
4 Random Variations

The di↵erential equations that we’ve worked with so far in these lectures are deter-

ministic. You set the initial conditions and what then follows is set in stone. I know

some people whose lives are like that. But most things in the biological world are not.

Instead, important features of our lives are dictated by randomness, the kind of event

that, to quote the classics, blindsides you at 4pm on an idle Tuesday.

The purpose of this section is to learn how to incorporate such random fluctuations

into our equations. We will do this by studying the evolution of probability distributions

over the space of outcomes. Throughout, we will take time to be continuous but the

outcomes themselves may be either discrete or continuous. In the latter case, the

probability distribution will be governed by the famous Fokker-Planck equation.

4.1 Discrete Outcomes

We start by considering the situation where the possible outcomes are discrete. We

will build up slowly, first considering just two possible outcomes, then 1, then 12.

4.1.1 Two Outcomes

Suppose that there are just two possible states in our system, A and B. We would

like to understand the probability P (A, t) to be in state A and the related probability

P (B, t) = 1� P (A, t) to be in state B.

For this, we need to stipulate the underlying dynamics which tells us how the system

evolves between A and B. This too will be probabilistic. We will assume that we are

dealing with a Markov process, meaning that the probability to transition from one

state to the other depends only on the current state. For simplicity, we consider the

following rules.

• If in state A, the system has a probability per unit time � to transition to state

B.

• Once in state B, the system stays there.

The real purpose of this warm-up example is to understand what we mean by “proba-

bility per unit time”. In a short time �t, the probability that we jump from A to B is

� �t. Equivalently, in the same short time �t, the probability that we remain in state

A is (1� �)�t.
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From this information, we can write down a di↵erential equation that governs the

probability. If we know P (A, t) at time t then, at time t+ �t, the probability is

P (A, t+ �t) = P (A, t)(1� �)�t . (4.1)

If we now Taylor expand the left-hand side, we have

P (A, t) +
dP (A, t)

dt
�t = P (A, t)(1� ��t) =)

dP (A, t)

dt
= ��P (A, t) . (4.2)

This is easily solved. If we start o↵ most definitely in state A, so P (A, 0) = 1, then we

have

P (A, t) = e��t . (4.3)

We see that a constant probability per unit time to jump from A to B means an

exponential depletion of A.

There are further questions that we can ask of this simple system. We could, for

example, ask for the probability distribution f(t) for the time t that we make the jump

from A to B. To get this, we first consider the probability that we made the jump at

some time t < T ,

Prob[t < T ] =

Z T

0

f(t) dt . (4.4)

But this can be identified with the probability that we’re in state B at time T ,

Prob[t < T ] = P (B, T ) = 1� e��T . (4.5)

Equating these two expressions and di↵erentiating (and, perhaps confusingly, replacing

the dummy variable T with t), gives

f(t) =
dP (B, t)

dt
= �e��t . (4.6)

This is the probability distribution. It obeys
Z 1

0

f(t) dt = 1 (4.7)

as probability distributions should. From this, we can easily round up the usual statis-

tical suspects. The expected time to make the jump is

hti =

Z 1

0

tf(t) dt =
1

�
. (4.8)
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Meanwhile, the variance is given by

Var(t) = ht2i � hti2 =

Z 1

0

t2f(t) dt�
1

�2
=

1

�2
. (4.9)

We see that the standard deviation �(t) =
p
Var(t) = 1/� is the same as the mean.

This is telling us that fluctuations are important in this system. If we knew only about

the average time to jump, this wouldn’t agree particularly well with observations in

any given case.

4.1.2 Discrete Population Size

With this simple example under our belts, let’s now turn to a situation where the

outcomes are labelled by n 2 N = {0, 1, 2, . . .}. (As an aside: mathematicians can’t

make up their minds whether or not zero is a natural number. Here I have decided for

them.) We can think of n as labelling the population size.

Again, we need to specify the dynamics of the system. Here we take constant prob-

ability per unit time � to jump from n to n+ 1. This is known as a Poisson process.

(You might reasonably argue that it is unrealistic for a population to jump from

n = 0 to n = 1. You might, for that matter, argue that it’s equally unrealistic for

most populations to jump from n = 1 to n = 2. If you’re worried, think “immigration”

rather than “birth”.)

Again, we can translate this statement into a di↵erential equation. We have, for

n � 1,

P (n, t+ �t) = (1� � �t)P (n, t) + ��t P (n� 1, t) . (4.10)

Here the first term captures the probability that we remain in state n, while the second

captures the probability that we jump up from state n � 1. Taylor expanding the

left-hand side then gives us the di↵erential equation

dP (n, t)

dt
= �

⇥
P (n� 1, t)� P (n, t)

⇤
. (4.11)

Equations like (4.11) (or (4.2)) that govern the evolution of a probability distribution

are called, rather pompously, master equations. In the present case, it is a di↵erential

equation in t and a di↵erence equation in n.
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The Generating Function

The most systematic way to solve the master equation (4.11) is to introduce the gen-

erating function

�(s, t) =
1X

n=0

snP (n, t) = hsni (4.12)

where we think of s 2 [0, 1], ensuring convergence. The generating function is a lovely

object that cleanly captures many of the things we most care about in the distribution.

For example, the average population size is

hn(t)i =
1X

n=0

nP (n, t) =
@�(s, t)

@s

����
s=1

. (4.13)

Similarly,

hn2(t)i =
1X

n=0

n2P (n, t)

=
1X

n=0

n(n� 1)P (n, t) +
1X

n=0

nP (n, t)

=
@2�(s, t)

@s2

����
s=1

+
@�(s, t)

@s

����
s=1

. (4.14)

Combining these, we can extract the standard deviation.

