
Mathematical Tripos Part II Lent term 2020

General Relativity, Examples sheet 3 Dr U Sperhake

Comments and corrections: e-mail to U.Sperhake@damtp.cam.
Feel free to set c = 1, and reintroduce it if required using dimensional analysis.

1 Let the Ricci tensor of a space-time be given by

Rαβ = ∇α∇βφ

where φ is a scalar field. Show that
∇α(∇β∇βφ) = −2Rαβ∇βφ

and hence that ∇αφ∇αφ+R is constant.
Note: the Ricci identity is ∇α∇βV γ−∇β∇αV γ = RγδαβV

δ and the contracted Bianchi identity is ∇βRαβ = 1
2∇αR.

2 Write down the Ricci identity for a vector field. Given two vector fields Uα and V α, evaluate ∇δ∇γ(UαV β) −
∇γ∇δ(UαV β). Deduce that, for an arbitrary tensor field Tαβ ,

∇δ∇γTαβ −∇γ∇δTαβ = RαµδγT
µβ +RβµδγT

αµ.

Deduce that ∇β∇αTαβ = ∇α∇βTαβ for any tensor field Tαβ .

3 Use local inertial coordinates to prove that

Rαβγδ = Rγδαβ .

4 Show, by considering its symmetries, that the Riemann curvature tensor for a 2-dimensional metric has only one
independent component. Show further that for such a metric

Rαβγδ =
1

2
R(gαγgβδ − gαδgβγ) .

Verify this result using the Christoffel symbols for 2-dimensional de Sitter space-time (obtained on sheet 1).

5 Suppose that the Maxwell tensor Fαβ for the electromagnetic field can be derived from a vector potential Aα, i.e.
Fαβ = ∇αAβ−∇βAα. Show that ∇[γFαβ] = 0, and that conservation of the energy momentum tensor (i.e. Tαβ ;β = 0)

Tαβ = FαγF
βγ − 1

4
gαβFγδF

γδ ,

implies the other Maxwell equations ∇βFαβ = 0, provided that the matrix Fαβ is non-singular.

6 Write down the radial Euler-Lagrange equation for the Schwarzschild metric and show that, in the case of a circular
geodesic orbit in the equatorial plane, this determines the period of the orbit in terms of Schwarzschild coordinate time.
How does this relate to the Newtonian result?

Alice stays at home (home is on the surface of the Earth, which is a non-rotating sphere of radius RE) and Bob
orbits the Earth in a circular geodesic orbit of radius R.

(i) Show that Alice’s proper time τA is related to the Schwarzschild time coordinate by dτ2A = (1− 2M/RE)dt2.
(ii) Show that Bob’s proper time τB is related to the Schwarzschild time coordinate by

dτ2B = (1− 2M/R)dt2 − (M/R) dt2 .

Deduce that Bob and Alice age at the same rate if R = 3
2RE .
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7 A massive particle moves on a circular orbit of radius R with the usual parameters E and L in Schwarzschild
space-time. Use the r Euler-Lagrange equation to find conditions that R must satisfy, and show that they are the same
as would be obtained by considering motion in the 1-dimensional potential V (r), where

2V (r) =
(

1 +
L2

r2

)(
1− 2M

r

)
.

(i) Express L in terms of R and M and deduce that there are circular orbits for R > 3M .

(ii) Show that these orbits are stable if R > 6M and unstable if 3M < R < 6M .

(iii) Show that the fractional binding energy (i.e. 1− E) of a stable circular orbit in the limit R→ 6M is

(1− 2
√

2/3) ' 0.0572.

8 Show that there is a circular photon orbit at r = 3M in Schwarzschild and that it is unstable.

9 In an attempt to unify Special Relativity and Newtonian Gravity, the orbits in a central potential are calculated
using thea Euler-Lagrange equations derived from the Lagrangian

L = −γ−1c2 +
GM

r

where γ = (1−v.v/c2)−
1
2 (in the obvious notation). [You may wish to justify the use of this Lagrangian by constructing

the Hamiltonian.]
Obtain the orbital equation for motion in the equatorial plane in the form

u′′ + u = γ`−1

where u = 1/r, prime denotes differentiation with respect to the usual φ coordinate, `−1 = GM/h2, and h is a suitable
conserved quantity.

Show that γ =
(
1 + h2(u′2 + u2)/c2

) 1
2 . Using the approximation γ ≈ 1 + 1

2h
2(u′2 + u2)/c2, show that the rate of

advance of the perihelion is one sixth of that obtained using the Schwarzschild metric.

10 A particle flies past a spherically symmetric star of Schwarzschild radius rs. Show, by setting u = r−1 in the
usual effective potential V (r) for Schwarzschild, that(

du

dφ

)2

=
E2 − 1

L2
− u2 + 2Mu(1/L2 + u2).

(i) If M = 0 show that coordinates can be chosen such that u = (1/b) sinφ, where b is a constant. Show also that if
the speed of the particle is v when r = b, then L = bv/

√
1− v2. Determine v and b in terms of E and L.

(ii) Now let rs := 2M , rs/b = ε, where ε � 1, and suppose a solution of the form u =
∑∞

0 εnun(φ) exists with
u0 = (1/b) sinφ. Find a second order differential equation for u1(φ) and hence show that the deflection is given
by

∆φ = 2ε

(
1 +

b2

2L2

)
+O(ε2).

Show further that

∆φ ≈ rs(1 + v2)

bv2
=

2M(1 + v2)

bv2
.

Comment on the limit v → 1.

2



11 A classical test of general relativity is the time delay caused to radar signals bounced off planets or satellites.
Ignoring curvature a light ray is given by r sinφ = b. By differentiating this, show that r2dφ2 = b2dr2/(r2 − b2).

Assuming the above relation between dφ and dr obtain the approximate equation for light rays in Schwarschild

dt = ± r√
r2 − b2

(
1 +

2M

r
− Mb2

r3

)
dr ,

where O
(
(M/r)2

)
terms have been neglected. Show that, to this approximation, the time taken to move from r = b

to r = r1 is given by

∆t =
√
r21 − b2 + 4M cosh−1(r1/b)−

2M

r1

√
r21 − b2,

and identify the first term on the right hand side.
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