
7 Neutrinos

No one would accuse a neutrino of being gregarious. They interact less than a first year

undergraduate mathematics student forced to sit next to their theoretical physics pro-

fessor at a matriculation dinner (to give a weirdly specific yet shudderingly memorable

analogy).

For example, in the time it takes you to read this sentence, around 100 trillion

neutrinos will have passed through your body. Most of them came from the Sun,

but a significant minority have a cosmic origin, and have been streaming through the

universe, uninterrupted since the first few seconds after the Big Bang. Moreover, in

contrast to photons, the number of neutrinos hitting you doesn’t change appreciably

as day turns into night. The neutrinos from the Sun will happily pass right through

the Earth and out the other side. This is vividly demonstrated in the picture of the

Sun at night shown in Figure 19.

There are two reasons why neutrinos are so intangible. The first is that they are the

only particle to interact solely through the weak force. And, as we’ve seen, the weak

force is weak. The second reason is that their mass is much much smaller than any

other fermion which means that on the rare occasion that they do interact, they don’t

deliver much of a punch. The purpose of this section is to describe some properties of

neutrinos in more detail.

7.1 Neutrino Masses

There is much that we don’t know about neutrino masses. But we do know that the

masses are not zero.

At the moment, we have no direct measurement of the mass of each neutrino. But

we do have some precious information. First, we know that one neutrino must have a

mass greater than

m⌫ & 0.05 eV . (7.1)

Second, constraints from cosmology give us an upper bound on the sum of all neutrino

masses. This comes from the imprint that neutrinos in the early universe leave on

the cosmic microwave background radiation and on subsequent structure formation of

galaxies (in particular, baryon acoustic oscillations – you can read more about this in

the lecture notes on Cosmology.). This bound is
X

⌫

m⌫ . 0.25 eV . (7.2)
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Figure 19. The Sun at night. This is a picture, taken by Super-Kamiokande, shows the

neutrino flux coming from the Sun. The picture was taken at night, with the neutrinos

passing through the Earth before hitting the detector.

In addition, we have information about the mass di↵erences between neutrinos. We

denote the mass of the neutrinos as m1, m2 and m3. Much like for quarks, the mass

eigenstates do not correspond to the flavour eigenstates ⌫e, ⌫µ and ⌫⌧ and we will

explain the relation more in the next section. We know that the mass splitting between

two of the states is comparable to the overall mass of neutrinos,

|m2

3
�m2

2
| = 2.5⇥ 10�3 eV2 . (7.3)

(We’ve taken the magnitude on the di↵erence on the left-hand side to hide the fact that

we don’t actually know which if m3 and m2 is heavier: we will describe this ambiguity

further below. Then there is a much smaller mass splitting between of order

m2

2
�m2

1
⇡ 7.4⇥ 10�5 eV2 . (7.4)

There are still a number of possibilities consistent with these bounds. It may even be,

for example, that one neutrino is massless while others have mass ⇠ 0.1 eV or so. Still,

our ignorance notwithstanding, a rough summary of the masses of all fermions is shown

in Figure 20.

In the rest of this section, we will describe the basics of neutrino masses. We will

learn how they can get a mass in the Standard Model and its extensions, and how we

are able to determine the structure of masses described above.
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Figure 20. Fermion masses, arranged by generation. The charged leptons are green, the

�1/3 quarks are orange, and the charge +2/3 quarks are purple. The neutrinos are way o↵

to the left.

7.1.1 Dirac vs Majorana Masses

Even with our limited knowledge, it’s clear that neutrinos aren’t like the other particles.

There is six orders of magnitude separating the mass of the top quark from the mass

of the electron. Then there is a gap of another six order of magnitude before we get to

the neutrinos. The first question we should ask is: why?

We don’t have a definitive answer to this question. But we do have a plausible

answer. In what follows, I will sketch what appear to be the most reasonable ways in

which neutrinos can get a mass. They are not the only ways: if you’re willing to add

new fields to the Standard Model, and then try to hide them from experiments, then

you can cook up other possibilities. Ultimately, experiment must be our guide to figure

out which is right.

The most obvious way to give neutrinos a mass is to add a right-handed neutrino ⌫R
to the Standard Model. Indeed, we already included this in Section 5 when describing

the fields of the Standard Model, although we also raised a question mark about its

existence. If we include a right-handed neutrino that is uncharged under the Standard

Model gauge group, then it can participate in a Yukawa coupling. Restricting to a

single generation for now, the lepton Yukawas are then (5.74),

LYuk = �ye L̄LHeR � y⌫ L̄LH̃⌫R + h.c. . (7.5)
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When the Higgs condenses, the neutrino gets a mass just like all other fermions, given

by

m =
y⌫p
2
v . (7.6)

We refer to this as a Dirac mass.

There’s nothing wrong with this explanation for neutrino masses. But it does raise a

question of why the dimensionless Yukawa coupling is y⌫ ⇠ 10�12. Of course, as we’ve

repeatedly seen, we don’t understand the values of any of the Yukawa couplings so

perhaps this is just one more mystery to add to the list. Nonetheless, it’s such a wildly

small number that it feels like it’s crying out for some explanation. And the good news

is that there is a very natural explanation at hand.