If we know the generating function then we can easily reconstruct the probability

distribution by di↵erentiating

P (n, t) =
1

n!

@n

@sn
�(s, t)

����
s=0

. (4.15)

Finally, the generating function satisfies a boundary condition at s = 1 that comes

from the observation that

�(1, t) =
1X

n=0

P (n, t) = 1 . (4.16)

There may be an additional boundary condition at t = 0 coming from an initial condi-

tion on the probability distribution.
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With this in mind, let’s now return to our master equation (4.11) and use it to

construct a di↵erential equation for the generating function. We have

@�(s, t)

@t
=

1X

n=0

sn
@P (n, t)

@t

= �
1X

n=0

sn
⇥
P (n� 1, t)� P (n, t)

⇤

= �
1X

n=0

⇥
sn+1P (n, t)� snP (n, t)

⇤

= �(s� 1)�(s, t) . (4.17)

where, in the second line, we’ve used P (�1, t) = 0. This is a di↵erential equation in t.

We can simply integrate it, treating s as a constant to get

�(s, t) = �(s, 0)e�(s�1)t . (4.18)

The function �(s, 0) is fixed by the initial probability distribution at time t = 0. We

will take this to be P (n, 0) = �n,0, meaning that everything kicks o↵ at n = 0 and

P (0, 0) = 1. This gives �(s, 0) = 1 and we have

�(s, t) = e�(s�1)t . (4.19)

The associated probability density is then given by, using (4.15), by

P (n, t) =
(�t)n

n!
e��t . (4.20)

This is the Poisson distribution. The expecta-

tion and standard deviation can be computed

from (4.13) and (4.14) and are given by

hn(t)i = �t and � =
p

�t . (4.21)

We see that �/hni = 1/
p
hni, meaning that

fluctuations get less important over time as the

population grows. Two Poisson processes, one

with � = 1.3 and the other with � = 0.3, are shown in the figure.

A plot of the probability distribution for di↵erent times t is shown in Figure 50. We

can get an analytic handle on the evolution of the probability distribution if we invoke

Stirling’s approximation,

n! ⇡
p
2⇡nnne�n . (4.22)
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Figure 50. The march of probability, plotted here (for � = 1) for times t = 1 (in blue),

t = 10 (in orange), and t = 30 (in green).

This is proved, for example, in the lectures on Statistical Physics. With this approxi-

mation, the probability distribution (4.21) can be written as

P (n, t) ⇡
1
p
2⇡

e��teg(n,t) with g(n, t) = n+ n log(�t)� n log n�
1

2
log n . (4.23)

The function g(n, t) has a maximum at @g/@n = 0 which, you can check, is given at

large n by n = n?
⇡ �t. Expanding about this maximum gives us an approximate

expression for the exponent

g(n, t) ⇡ g(n?) +
1

2
(n� n?)2

@2g

@n2
+ . . .

= �t�
(n� �t)2

2�t
�

1

2
log(�t) . (4.24)

This then translates into a late time, large n, expression for the probability distribution:

P (n, t) ⇡
1

p
2⇡�t

e�(n��t)2/2�t . (4.25)

We see that, at late times, the probability distribution settles down to a Gaussian

distribution, marching forwards with linear growth n ⇡ �t.

4.1.3 Birth and Death Again

We find ourselves turning once again, like the great Russian novelists, to the grand

questions of life and death. This time, with a probabilistic slant.
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We’ll stick with our population model with states given by n 2 N. Now the dynamics

includes the possibility for birth (or immigration) which increases n by one, and death

which decreases n by one. The probability per unit time for these is:

• For n! n+ 1, we take a constant rate, �.

• For n! n� 1, we take a constant rate per capita, so that the rate is �n.

To avoid continually writing out these words, we summarise this in a reaction-like

diagram

n� 1
�
��!
 ��
�n

n
�

����!
 ����
�(n+1)

n+ 1 . (4.26)

We will skip the step of writing P (n, t+ �t) and just jump immediately to the master

equation for the probability distribution which is

dP (n, t)

dt
= �(�+ �n)P (n, t) + �P (n� 1, t) + �(n+ 1)P (n+ 1, t) . (4.27)

You can trace the origin of each of these terms to the diagram above. We’ll take this

equation to hold for n � 0, with the proviso that P (n = �1, t) = 0.

The generating function �(s, t) is again defined by (4.12). It obeys

@�(s, t)

@t
=

1X

n=0

sn
@P (n, t)

@t

=
1X

n=0

sn
⇥
� �P (n, t) + �P (n� 1, t)� �nP (n, t) + �(n+ 1)P (n+ 1, t)

⇤

=
1X

n=0

⇥
� sn�+ sn+1�� sn�n+ sn�1�n

⇤
P (n, t) (4.28)

where, in the final line, we’ve shifted the summation variable to gather all terms of

the form P (n, t). It’s simple to write the first two terms using the generating function:

they are proportional to �(s, t) and s�(s, t) respectively. For the second two terms,

we have an extra factor of n in the sum. This arises by di↵erentiating the generating

function

@�(s, t)

@s
=

1X

n=0

nsn�1P (n, t) . (4.29)
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In this way, having transition rates that are proportional to n, like the � rates above,

leads to a partial di↵erential equation for the generating function,

@�(s, t)

@t
= (s� 1)

✓
��(s, t)� �

@�(s, t)

@s

◆
. (4.30)

Note that we have an overall factor of s�1. This should be expected because, as shown

in (4.16), we have �(1, t) = 1 for all t, so @�/@t should vanish at s = 1.

