised wavefunction for the
particle at time t = 0 is

Y(z,0) = Cz(a —x) .

(i) Determine the real constant C.

(ii) By expanding (x,0) as a linear combination of energy eigenfunctions (found in
Example 1 above), obtain an expression for ¢ (z,t), the wavefunction at time ¢.

(iii) A measurement of the energy is made at time ¢t > 0. Show that the probability
that this yields the result E, = h*m?n?/2ma® is 960/7%n° if n is odd, and zero if n is
even. Why should the result for n even be expected? Which value of the energy is
most likely, and why is its probability so close to unity?

6. Let H be a Hamiltonian and x(x) any normalised eigenstate with energy E. Show
that, for any operator A,

For a particle in one dimension, let H=T+U where T = p?/2m is the kinetic energy
and U(z) is any (real) potential. By setting A = Z in the result above and using the
canonical commutation relation between position and momentum, show that (p),, = 0.

Now assume further that U(z) = k2" (with k and n constants). By taking A = &p,

how that
show tha 5

n+2

(T)x = K and <U>x =



7. Suppose @ is an observable that does not depend explicitly on time. Show that

~

Q) = (10.11])y

Fra
where 1 (x,t) obeys the Schrodinger Equation. Apply this to the position and momen-
tum of a particle in three dimensions, with Hamiltonian

~

by calculating the commutator of H with each component of % and p. Compare the
results with the classical equations of motion.

8. Let A and B be hermitian operators. Show that i[A, B] is hermitian.
Given a normalised state v, consider || (A + iAB)y||? with A a real variable and
deduce that
(AN(B%) = 1A, B])I°,
with all expectation values taken in the state 1). Hence derive the generalised uncer-

tainty relation:
AAAB > L1 ([A,B])] .