Moreover, this explanation doesn’t require us to do anything than follow our original

philosophy when constructing the Standard Model. That is, given all the fields at our

disposal, we should write down all possible relevant and marginal terms consistent with

Lorentz invariance and gauge symmetry. And the addition of the right-handed neutrino

allows for something new. This is the term

LMaj =
1

2
M⌫R⌫R + h.c. . (7.7)

Here M 2 C. This is called a Majorana mass.

Suppose that we have both the Dirac mass m, as in (7.6), and the Majorana mass

M , as in (7.7). What is the physical mass of the neutrinos? To answer this, we write

the combined mass term as

Lmass =
1

2
(⌫̄L, ⌫R)

 
0 m

m M

! 
⌫̄L

⌫R

!
+ h.c. . (7.8)

The physical masses are the eigenvalues of this matrix. We have

mass =
1

2

���M ±
p
M2 � 4m2

��� . (7.9)

What does this buy us? We know that the neutrinos has a mass in the eV range. One

possibility is that both m and M are in this ballpark. But there’s an alternative option,

which is that the Majorana mass M is very large. If we take M � m, then the two

masses above become

mass ⇡ M and mass ⇡ m2

M
. (7.10)
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The particle with mass ⇡ M is mostly the right-handed neutrino, while the particle

with mass ⇡ m2/M is approximately the left-handed neutrino. And, crucially, it’s

quite possible for the latter of these to be light, even if the Yukawa couplings are the

same order of magnitude as those for electrons.

For example, if y⌫ ⇡ 1 (like the extraordinarily heavy top quark) then a Majorana

mass of order 1013 GeV or so will get us in the ballpark of the observed masses. This

is getting close to the realm of grand unified theories. Obviously, for smaller Yukawa

couplings, the corresponding Majorana mass should be smaller. This suggests, some-

what counterintuitively, that the smallness of the neutrino mass might be because the

right-handed neutrino gets a very large mass. This is known as the seesaw mechanism.

7.1.2 The Dimension 5 Operator

There’s something a little unsettling about the seesaw mechanism. We introduced a

right-handed neutrino to give both left- and right-handed particles a mass. But then

we saw that the physical mass of one of these states M was extremely large, way

beyond current experiments. Which suggests that it should be possible the describe

the resulting physics without invoking it in the first place!

And, indeed there is. But it does require us to go beyond our original philosophy

when constructing the Standard Model. We originally set ourselves the task of writing

down all relevant and marginal terms consistent with Lorentz and gauge symmetries.

We can incorporate neutrino masses without a right-handed neutrino if we also allow

ourselves to include irrelevant operators.

As usual, operators in quantum field theory are classified by their dimension. Those

with dimension � < 4 are relevant, and those with dimension � = 4 are (classically)

marginal. There are an infinite number of irrelevant operators, but their importance

can still be judged by how irrelevant they are. And, among them, there is a unique

operator with dimension � = 5. This is

L5 =
�

M
(L̄LH̃)(L̄LH̃) + h.c. . (7.11)

This is sometimes called the Weinberg operator although Weinberg has so many things

named after him in the Standard Model that I’m not sure it’s helpful terminology.

It has dimension 5 because it contains two fermions (each of dimension 3/2) and two

scalars (each of dimension 1). Here � is a dimensionless coupling and M is a mass scale.

If we integrate out the massive right-handed neutrino, then we generate the coupling

(7.11) with M the Majorana mass and � = (y⌫)2. However, the operator (7.11) may

be generated by something else that isn’t associated to a right-handed neutrino.
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We see that (7.11) captures the spirit of the seesaw mechanism: when the Higgs gets

a vev v, the left-handed neutrino ⌫L gets a Majorana mass ⇠ �v2/M . This retains the

irony in which detecting a very small Majorana mass points towards physics at a very

high energy scale.

7.1.3 Neutrinoless Double Beta Decay

Above, we’ve seen that there are two ways that a neutrino can get a mass: either a bog

standard Dirac mass (7.6), or a Majorana mass (7.7) which, if large, is captured in the

dimension 5 operator (7.11).

There is one important di↵erence between these: the Majorana mass violates lepton

number at tree level. This means that it might be possible to detect the neutrino

Majorana mass by observing a process which explicitly violates lepton number.

You can’t have a process that changes lepton number by just one because (in the

absence of any other fermion getting involved) that would also violate (�1)F which is

part of the Lorentz group. So, in searching for signals of lepton number violation, we

are looking for processes that change L by two. The most clear cut process of this

type is something called neutrinoless double beta decay, sometime referred to rather

elliptically as 0⌫��.

Recall that beta decay is the process n ! p + e� + ⌫̄e. This increases the atomic

number of an element by one. Double beta decay is what it sounds like: we have

2n ! 2p+ 2e� + 2⌫̄e, increasing the atomic number of an element by two.

Double beta decay occurs, albeit rarely. It’s most easy to observe in elements for

which the normal single beta decay is forbidden. For example, 76Ge (with atomic

number 32) can’t decay through single beta decay to 76As (with atomic number 33)

because the germanium nucleus is lighter than the arsenic nucleus. However, it is

possible for germanium to decay to 76Se (with atomic number 34) which happens to

have a lighter nucleus. The decay process is

76Ge ! 76Se + 2e� + 2⌫̄e . (7.12)

This decay has been observed with lifetime of around 1021 years. (That was a very long

experiment.)

Ordinary double beta decay preserves lepton number. But if the neutrino has a

Majorana mass, so lepton number is violated, then there is another option: this is

neutrinoless double beta decay

76Ge ! 76Se + 2e� . (7.13)
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Despite many ongoing searches, no such decay process has been observed, either in

germanium or the dozen or so other elements that exhibit ordinary double beta decay.