We’re left with (4.30) to solve. To do this, we make the (not immediately obvious)

ansatz

�(s, t) = exp
�
(s� 1)f(t)

�
(4.31)

for some to-be-determined function f(t). Our ansatz automatically obeys the constraint

�(1, t) = 1. Substituting into (4.30), we see that all s-dependence happily drops out

and we are left with the a di↵erential equation only for f(t):

df

dt
= �� �f(t) . (4.32)

We take the initial condition P (0, 0) = 1 or, equivalently, �(s, 0) = 1. This requires

f(0) = 1 and the equation above has solution

f(t) =
�

�
(1� e��t)) . (4.33)

So our generating function takes the double-exponential form

�(s, t) = exp

✓
�

�
(s� 1)(1� e��t)

◆
. (4.34)

With this in hand, we can now compute various expectation values. The average

population size is

hn(t)i =
@�

@s

����
s=1

=
�

�

�
1� e��t

�
. (4.35)

The variance can be computed from (4.14) to be

�2(t) = hn2
i � hni2

=
@2�

@s2

����
s=1

+
@�

@s

����
s=1

�

✓
@�

@s

����
s=1

◆2

=
�

�

�
1� e��t

�
. (4.36)

So, again we have �/hni = 1/
p
hni.
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In the limit t ! 1, the system settles down to a steady state. In the present case,

we can extract this straightforwardly from the generating function (4.34). However, it

is rare that we can find an exact expression for the generating function. Nonetheless,

it’s often possible to get the steady state by returning to the di↵erential equation

that governs the generating function, in this case (4.30). In the steady state, we have

@�/@t = 0 and so

@�

@s
=

�

�
� =) �(s) = exp

✓
�

�
(s� 1)

◆
(4.37)

where we’ve used the boundary condition �(s = 1) = 1 to fix the overall normalisation.

Translated to a steady-state probability distribution, this is

P (n) =
1

n!

✓
�

�

◆n

e��/� . (4.38)

This is again a Poisson distribution. Note that for these kinds of stochastic models,

the steady state means that we have a constant probability distribution, rather than a

constant n.

More O↵spring Means More Variation

We can make a simple change to the model above, and suppose that a birth results in

M new individuals. In this case, the master equation (4.27) is replaced by

dP (n, t)

dt
= �(�+ �n)P (n, t) + �P (n�M, t) + �(n+ 1)P (n+ 1, t) . (4.39)

You can rerun the steps above to find the new equation governing the generating

function,

@�(s, t)

@t
= �(sM � 1)�(s, t)� �(s� 1)

@�(s, t)

@s
. (4.40)

Now this equation is harder to solve. We could restrict ourselves to look for long-time

steady state solutions with @�/@t = 0, so that we have to solve

@�

@s
=

�

�

sM � 1

s� 1
�(s) . (4.41)

This is somewhat easier to solve. For example, if M = 2, then we have

�(s) = exp

✓
�

�

✓
s+

s2

2
�

3

2

◆◆
. (4.42)

And, from this, we can then reconstruct the steady state probability distribution.
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Alternatively, we could just jump immediately to what we’re most interested in:

the expectation hn(t)i and the variance, which follows from hn2(t)i. We can derive

equations that govern both of these quantities. For the expectation, we have

dhn(t)i

dt
=

1X

n=0

n
dP (n, t)

dt

=
1X

n=0

n
⇥
� (�+ �n)P (n, t) + �P (n�M, t) + �(n+ 1)P (n+ 1, t)

⇤

=
1X

n=0

⇥
� �n� �n2 + �(n+M) + �(n� 1)n

⇤
P (n, t)

=
1X

n=0

⇥
�M � �n

⇤
P (n, t)

= �M � �hn(t)i . (4.43)

We see that we get a simple di↵erential equation for hn(t)i which we can now just solve.

Using the initial condition hn(0)i = 0, the solution is

hn(t)i =
�M

�

�
1� e��t

�
. (4.44)

This takes the same functional form as our previous result (4.35), but with the birth

rate � now increased to �M . That makes sense. However, there’s more to be seen if

we look at the variance. This too obeys its own di↵erential equation,

dhn2(t)i

dt
=

1X

n=0

n2dP (n, t)

dt

=
1X

n=0

n2
⇥
� (�+ �n)P (n, t) + �P (n�M, t) + �(n+ 1)P (n+ 1, t)

⇤

=
1X

n=0

⇥
� �n2

� �n3 + �(n+M)2 + �(n� 1)2n
⇤
P (n, t)

=
1X

n=0

⇥
�M2 + (2�M + �)n� 2�n2

⇤
P (n, t)

= �M2 + (2�M + �)hn(t)i � 2�hn2(t)i . (4.45)

We already have an expression for hn(t)i, so this is a di↵erential equation for hn2(t)i.

Things are easier if we look at the steady state distribution. Here we have hni = �M/�

and so

hn2
i =

1

2�

✓
�M2 +

�M

�
(2�M + �)

◆
. (4.46)
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Note that there is anM2 term, as well as a term linear inM . ForM � 1, this quadratic

term dominates and we have variance

var(n) ⇡
�

2�
M2 . (4.47)

While the average population scales as �M , the variation scales as �M2. This too

makes sense: a birth now gives a jump of M in the population, rather than just one,

and so the jumps around the mean value are larger.

Non-Linear Growth Rates

For the model above, we have birth and death rates that were either constant or

proportional to n. And this was reflected in the nice di↵erential equation (4.43) that

we derived for the expectation hn(t)i. We might wonder if the stochastic growth rates

that we enter into the master equation always arise in the equation for the expectation

value in this way. The answer, sadly, is no. Things are less pleasant when the rates

depend non-linearly on n.

For example, we might try to cook up something akin to the logistic equation by

taking a birth rate proportional to �n and a death rate proportional to �n2. It’s

straightforward to write down the corresponding master equation,

dP (n, t)

dt
= �(�n+ �n2)P (n, t) + �(n� 1)P (n� 1, t) + �(n+ 1)2P (n+ 1, t) . (4.48)

We can then retrace our steps that led to (4.43). This time we have

dhn(t)i

dt
=

1X

n=0

n
dP (n, t)

dt

=
1X

n=0

⇥
� �n2

� �n3 + �n(n+ 1) + �(n� 1)n2
⇤
P (n, t)

=
1X

n=0

⇥
�n� �n2

⇤
P (n, t)

= �hn(t)i � �hn2(t)i . (4.49)

But that’s not so useful: the equation for hni requires us to know something about

hn2
i. And the equation for hn2

i will need us to know about hn3
i and so on. The set

of equations doesn’t close and to make progress we need to make some approximation

about these higher order moments, or turn to numerical simulation. Nonetheless, al-

though we can’t solve such models completely, as we now show, there are some things

that we can say.
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4.1.4 Extinction

“Do one calculation every day that scares you.”

Eleanor Roosevelt.

In stochastic models, with populations fluctuating up and down, it’s quite possible that

the population fluctuates to zero and stays there. We would like to know the likelihood

of such an extinction event.

Extinction isn’t possible in the simple model above since, even if the population does

die down to zero, it can still grow again. (We suggested at the time that this may be

due to immigration rather than laziness when designing the model.) But we can make

things more realistic by considering a model where the birth and death rates depend on

the population size n. We write these as bn and dn respectively, and then take b0 = 0,

meaning that if the population hits n = 0 it stays there. That’s extinction. This is

summarised in the following reaction diagram:

0
0
��!
 ��
d1

1
b1
��!
 ��
d2

2 . . . n� 1
bn�1
���!
 ���

dn
n

bn
���!
 ���
dn+1

n+ 1 . . . (4.50)

Now we ask: what’s the probability of extinction? Or, more precisely: suppose that

the population sits at some healthy number n. Whats the probability Qn that it will

eventually become extinct? We will see that, under one further reasonable assumption,

this probability is necessarily one.

Our strategy is to set up a recurrence relation for Qn. The probability of extinction

for a population n can be related to

Qn = Prob(birth next)Qn+1 + Prob(death next)Qn�1

=
bn

bn + dn
Qn+1 +

dn
bn + dn

Qn�1 . (4.51)

Rearranging, gives the recurrence relation

Qn+1 �Qn =
dn
bn

(Qn �Qn�1) =

 
nY

i=1

di
bi

!
(Q1 �Q0) . (4.52)

All the n dependence on the left-hand side sits in that product. The next question that

we want to ask is: does the product converge for large n? The answer, in any realistic

model, is no! Our requirement for realism is that as the population swells, the death
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rate exceeds the birth rate. Specifically, we require that there exist an integer N and

a number R > 1 such that

dn
bn
� R for all n > N . (4.53)

In this case, the product in (4.52) can get arbitrarily large as n gets large. But the

left-hand side is a di↵erence of probabilities, so (Qn+1 � Qn) 2 [�1,+1]. This means

that the only way (4.52) can be satisfied for very large n is if

Qn+1 �Qn = Q1 �Q0 = 0 (4.54)

for all n. In particular, we must have Qn = Q0 but if the population is at n = 0 then

it’s already extinct and so Q0 = 1. We learn that Qn = 1 for all n. Closed systems go

extinct under reasonable assumptions. All men must die.

There is one glimmer of light in this calculation: we didn’t yet compute how long

we’ve got left! Happily, it turns out that the expected lifetime of a species can be very

large.

4.1.5 Multiple Populations: Wildebeest and Flies

We can extend the ideas above to multiple populations. Here we describe a simple

system which, to add some colour, we will think of as a population m of wildebeest

and a population n of flies. The birth and death rates are taken to be

• The wildebeest have a birth rate �1 and death rate �1m.

• The flies have a birth rate (or, said di↵erently, an import rate) of �2m and a

death rate of �2n. Note that the “birth rate” is proportional to the number of

wildebeest, which might sound slightly weird, but we should interpret this as

wildebeest attracting flies from elsewhere into the system.

We can capture this in two reaction diagrams (or, alternatively in one 2d reaction

diagram). The growth of the wildebeest population is described by

(m� 1, n)
�1
���!
 ���
�1 m

(m,n)
�1

�����!
 �����
�1(m+1)

(m+ 1, n) . (4.55)

Meanwhile, the growth of the flies is described by

(m,n� 1)
�2 m
���!
 ���
�2 n

(m,n)
�2 m

�����!
 �����
�2(n1+))

(m,n+ 1) . (4.56)

The system is slightly unusual in that the wildebeest population is una↵ected by the

flies, but the flies care about the wildebeest. Note, also, that everything is linear which

will make the system tractable.
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To keep our equations looking vaguely reasonable, we will write the probability that

we are in the state (m,n) as pm,n(t). We can read o↵ the master equation from the

reaction diagrams above:

dpm,n

dt
= �1

⇥
pm�1,n � pm,n

⇤
+ �1

⇥
(m+ 1)pm+1,n �mpm,n

⇤

+ �2

⇥
mpm,n�1 �mpm,n

⇤
+ �2

⇥
(n+ 1)pm,n+1 � npm,n

⇤
. (4.57)

From this, we can compute the evolution of the average population size. For wildebeest,

we have

dhmi

dt
=
X

m,n

mpm,n

= �1

⇥
hm+ 1i � hmi

⇤
+ �1

⇥
h(m� 1)mi � hm2

i
⇤

+�2

⇥
hm2
i � hm2

i
⇤
+ �2

⇥
hmni � hmni

⇤

= �1 � �1hmi . (4.58)

For the flies, we have

dhni

dt
=
X

m,n

npm,n

= �1

⇥
hni � hni

⇤
+ �1

⇥
hmni � hmni

⇤

+�2

⇥
hm(n+ 1)i � hmni

⇤
+ �2

⇥
h(n� 1)ni � hn2

i
⇤

= �2hmi � �2hni . (4.59)

We see again that the wildebeest population (4.58) doesn’t depend on the flies, while

the converse is not true. The steady state is given by

hmi =
�1

�1
and hni =

�2

�2
hmi =

�1�2

�1�2
. (4.60)

We can also look at the fluctuations, starting by computing quadratic expectations.