Current bounds put the e↵ective half-life of elements due to double beta decay at > 1025

years or so. These put bounds on the mass of a neutrino coming from a dimension 5

operator of m⌫ . 0.3 eV.

7.1.4 The PMNS Matrix

The fact that we have three generations of fermions means that, as for quarks, there

is a misalignment between the mass and flavour eigenstates of leptons. As we saw in

Section 5, we label the three generations of leptons as (5.20),

Li

L
=

 
⌫i

L

ei
L

!
=

( 
⌫ e

L

eL

!
,

 
⌫ µ

L

µL

!
,

 
⌫ ⌧

L

⌧L

! )
. (7.14)

These left-handed lepton appear in the charged currents that couple to the W bosons

(5.88). If we omit the quarks terms, and focus only on the leptons, we have

J+

µ
= ⌫̄i

L
�̄µe

i

L
and J�

µ
= ēi

L
�̄µ⌫

i

L
. (7.15)

As with the quarks, the leptons that appear here are before we diagonalise the mass

matrices. In other words, the leptons that appear here are in the flavour basis.

If, however, we choose to work in the mass basis, which means that the mass terms

are diagonal then, as with the quarks, we get a 3⇥3 unitary mixing matrix U appearing

in the charged current which becomes

J+

µ
= ⌫̄i

L
�̄µU

†
ij
ej
L

and J�
µ
= ēi

L
�̄µUij⌫

j

L
. (7.16)

This matrix U is known as the PMNS matrix, named after Pontecorvo, Maki, Naka-

gawa, and Sakata or simply the neutrino mixing matrix.

We learn that there are two natural bases that we can use: the mass basis in which

the masses are diagonal, or the flavour basis in which the coupling the W bosons are

diagonal. And these di↵er from each other. Correspondingly, there are two di↵erent

linear combinations of fields.

What we usually refer to as the “electron neutrino”, “muon neutrino”, and “tau

neutrino” are fields in the flavour basis. For example, beta decay happens by n !
p+ e� + ⌫̄e and that neutrino ⌫̄e is the one that couples to the W boson and electron,

so it is ⌫̄e in the flavour eigenbasis. Which means that the neutrino that is emitted is

not in a mass eigenstate!
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It’s useful to introduce some new notation to highlight what’s going on. We will

refer to the left-handed neutrinos in the flavour basis as ⌫e and ⌫µ and ⌫⌧ . And we will

refer to the neutrinos in the mass basis simply as ⌫1 and ⌫2 and ⌫3. Each of these is a

left-handed Weyl fermion, but we’ve suppressed the subscript L. The ⌫i in (7.16) are

in the mass basis and we see that these are related to the flavour basis by the PMNS

matrix,
0

BB@

⌫e

⌫µ

⌫⌧

1

CCA =

0

BB@

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

1

CCA

0

BB@

⌫1

⌫2

⌫3

1

CCA (7.17)

The PMNS matrix is to leptons what the CKM matrix is to quarks. Just as for the

CKM matrix, we have no way to determine the values of U from first principle. Instead,

we must measure these from experiment. The magnitude of each component is now

known reasonably accurately: these are
0

BB@

|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|U⌧1| |U⌧2| |U⌧3|

1

CCA ⇡

0

BB@

0.8 0.5 0.1

0.3 0.5 0.7

0.4 0.6 0.6

1

CCA . (7.18)

Some values are known fairly well; others less well. There are, for example, error bars

of ±0.1 on U⌧2.

The first thing to note is that the PMNS matrix is strikingly di↵erent from the CKM

matrix describing the mixing of quarks10. In the quark sector, the CKM matrix was

close to being the unit matrix, with just small o↵-diagonal elements. This meant that

there was close alignment between the masses and the weak force. But we see no such

thing in the neutrino sector. The mixing is pretty much as big as it can be! The lepton

sector is really nothing like the quark sector. We do not have an explanation for the

structure of the PMNS matrix. Indeed, its form came as a surprise to theorists. Surely

it is telling us something important. It’s just we don’t yet know what!

10Recall that

0

BB@

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

1

CCA ⇡

0

BB@

0.97 0.22 0.004

0.22 0.97 0.04

0.009 0.04 0.999

1

CCA. Note also that the indices are of the

CKM matrix and PMNS matrix are in the opposite order. For VCKM, the di↵erent rows are labelled
by the up-type quarks, which is the first component of QL. For UPMNS, the rows are labelled by the
charged lepton, which is the second component of LL.
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7.1.5 CP Violation in the Lepton Sector

As with the CKM matrix, CP violation is captured by the complex phases of the PMNS

matrix. Here we must distinguish between neutrinos getting a purely Dirac mass and

neutrinos getting a Majorana mass.

In the case where there are three right-handed neutrinos and each species of neutrino

gets a Dirac mass, then the story is the same as for the CKM matrix: the neutrino

mixing matrix has just a single phase.