We’ve already computed hm2
i in our previous birth/death model. (It’s given by (4.45)

after setting M = 1.) We have

dhm2
i

dt
= �1 + (2�1 + 1)hmi � 2�1hm

2
i . (4.61)

We can similarly compute the evolution of hn2
i and hmni. They are given by

dhn2
i

dt
= �2hmi+ �2hni+ 2�2hmni � 2�2hn

2
i

dhmni

dt
= �1hni+ �2hm

2
i � (�1 + �2)hmni . (4.62)
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In the steady state (4.60), variance of the flies is then given by

var(n) = hn2
i � hni2

=
1

2
hni+

�2

2�2
hmi+

�2

�2
hmni � hni2

= hni+
�2

�2

⇥
hmni � hnihmi

⇤
. (4.63)

The term in square brackets is the covariance between the variables m and n,

cov(m,n) = hmni � hmihni . (4.64)

We learn that the fluctuations of the flies has two terms: an intrinsic fluctuation in the

birth and death rates of the flies, proportional to hni, and an additional fluctuation

proportional to cov(m,n) that tracks the fluctuations in wildebeest.

4.2 Meet the Fokker-Planck Equation

In the previous section, we studied various examples of the “master equation”, which

governs how a probability distribution over a discrete set of outcomes evolves. In this

section, we would like to generalise this idea to describe a probability distribution over a

continuous set of outcomes. The simplest example is a probability distribution P (x, t)

of some substance distributed spread over some spatial coordinate x. The resulting

equation is called the Fokker-Planck equation.

We’re going to derive the Fokker-Planck equation starting from our discrete master

equation. If the width of the probability distribution is much broader than then size

between the spacing, then it makes sense to approximate the discrete variable with a

continuous variable.

For all our examples above, we thought of the discrete variable n 2 N as the popula-

tion size. There will be times when we want to keep that interpretation, but we might

also want to think of n as labelling the position of some object that is restricted to lie

on a lattice. (For example, such a set-up arises in Solid State Physics when we think of

an electron moving in a solid.) In this case, we could relabel n = x to denote position.

We will adopt this notation below.

Suppose that the hopping rate to jump from site n to site n+ r is given by W (n, r).

Here r 2 Z can be positive or negative. Then the master equation for the probability

distribution over sites x = n is given by

@P (x, t)

@t
=
X

r2Z

h
W (x� r, r)P (x� r, t)�W (x, r)P (x, t)

i
. (4.65)
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Here the first term captures the fact that the particle could hop from any site to x,

while the second term captures the fact that it could hop away to any site. Typically,

this hopping rate will be “short range”, meaning that W (x, r) drops o↵ quickly as r

gets large.

Now, the term in the square brackets looks like f(x � r) � f(x) where f(x) =

W (x, r)P (x, t). For r small, we Taylor expand

f(x� r) = f(x)� r
df

dx
+

r2

2

d2f

dx2
+ . . . (4.66)

We apply this Taylor expansion to the master equation (4.65) and drop the . . . terms.

The decision to truncate the Taylor expansion after the second derivative is important

and will have consequence below. We’re left with

@P (x, t)

@t
=
X

r2Z

h
� r

@

@x

�
W (x, r)P (x, t)

�
+

r2

2

@2

@x2

�
W (x, r)P (x, t)

�i

= �
@

@x

�
u(x)P (x, t)

�
+

@2

@x2

�
D(x)P (x, t)

�
. (4.67)

This is the Fokker-Planck equation
11. It involves two functions, u(x) and D(x), given

by

u(x) =
X

r2Z

rW (x, r) and D(x) =
1

2

X

r2Z

r2 W (x, r) . (4.69)

We assume that W (x, r) drops o↵ quickly enough at large r so that both of these sums

converge. You can read more about the Fokker-Planck equation, viewed from a slightly

di↵erent perspective, in the lectures on Kinetic Theory.

The total probability is necessarily conserved, with
R
dx P (x, t) = 1 for all time.

Things that are conserved obey a continuity equation, and probability is no exception.

We can recast the Fokker-Planck equation in this form, writing

@P

@t
+

@J

@x
= 0 with J = uP +

@

@x
(DP ) . (4.70)

11It’s not uncommon to see the Fokker-Planck equation written as

@P

@t
= �

@

@x

�
AP

�
+

1

2

@2

@x2

�
BP

�
(4.68)

with the obvious relation A(x) = u(x) and B(x) = 2D(x). But, as we’ll see soon, the variables u and
D are more evocative than A and B.
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Written in this way, we see that the current J takes the form that we anticipated in

Section 3. The first term corresponds to advection, with u(x) some background flow

that carries the probability with it. The second term gives rise to di↵usion. We’ll see

these interpretations borne out in what follows.

From the definitions (4.69), we see that for positive rates W (x, r) > 0, it might be

possible for the advection u(x) to vanish, but it will never be possible for the di↵usion

D(x) to vanish. In this sense, di↵usion is really the essential element that arises from

stochastic processes.

Evolving Moment by Moment

We can look at how various expectation values change with the Fokker-Planck equation.

The average position hx(t)i evolves as

dhxi

dt
=

Z
dx x

@P (x, t)

@t
= �

Z
dx x

@(uP )

@x
+

Z
dx x

@2(DP )

@x2
. (4.71)

We integrate by parts, using the fact that any normalised probability distribution must

vanish asymptotically. For the second term, we can integrate by parts twice to get zero.

So only the first term contributes, giving

dhxi

dt
=

Z
dx uP = hu(x)i . (4.72)

We see that the time evolution of the mean depends on the average of u(x), and not

on the function D(x). This confirms what we said above: the function u(x) acts like

advection, governing the overall drift of the probability distribution.

For the variance, we first look at

dhx2
i

dt
= �

Z
dx x2@(uP )

@x
+

Z
dx x2@

2(DP )

@x2
. (4.73)

Now both terms survive integration by parts. We have

dhx2
i

dt
= 2hxu(x)i+ 2hD(x)i . (4.74)

The variation is, as usual, var(x) = hx2
i � hxi2 and obeys the equation

d(var(x))

dt
=

dhx2
i

dt
� 2hxi

dhxi

dt
= 2hD(x)i+ 2 cov(x, u(x)) . (4.75)

We see the same kind of behaviour as for our wildebeest problem, with two terms

contributing to the variance. The first is the expectation value of D(x), the second a

covariance between x and u(x) given by cov(x, u(x)) = hxu(x)i � hxihu(x)i.
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4.2.1 Constant Drift and Di↵usion

To illustrate these ideas, let’s return to the particularly simple model that marches

tentatively forward at a constant rate �. In the discrete case, this gave rise to the

Poisson process, governed by the master equation (4.11)

dP (n, t)

dt
= �

⇥
P (n� 1, t)� P (n, t)

⇤
. (4.76)

Comparing to (4.65), we have W (n, 1) = � for all n, with W (n, r) = 0 for r 6= 1. The

corresponding Fokker-Planck equation is

@P

@t
= ��

@P

@x
+

�

2

@2P

@x2
. (4.77)

We can use our results above, with u = � and D = 1
2�, to compute how the moments

evolve. We have

dhxi

dt
= � =) hxi = �t (4.78)

and

dhx2
i

dt
= 2�hxi+ � =) hx2

i = �t+ (�t)2 . (4.79)

It’s worth pointing out that both of these agree with the corresponding discrete model,

where we also had

hni = �t and hn2
i = �t+ (�t)2 . (4.80)

It’s natural to ask: does the Fokker-Planck equation coincide with the discrete Poisson

process? The answer is no: the first two moments coincide, but not higher moments.

You can check, for example, that

hx3
i = (�t)3 + 3(�t)2

hn3
i = (�t)3 + 3(�t)2 + �t . (4.81)

This is a typical feature of the Fokker-Planck equation when compared to a discrete

master equation. The fact that the two agree for the first two moments, and then dis-

agree, can be traced to our truncation of the Taylor expansion at the second derivative

in (4.67). Note, however, that the two agree for large time, which reflects the fact that

hxi = �t and so hxi � r for large time.
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In this simple case, it’s not di�cult to solve the Fokker-Planck equation. Motivated

by the fact that we have a constant drift u = �, we introduce the variable ⇠ = x � �t

and consider the ansatz

P (x, t) = G(⇠, t) . (4.82)

Then the Fokker-Planck equation (4.77) becomes the di↵usion equation

@G

@t
=

�

2

@2G

@⇠2
. (4.83)

We’ve already seen solutions to this equation in Section 3.1. If we start with a delta-

function initial condition, then the probability distribution is given by an ever-spreading

Gaussian, now with an overall drift set by u = �,

P (x, t) =
1

p
2⇡�t

e�(x��t)2/2�t . (4.84)

Di↵usion Revisited

It’s straightforward to cook up a situation in which the drift vanishes, but di↵usion

remains. Suppose that we have a particle that lives on a line, with position n 2 Z. This

time, it bounces back and forth at the same rate �, so we haveW (n, 1) = W (n,�1) = �.

Now we have A = 0 and D = � and the Fokker-Planck equation coincides with the

heat equation that we studied in Section 3,

@P

@t
= D

@2P

@x2
. (4.85)

This illustrates how di↵usion arises from underlying randomness. This is what happens,

for example, in Brownian motion in which small particles, suspended in a liquid, move

in an erratic motion as they are constantly bombarded by surrounding molecules.

4.2.2 Birth and Death Once More

We can also look at the Fokker-Planck equation for our birth and death model with

master equation (4.27)

dP (n, t)

dt
= �(�+ �n)P (n, t) + �P (n� 1, t) + �(n+ 1)P (n+ 1, t) . (4.86)

We compare this to (4.65) to find W (n, 1) = � and W (n,�1) = �n. We replace the

discrete n with the continuous x which, in this context, still measure the population.

The Fokker-Planck equation for P (x, t) then becomes

@P

@t
= �

@(uP )

@x
+

@2(DP )

@x2
(4.87)
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with

u(x) = W (n, 1)�W (n,�1) = �� �x

D(x) =
1

2
(W (n, 1) +W (n,�1)) =

1

2
(�+ �x) . (4.88)

This is one of the simplest examples of the Fokker-Planck equation. Following our

expectations above, we have (4.72),

dhxi

dt
= �� �hxi =) hxi =

�

�

�
1� e��t

�
. (4.89)

This is identical to the discrete birth and death model that we met previously. (See,

for example, (4.44) with M = 1.) Similarly, we have from (4.74)

dhx2
i

dt
= �+ (2�+ �)hxi � 2�hx2

i . (4.90)

This too agrees with the di↵erential equation (4.45) that governs the discrete model.