But the counting is di↵erent if we have a Majorana mass. For this exercise, we will

ignore the (unknown) mass of the right-handed neutrino and assume that the neutrino

mass comes from the dimension 5 operator (7.11). With three generations, this takes

the form

L5 =
Cij

M
(L̄i

L
H̃)(L̄j

L
H̃) . (7.19)

Here Cij is a complex symmetric 3 ⇥ 3 matrix, which means that it has 6 complex

parameter or 12 real parameters. This means that in Cij and the electron Yukawa ye
ij
,

there are a total of 12 + 18 = 30 real parameters. And we can eliminate some of these

through U(3)2 rotations acting on Li

L
and ei

R
. This leaves us with

30� 2⇥ 9 = 12 (7.20)

physical parameters. That’s two more than for the quark sector. Note that, in contrast

to the quark sector, there’s no overall U(1) that leaves the parameters untouched: that’s

because of the Majorana mass.

As for quarks, we can also see how this decomposes into real mixing angles and

complex phases. A U(3) matrix has 3 real parameters and 6 complex phases, so the

lepton sector with Majorana masses has

(6 + 9)� 2⇥ 3 = 9 real parameters (7.21)

and

(6 + 9)� 2⇥ 6 = 3 complex phases . (7.22)

We see that the total number of real parameters is the same as for the quarks: it

decomposes into 6 masses for electrons and neutrinos, together with three angles which

live inside the PMNS matrix. In contrast, with a Majorana mass there are two more
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complex phases lurking inside the PMNS matrix. The usual way to parameterise these

is by embellishing the CKM matrix structure (6.31) with two additional phases,

UPMNS =

0

BB@

1 0 0

0 c23 s23

0 �s23 c23

1

CCA

0

BB@

c13 0 s13e�i�

0 1 0

�s13ei� 0 c13

1

CCA

0

BB@

c12 s12 0

�s12 �s23 c12

0 0 1

1

CCA

0

BB@

1 0 0

0 ei↵1 0

0 0 ei↵2

1

CCA

=

0

BB@

c12 c13 s12 c13 s13e�i�

�s12 c23 � c12 s23 s13ei� c12 c23 � s12 s23 s13ei� s23 c13

s12 s23 � c12 c23 s13ei� �c12 s23 � s12 c23 s13ei� c23 c13

1

CCA

0

BB@

1 0 0

0 ei↵1 0

0 0 ei↵2

1

CCA .

While the real angles ✓ij are measured with some precision, as shown in (7.18), the

complex phases ei� and (if they exist) ei↵1 and ei↵2 remain unknown for neutrinos.

This means that we don’t currently know if CP violation is possible in the lepton

sector of the Standard Model. We note, however, that because none of the mixing

angles ✓ij are particularly small, there is the possibility that CP violation in the lepton

sector is significantly larger than in the quark sector. Future experiments should decide

this.

7.2 Neutrino Oscillations

So far we have described the di↵erent ways in which neutrinos can get a mass. But

we haven’t yet explained how we know that they have mass. After all, it’s not like we

can simply collect a bunch of neutrinos in a jar and weigh it. Instead, our information

comes in a less direct manner.

We have met the key piece of physics already: the mass eigenstates of the neutrinos

are misaligned with the flavour eigenstates. The two are related through the PMNS

matrix (7.17).

Neutrinos are always created or observed in flavour eigenstates. For example, in beta

decay we have

n �! p+ e� + ⌫̄e (7.23)

and it’s definitely an electron neutrino that is emitted. Relatedly, we can detect an

electron neutrino through a neutrino capture process, ⌫e + n �! p+ e�. For example,

the earliest neutrino detection experiments used tanks filled with dry-cleaning fluid

which was rich in chlorine and looked for electron neutrinos through the process

⌫e +
37Cl �! 37Ar + e� . (7.24)
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Again, it’s necessarily an electron neutrino that induces this process, not a neutrino of

any other type.

However, as we have seen, the electron neutrino ⌫e is not a mass eigenstate. In the

language of quantum mechanics, this means that it’s not an energy eigenstate. But we

know from our first courses on quantum mechanics what happens when systems are

placed in states that are not energy eigenstates: the state you sit in varies with time.

And so it is with neutrinos: the flavour of neutrino oscillates over time.

Before we put some mathematical meat on these ideas, it’s worth pointing out that

neutrino mixing comes with a slightly di↵erent change of perspective compared to the

entirely analogous quark mixing that we met in Section 6. When we talk about quarks,

we usually think of meson as energy eigenstates. The mixing then manifests itself as

interactions allowing, say, a strange quark to decay to a up quark.

In contrast, in the world of leptons we can be confident that we have a particular

flavour of neutrino to hand. The mixing then manifests itself as this flavour evolving,

coherently, to a superposition of other flavours over time.

7.2.1 Oscillations with Two Generations

To see the basic physics, it’s useful to restrict ourselves to the situation with just two

flavours of neutrino. We’ll take these to be the electron and muon neutrinos, related

to mass eigenstates by the rotation matrix

 
⌫e

⌫µ

!
=

 
cos ✓ sin ✓

� sin ✓ cos ✓

! 
⌫1

⌫2

!
. (7.25)

If the neutrinos have Majorana masses then there can be an additional complex phase

in these relations. This will not a↵ect neutrino oscillations and we won’t consider it

here.

We can think of the neutrinos as a 2-level system in quantum mechanics. Suppose

that we start with an electron neutrino. Written in terms of energy eigenstates, this is

|⌫ei = cos ✓|⌫1i+ sin ✓|⌫2i . (7.26)

The neutrino ⌫e is emitted with some energy E but, as we’ve seen, |⌫ei isn’t an energy

eigenstate so we should view this as the average energy, E = cos2 ✓E1+sin2 ✓E2, where
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E1 and E2 are the energies of the states |⌫1i and |⌫2i. Now, as we evolve in time, each

of the energy eigenstates picks up a di↵erent phase,

|⌫e(t)i = e�iE1t cos ✓|⌫1i+ e�iE2t sin ✓|⌫2i
= e�iE1t

�
cos ✓|⌫1i+ e�i�E t sin ✓|⌫2i

�
(7.27)

where �E = E1 �E2 is the energy di↵erence between the states. Now we can convert

back to the flavour eigenstates to get

|⌫e(t)i = e�iE1t

⇣�
cos2 ✓ + e�i�E t sin2 ✓

�
|⌫ei � cos ✓ sin ✓

�
1� e�i�E t

�
|⌫µi

⌘
. (7.28)

This is a standard result in quantum mechanics, entirely analogous to, say, Rabi oscil-

lations in atomic physics. We see that, as time evolves, we have a probability of the

electron neutrino ⌫e to convert to a muon neutrino ⌫µ,

P (⌫e ! ⌫µ) = sin2(2✓) sin2

✓
�E t

2

◆
. (7.29)

The fact that this probability depends on sine functions is telling us that the change

of flavour is an oscillation, in the sense that it goes back and forth. At this point, we

need an expression for the energy di↵erence �E. For each of the mass eigenstates, we

have the usual relativistic dispersion relation

Ei =
q
p2

i
+m2

i
⇡ |pi|+

m2

i

2|pi|
(7.30)

where, in the second equality, we’ve used the fact that our neutrinos are ultra-relativistic

with |p| � m. We can think of the neutrinos as sitting in momentum eigenstates, so

that p1 = p2. Further, we can replace the p in the denominator with the original

energy E, giving

�E =
�m2

2E
(7.31)

with �m2 = m2

1
�m2

2
. There’s one final flourish: the neutrinos are travelling at very

close to the speed of light and so, in time t, travel a distance L = t (because, of course,

c = 1). We can then write the probability for an electron neutrino to convert into a

muon neutrino, depending on the distance it travels

P (⌫e ! ⌫µ) = sin2(2✓) sin2

✓
�m2

4E
L

◆
. (7.32)

– 246 –



We can put some numbers in this to figure out what kind of length scales L we need to

see neutrino oscillations. First, we should put factors of ~ and c back into the formula.

On dimensional grounds, we should have

P (⌫e ! ⌫µ) = sin2(2✓) sin2

✓
�m2c4

4E~c L

◆
. (7.33)

We have ~ = 6.5⇥ 10�16 eV s. For mass di↵erences �mc2 of order an eV (which, as we

will see, is a little on the high side) and neutrino energies E measured in GeV (which,

as we shall see, is also a little on the high side), the argument of the sine function is of

order 1 for

L ⇠ 4~c⇥ GeV

(eV)2
⇠ 1 km . (7.34)

That’s a remarkably human length scale to emerge from fundamental physics! It sets

the kind of scale over which neutrino experiments should take place. We will see

examples below. Putting in the numbers, the probability is often written a

P (⌫e ! ⌫µ) ⇡ sin2(2✓) sin2

✓
1.27⇥ �m2

(eV)2
(GeV)

E

L

(km)

◆
. (7.35)

This formula contains two fundamental parameters: the mixing angle ✓ and the di↵er-

ence in masses �m2. To see oscillations, both need to be non-zero. The formula also

contains two parameters that can vary from one experiment to another: the energy E

of the beam and the length travelled L. In principle, by varying E and L, and seeing

how one kind of neutrino morphs into another, we can determine the mixing angle ✓

and mass di↵erence �m2. As you can see from the formula above, to see oscillations it

is best to tune E/L ⇠ �m2.

Oscillations with Three Flavours

Repeating this calculation with three species of neutrinos gives the probability for

oscillation from one flavour species ↵ to another � in terms of the PMNS matrix U ,

P (⌫↵ ! ⌫�) =
���U↵1U

?

�1
+ U↵2U

?

�2
e�i�m

2
21L/2E + U↵3U

?

�3
e�i�m

2
31L/2E

���
2

. (7.36)

If we take a limit in which �m2

21
L ⌧ E, then we have

P (⌫↵ ! ⌫�) =
���U↵1U

?

�1
+ U↵2U

?

�2
+ U↵3U

?

�3
e�i�m

2
31L/2E

���
2

. (7.37)

But, because U is unitary, we have U↵1U?

�1
+ U↵2U?

�2
+ U↵3U?

�3
= �↵�. For ↵ 6= �, we

then have

P (⌫↵ ! ⌫�) =
��U↵3U

?

�3

��2
����1 + ei�m

2
31L/2E

���
2

. (7.38)

This reproduces our two flavour result (7.35).

– 247 –



Figure 21. The scattering of electron neutrinos through a charged current, and any kind of

neutrino through a neutral current.

7.2.2 Oscillations in Matter

There is a variation on the neutrino oscillation calculation that arises when neutrinos

propagate through matter. This is both important and surprising.

The result is important because one source of neutrinos is the Sun, and the neutrinos

that are created in the centre of the Sun have a way to travel before they emerge into

empty space. And we would like to understand what happens to them on that journey.

In addition, it is quite possible to detect neutrinos at night, after they have passed

through the Earth and, again, we would like to understand if this last part of the

journey has any noticeable e↵ect.

The result is surprising because neutrinos are famously not impeded by things that

sit in their way. Most happily pass straight through the Earth without being scattered.