The variance then obeys

d(var(x))

dt
= �+ �hxi � 2�var(x) =) var(x) =

�

�

�
1� e��t

�
. (4.91)

where we’ve used the expression for hxi in (4.89) and implemented the initial condition

var(x) = 0 when t = 0.

4.2.3 Fokker-Planck With More Variables

It’s straightforward to generalise the Fokker-Planck equation to include more variables

so that we work with the vector x 2 Rd. In the context of physics, x is a spatial

coordinate; in the context of ecology, x = n is a variable that describes the population

of d di↵erent species.

We can follow our earlier definition, starting with (4.65) which, with multiple vari-

ables, reads

@P (x, t)

@t
=
X

r2Zd

h
W (x� r, r)P (x� r, t)�W (x, r)P (x, t)

i
. (4.92)

Again we Taylor expand f(x) = W (x, r)P (x, t) and write

f(x� r) = f(x)� ri
@f

@xi
+

rirj
2

@2f

@xi@xj
+ . . . (4.93)
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Dropping the . . . terms leaves us with the multi-dimensional Fokker-Planck equation

@P (x, t)

@t
= �

@

@xi

�
ui(x)P (x, t)

�
+

@2

@xixj

�
Dij(x)P (x, t)

�
. (4.94)

with our two functions now given by

ui(x) =
X

r2Zd

ri W (x, r) and Dij(x) =
1

2

X

r2Zd

rirj W (x, r) . (4.95)

We see that the advection term now involves a vector function u(x), reflecting its

interpretation it plays as a background velocity field. Meanwhile the di↵usion term

now involves a symmetric matrix D(x).

We can again see the meaning of the advection term by computing

d

dt
hxii =

Z
ddx xi

@P (x, t)

@t

=

Z
ddx xi

✓
�
@(ujP )

@xj
+

@(DjkP )

@xj@xk

◆
=

Z
ddx uiP (4.96)

where, in the final equality, we’ve integrated by parts. We see that we have the obvious

generalisation

d

dt
hxi = hui . (4.97)

Meanwhile, the time derivative of the fluctuations is captured by

d

dt
hxixji =

Z
ddx xixj

✓
�
@(ukP )

@xk
+

@(DklP )

@xk@xl

◆

= hxiuji+ huixji+ hDiji . (4.98)

It’s useful to define the symmetric covariance matrix

Cij = cov(xi, xj) = hxixji � hxiihxji . (4.99)

This contains the variance as its diagonal terms, var(xi) = Cii, with the o↵-diagonal

terms telling us about correlations between di↵erent variables. You can check that

dCij

dt
= cov(xi, uj) + cov(xj, ui) + hDiji . (4.100)

Often, we would like to understand the steady state of a distribution, which means that

want to find solutions where the right-hand side of this equation vanishes. But that’s

not so straightforward because the right-hand side of this equation depends on hxiuji

and we don’t necessarily have a good handle on this. To illustrate how to proceed, we

turn to an example.
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4.2.4 Wildebeest and Flies Again

We will revisit the story of the Wildebeest and flies from Section 4.1.5. This is a two-

dimensional system, described by x = (m,n) where m is the population of wildebeest

and n the population of flies. We previously derived the master equation (4.57) when

treating the population as discrete,

dpm,n

dt
= �1

⇥
pm�1,n � pm,n

⇤
+ �1

⇥
(m+ 1)pm+1,n �mpm,n

⇤

+ �2

⇥
mpm,n�1 �mpm,n

⇤
+ �2

⇥
(n+ 1)pm,n+1 � npm,n

⇤
. (4.101)

Comparing to (4.92), we can read o↵ the non-vanishing values of W (x, r). They are:

• W (x, r) = �1 when r = (1, 0).

• W (x, r) = �1m when r = (�1, 0).

• W (x, r) = �2m when r = (0, 1).

• W (x, r) = �2n when r = (0,�1).

From this, we can read o↵ the functions in the Fokker-Planck equation. The advection

velocity is

u =
X

r

rW (x, r)

= �1

 
1

0

!
+ �1m

 
�1

0

!
+ �2m

 
0

1

!
+ �2n

 
0

�1

!

=

 
�1 � �1m

�2m� �2n

!
. (4.102)

Meanwhile, the di↵usion matrix is

D = �1

 
1 0

0 0

!
+ �1m

 
1 0

0 0

!
+ �2m

 
0 0

0 1

!
+ �2n

 
0 0

0 1

!

=

 
�1 + �1m 0

0 �2m+ �2n

!
. (4.103)

Now that we have explicit expressions for u and D, we can return to the question:

what does it mean to have a steady state probability distribution for this model?
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It’s simple to find the steady state for expectation values hxi because, as we’ve seen

in (4.97), this is given by hui = 0, so

hmi =
�1

�1
and hni =

�1�2

�1�2
. (4.104)

This agrees with the results from the discrete model (4.60). But now we want to extend

this to think about fluctuations, as captured in the covariance matrix Cij. In the steady

state, we want to find solutions to dCij/dt = 0 and that means that we need to compute

cov(xi, uj) and hDiji. We see that u is linear in x = (m,n) and so we can write

u = �+ ax with � =

 
�1

0

!
and a =

 
��1 0

�2 ��2

!
. (4.105)

This gives

cov(xi, uj) = ajkcov(xi, xk) = ajkCik . (4.106)

We also have

hDiji =

 
2�1 0

0 2�1�2/�1

!
. (4.107)

Now we can look for steady state solutions for the covariance matrix Cij. In steady

state, our evolution equation (4.100) becomes

dC

dt
= aC + CaT + hDi = 0 . (4.108)

This is a matrix equation, with a, C and hDi all 2⇥ 2 matrices. It is an example of a

Lyapunov equation. The equation is easily solved by writing it out in components and

doing some linear algebra. We find (recalling that C12 = C21.