And yet, as we will see, the fact that they move in a density of matter does a↵ect the

oscillations. (There is also a second reason why the result is surprising which is to do

with the orders of magnitude of energy involved and we will highlight this below.)

The e↵ect that we care about arises from the elastic, forward scattering of neutrinos

o↵ a background of matter. This means that the neutrinos exchange neither energy

nor momentum with the background matter. This process arises through the Feynman

diagrams shown in Figure 21. All three types of neutrino can scatter o↵ protons,

neutrons and electrons through the exchange of a Z boson, while the electron neutrino

can additionally scatter o↵ electrons through the exchange of a W boson.

The neutral currents give the same contribution to all flavours of neutrinos while,

for oscillations, we care about di↵erences in neutrino energies. For this reason, we look
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only at the contribution from charged currents. We’ve already seen in Section 5 that, at

low energies, this is captured by the 4-fermion current-current interaction (5.92) which,

in the present context, we view as contribution to the Hamiltonian

�H = 2
p
2GF J+µ J

µ

� . (7.39)

Here, GF ⇡ 10�5 GeV�2 the Fermi coupling. The currents J±
µ
were given in (5.88) and

include the term

J+µ J
µ

� = (⌫̄L�̄µeL) (ēL�̄
µ⌫L) + . . .

= (ēL�̄µeL) (⌫̄L�̄
µ⌫L) + . . . (7.40)

where, in the second line, we’ve done a Fierz shu✏e to reorder the fermions. In the

presence of matter, the µ = 0 component of the vector ēL�̄µeL gets an expectation

value

hēL�̄µeLi = n�µ0 (7.41)

where n is the background (number) density of electrons. This expectation value breaks

Lorentz invariance, as a background density of matter must. It also breaks both CP

and CPT as the background is made of normal matter, not anti-matter. (Recall that

the CPT theorem is a statement about Lorentz invariant theories only.) The upshot is

that we get a contribution to the Hamiltonian governing neutrinos that takes the form

�H = V ⌫̄L�̄
0⌫L where V = 2

p
2GFn . (7.42)

At this point, we see the next surprise. The extra term in the Hamiltonian Hc is

quadratic in neutrinos and so, in that sense, looks like an additional contribution to

the neutrino mass. The mass density of matter in the Sun is about ⇢ ⇡ 1 g cm�3 which

gives V ⇡ 10�12 eV. In the centre of the Earth, the density is an order of magnitude

larger and, correspondingly, V ⇡ 10�13 eV. Both of these are tiny compared to typical

neutrino masses of 10�3 eV which naively suggests that this e↵ect can’t possibly be

important for neutrino propagation.

But that intuition is wrong. And it’s wrong because of the di↵erent index structure.

That extra factor of �̄0 in (7.42) makes all the di↵erence: it is telling us that the

background matter couples to neutrinos much like a background gauge field of the

form V µ = (V, 0, 0, 0). This means that the dispersion relation for neutrinos now takes

the form

(pµ � Vµ)(p
µ � V µ) = m2 =) (E � V )2 = m2 + p2 . (7.43)
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We’re in a ultra-relativistic regime, with E, p � m � V , so we expand and drop the

V 2 term to get the

E ⇡ p+
m2 + 2EV

2p2
+ . . . . (7.44)

We see that the relevant comparison is not m vs V but, instead, m2 vs EV . And for

energies in the MeV range, these can be comparable.

Our next task is to understand how this a↵ects the oscillations. Recall that, in the

vacuum, the neutrino Hamiltonian was diagonal in the mass basis. But now we’ve

added an extra term that is diagonal in the flavour basis, contributing only to the

electron neutrino. This means that we have some more matrix diagonalisation ahead

of us.

To keep things simple, we’ll stick to just two flavours of neutrino which we take to

be ⌫e and ⌫µ. We’ll again reduce things to a two-state quantum system. In the flavour

basis, the vacuum Hamiltonian is given by

H = U

 
E1 0

0 E2

!
U † with U =

 
cos ✓ sin ✓

� sin ✓ cos ✓

!
. (7.45)

We use the result (7.31) that gives the energy di↵erence in terms of the mass di↵erence,

E2 � E1 = �m2/2E, to write

H =
1

2
(E1 + E2)1+

�m2

4E

 
� cos 2✓ sin 2✓

sin 2✓ cos 2✓

!
. (7.46)

The overall energy contribution 1

2
(E1+E2)1 is unimportant for our needs and we drop

it in what follows. This is the vacuum Hamiltonian. Now we want to include the e↵ects

of matter which, as we have seen, give a new contribution

H +�H =
�m2

4E

 
� cos 2✓ sin 2✓

sin 2✓ cos 2✓

!
+

 
V 0

0 0

!
. (7.47)

We need to extract the new eigenvalues and eigenvectors of this matrix. If we call

these eigenvalues �1 and �2 then the e↵ective mass splitting in the presence of matter

is �m2

m
= 2E(�2 � �1). A short calculation shows that

�m2

m
=
p

(�m2 cos 2✓ � 2EV )2 + (�m2 sin 2✓)2 . (7.48)
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Meanwhile, we also want to know the e↵ective mixing angle ✓m. This comes from com-

puting the eigenvectors of the new Hamiltonian which take the form (cos ✓m,� sin ✓m)

and (sin ✓m, cos ✓m). The result is most simply expressed using a double angle formula

as

tan 2✓m =
sin 2✓

cos 2✓ � 2EV/�m2
. (7.49)

The probability for oscillation from one species to the other is then given by our previous

expression (7.33) with �m2 and ✓ replaced by �m2

m
and ✓m. This probability is

maximised when

cos 2✓ =
2EV

�m2
=) ✓m =

⇡

4
. (7.50)

For anti-neutrinos, we replace V with �V in the expressions above. This means that

when mixing is maximal for neutrinos, with cos 2✓ = 2EV/�m2, it is not maximal for

anti-neutrinos.

Briefly, the MSW E↵ect

You might think that it’s rather unlikely that we will hit the resonance condition (7.50)

for maximal mixing. However, as neutrinos propagate outwards from the centre of the

Sun, they experience a changing matter density. This means that we should think of

the parameter V in our 2-state quantum system as being time-dependent. It may well

be that, at some point on its journey, a given neutrino experiences a point where the

e↵ective mixing is maximal. In this way, large mixing can be generated even though

the fundamental mixing angles may be small. This is known as the MSW e↵ect.

We saw in the lectures on Topics in Quantum Mechanics that there are two limits in

which it is straightforward to analyse systems with time-dependent parameters. When

the time dependent is slow (in a suitable sense), we can use the adiabatic approximation.

This is appropriate in the interior of the Sun. When the time dependence is fast, we

can use the sudden approximation. This is appropriate when the neutrinos exit the Sun

or when they enter the Earth. Both of these e↵ects are important when understanding

the observed oscillations in solar neutrinos.

7.2.3 Neutrino Detection Experiments

Nature provides two di↵erent sources of neutrinos that allow us to see oscillations. In

what follows, we provide some very brief sketches of the experiments that revealed

oscillations in each of these sources. In recent years, these results have been confirmed

by looking at terrestrial neutrinos, created in reactors and accelerators.
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Solar Neutrinos

Most neutrinos in the Sun are created in a reaction that turns hydrogen into helium,

4p ! 4He + 2e+ + 2⌫e + 2� . (7.51)

This produces neutrinos with energy E . 400 keV. There are also further reactions,

notably those involving 7Be and 8Be that produce significantly fewer neutrinos, but at

energy up to 10 MeV. It is now thought that we have a reasonably good understanding

of the neutrinos at various energy scales produced by the Sun. A number of experiments

show very cleanly that what leaves the Sun is rather di↵erent from what reaches Earth.

• The first set of experiments use neutrino capture,

⌫e + n ! p+ e� . (7.52)

Clearly, this only works for electron neutrinos. This was first done in the late

1960s, useing tanks of chlorine with the reaction

⌫e +
37Cl �! 37Ar + e� . (7.53)

The resulting argon atoms were then counted and used as a proxy for the original

neutrino. The incoming neutrinos require an energy of E > 800 keV to achieve

this heat, which means that this is detecting the neutrinos produced in the rarer

neutrino processes. The observed solar neutrinos are a factor of 3 smaller than

expected.

This experiment can be repeated with the chlorine replaced by gallium,

⌫e +
71Ga �! 71Ge + e� . (7.54)

Now the threshold is lower, needing only energies of E ⇡ 200 keV, meaning that

many more of the Sun’s neutrinos can partake. Indeed, the number of events seen

is significantly higher, but still with a shortfall of about 40% compared to the

theoretical prediction. This shows that the oscillations are energy-dependent, as

predicted.

• It is possible to see neutrinos of any type by looking at the scattering process

⌫↵ + e� ! ⌫↵n+ e� . (7.55)

As shown in Figure 21, all neutrinos scatter by exchanging Z bosons, while the

electron neutrinos have an additional contribution coming from exchanging a W

boson.
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Figure 22. Neutrino detectors tend to look like the lair of a James Bond villain. On the left

is a boat cleaning the Super-Kamiokande photosensors as the tank slowly fills up. On the

right is the SNO tank, filled with heavy water.

Typically, the neutrinos are scattered o↵ electrons which sit in a large tank of

water and detected by the resulting Cerenkov radiation. This, for example, is how

the super-Kamiokande experiment in Japan works. The neutrinos must have an

energy threshold of E ⇡ 8 MeV and so, as with the chlorine experiments, is

sensitive only to the rarer beryllium neutrinos. This time there is a shortfall of

around 50%.

These experiments have the advantage that they reveal the direction of the in-

coming neutrino, and show clearly that the neutrinos are indeed coming from the

Sun. In addition, the neutrinos are measured in real time which means that it’s

possible to detect di↵erences between day, when the neutrinos come directly from

the Sun, and night, when the neutrinos must first pass through the Earth before

reaching the detector. (We will explain below why such a di↵erence is expected.)

• The state of the art in neutrino detection is o↵ered by the Sudbury neutrino

observatory (SNO). This has a tank was filled with heavy water, D20, where the

hydrogen is replaced by deuterium D. It doesn’t take much to split the deuterium

nucleus apart; just 2 MeV of energy is enough. Moreover, neutrinos can knock

apart a deuterium nucleus in two di↵erent ways. A weak interaction involving an

intermediate W boson does the job through a neutrino capture process analogous

to those that occur in chlorine or gallium,

⌫e +D ! p+ p+ e� . (7.56)

Only electron neutrinos contribute to such processes. However, the neutrinos can
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also split the deuterium through a weak interaction involving a Z boson,

⌫ +D ! n+ p+ ⌫ (7.57)

This time there is no charged lepton created, meaning that all three kinds of

neutrinos, ⌫e, ⌫µ and ⌫⌧ contribute.