�2�1C11 + 2�1 = 0

�2C11 � �2C12 � �1C12 = 0 (4.109)

2�2C12 � 2�2C22 + 2
�1�2

�1
= 0 .

Rearranging, then gives the variances

var(m) = C11 =
�1

�1
and var(n) = C22 =

�1�2

�1�2

✓
1 +

�2

�1 + �2

◆
(4.110)
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while the covariance is

cov(m,n) = C12 =
�1�2

�1(�1 + �2)
. (4.111)

We see that C12 > 0 so the wildebeest and flies covary positively: if there is more of

one, then there is likely to be more of the other. That’s to be expected given our initial

assumptions which were that wildebeest attract flies.

With this information, we can plot the range

in which we expect to find populations of wilde-

beest and flies. This is shown schematically in

the figure where the mean is shown as a star.

Around that, we draw ellipses whose semi-axes

are determined by the eigenvectors and eigen-

values of the covariance matrix C. In the fig-

ure, we’ve sketched ellipses corresponding to

one standard deviation and, outside, 95% con-

fidence levels.

Deriving a General Lyapunov Equation

For our example above, we were lucky because both u(x) and D(x) were linear in

the variables x. That meant that the steady state condition dCij/dt = 0 could be

expressed entirely in terms of the covariant matrix Cij and some constant matrices.

But that won’t always be the case.

To find the steady state for more general, non-linear systems, we typically have to

make a (not always justified) approximation. We approximate the advection velocity

to be linear and the di↵usion matrix to be constant,

u = �+ ax and D = b (4.112)

where both a and b are constant matrices. In steady state, the covariance matrix then

satisfies the Lyapunov equation

aC + CaT + b = 0 . (4.113)

The solution can again be found using some linear algebra.
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4.3 An Invitation to Fluctuation and Dissipation

To finish, we can make contact with some basic ideas from elsewhere in physics, notably

the lectures on Statistical Physics. We will start by considering something very basic:

a particle of mass m, with Newton force law

mẍ = ��ẋ�rV + f . (4.114)

The first two terms on the right-hand side are very familiar: the first is a friction term,

with the strength of friction dictated by the coe�cient �; the second is a conservative

force arising from a potential V (x). The novelty is the third term, consisting of the

additional force f . This we take to be a random force. You can think of this as arising

because the particle is suspended in some liquid, and is being constantly bombarded

by the underlying molecules, causing it to bounce back and forth in some random way.

This is a famous process known as Brownian motion.

There are various ways of dealing with equations like (4.114). The most systematic

way is to think of the random force f as coming from some probability distribution, and

then figuring out how to translate that into a corresponding probability distribution

P (x) for the position of the particle. In this context, (4.114) is known as the Langevin

equation. You can read more about this in the lectures on Kinetic Theory. Here,

instead, we will make direct contact with the Fokker-Planck equation. Our goal is to

write down a Fokker-Planck equation for the probability distribution P (x, t).

For this, we should be in the limit where the motion is friction dominated and the

acceleration term in (4.114) can be ignored. In this case, we take the average of (4.114)

and use the fact that hfi = 0 because the random force is just as likely to hit from any

direction. This then tell us that the average velocity of the particle is dictated by the

potential

hẋi = �
1

�
hrV i . (4.115)

But this is the same kind of equation that we get from the Fokker-Planck equation

(4.97) if we set u = �rV/�. This suggests that the probability distribution of the

particle is governed by a Fokker-Planck equation that takes the form

@P

@t
=

1

�
r · (PrV ) +Dr2P (4.116)

for some di↵usion constant D. We have made the additional assumptions here that the

matrix Dij = D�ij is diagonal, on grounds of rotational invariance, and, moreover, that

D is independent of x on grounds of translational invariance. It remains to determine

the di↵usion constant D in terms of the variables in the original set-up.
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This is where idea from statistical mechanics come in. First, we look at the equilib-

rium probability distribution, obeying

r ·

✓
1

�
PrV +DrP

◆
= 0 . (4.117)

We can view this as a di↵erential equation for P (x), one that is solved by

P (x) ⇠ exp
⇣
�

�

D
V (x)

⌘
(4.118)

up to an overall normalisation that we’ve ignored. Now suppose that the random force

f arises because the particle sits in a fluid at temperature T . Then we know that the

probability distribution must take the usual Boltzmann form

P (x) ⇠ exp

✓
�

1

kBT
V (x)

◆
(4.119)

with kB the Boltzmann constant. (There is no kinetic term in this expression because

we’re in a friction-dominated environment where we can ignore the mẍ term in the

original equation of motion.) Equating these two expressions, we learn that the di↵usion

constant must be given by

D =
kBT

�
. (4.120)

This is the Einstein relation. It is the key result in the fourth of his famous collection of

1905 papers. (The one that didn’t introduce special relativity or pioneer the idea of the

quantum!) The relation is rather surprising: the di↵usion constant tells us how much

the particle is kicked around by the environment, while the friction term tells us how

di�cult it is for the particle to plough through the same environment. Remarkably,

the two are related.

The Einstein relation is an example of a more general idea known as the fluctuation-

dissipation theorem, which relates the fluctuations experienced by a system to the

dissipation (i.e. friction) experienced by the system. It’s an important idea in many

areas of physics.
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