In addition, SNO measured neutrino scattering events of the form ⌫+e� ! ⌫+e�

where, again, the electron neutrinos have an additional scattering mode through

the W boson. The upshot is that SNO was able to see everything – electron, muon

and tau neutrinos. And once you see everything, nothing is missing. The end

result agreed perfectly with theoretical expectations of the nuclear reactions inside

the Sun. The electron neutrinos missed by previous experiments had transmuted

into muon and tau neutrinos, incontrovertible evidence for neutrino oscillations.

Atmospheric Neutrinos

The story of missing neutrinos is repeated when we look elsewhere. Cosmic rays, mostly

in the form of protons or helium nuclei, are constantly bombarding the Earth. When

they hit the atmosphere they create a constant stream of ⇡± pions. These pions decay

to muons

⇡+ �! µ+ + ⌫µ and ⇡� �! µ� + ⌫̄µ

and the muons then quickly decay to electrons,

µ+ �! e+ + ⌫e + ⌫̄µ and µ� �! e� + ⌫̄e + ⌫µ

The resulting atmospheric neutrinos have significantly higher energies than solar neu-

trinos; often around a GeV or higher. Given the decay processes described above, each

collision should result in two muon neutrinos (strictly one ⌫µ, one ⌫̄µ) for every electron

neutrino. The question is: can we find them?

The answer, given by Super-Kamiokande, is interesting and shown in Figure 23.

These show plots of the neutrino flux (on the vertical axis) against the angle at which

the neutrinos come into the detector (on the horizontal axis). An angle cos ✓ = 1, on

the far right, means that the neutrinos come directly down. An angle cos ✓ = �1, on

the far left, means that neutrinos come up, through the Earth.

The data on the left two boxes is for electron neutrinos, both for low-energy events

(shown in the top box) and high-energy events (in the bottom box). The red line is the

theoretical expectation; the black dots the observed flux. We see that the agreement

between experiment and theory works well.
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Figure 23. The observed flux of electron neutrinos (on the left) and muon neutrinos (on

the right). The top boxes show low-energy neutrinos; the lower boxes high-energy neutrinos.

The red line is the theoretical expectation without neutrino oscillations, and the black boxes

the data.

The story is more interesting for muon neutrinos, shown in the two boxes on the

right. The number of neutrinos coming straight down agrees perfectly with what we

expect, but there’s a clear deficit for those that come up through the Earth. Why?

For any other particle, you might think that the Earth is simply getting in the way.

But neutrinos pass right through the Earth without any di�culty. (Remember the

picture of the Sun at night in Figure 19.) Besides: theorists aren’t stupid and had

taken the presence of the Earth into account when computing the red line! Instead,

the key point is that the muon neutrinos have travelled further, and so had more

opportunity to convert into other neutrinos, in this case tau.

Importantly, the atmospheric neutrinos clearly show us that neutrino oscillations

depend on the length L that neutrinos travel. For those neutrinos that come straight

down, we have L ⇡ 15 km and no oscillations are seen. Meanwhile, for those that come

up through the Earth we have L ⇡ 13000 km and ⌫e is una↵ected, while ⌫µ ! ⌫⌧ .
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Figure 24. A colour coded description of the possible ordering of neutrino masses.

Neutrino Mass Di↵erences

The experiments sketched above, together with similar terrestrial experiments, are

how we determine the precious information about the fundamental parameters in the

Standard Model. These tell us the values of the mixing angles that lie within the PMNS

matrix (7.17) which, roughly speaking, translate into the following statements about

the mass eigenstates: ⌫1, ⌫2 and ⌫3

• ⌫1 acts like an electron neutrino two thirds of the time, and as a muon or tau

neutrino the other third.

• ⌫2 acts like any one of the three neutrinos one third of the time.

• ⌫3 acts like a tau neutrino 45% of the time and like a muon neutrino 45% of the

time. The remaining 10%, it acts like an electron neutrino.

We also get information about mass di↵erences. The eigenstate ⌫1 is known to be

lighter than ⌫2 and the squares of their masses di↵er by

m2

2
�m2

1
⇡ 7.4⇥ 10�5 eV2

The resulting di↵erence in their masses is of order ⇠ 10�2 eV, an order of magnitude

smaller than the biggest mass. We also know the di↵erence between the masses of ⌫3
and ⌫2 but, crucially, we don’t yet know which one is heavier! We have

m2

3
�m2

2
= ± 2.5⇥ 10�3 eV2
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Of course, if we could measure the mass di↵erence between m1 and m3.then we would

be able to resolve this ± ambiguity. As it stands, we just don’t know the order of the

masses.

The two possibilities are shown in Figure 24. Given the pattern seen in all other

fermions, one might expect that the electron neutrino ⌫e would be the lightest. Since

the ⌫e has the biggest overlap with ⌫1, this would mean that ⌫1 is lightest. This is

referred to as the normal hierarchy. But, as we’ve seen, very little about the neutrinos

follows our expectation. So another possibility is that ⌫3, which contains very little of

the electron neutrino, is the lightest. This is called the inverted hierarchy. The latest

evidence from cosmological observations of the CMB and structure formation give an

improved bound on
P

i
mi and point towards the normal hierarchy.
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