Black-hole binary systems as GW source

Ulrich Sperhake

California Institute of Technology

Astro-GR meeting Barcelona, Sep 7th – Sep ^{11th} 2009

1

- Motivation
- Introduction
- Ingredients of numerical relativity
- Results
 A brief history of BH simulations
 Results following the recent breakthrough
- Summary

1. Motivation

Black Holes predicted by GR

- Black holes predicted by Einstein's theory of relativity
- Term "Black hole" by John A. Wheeler 1960s
- Vacuum solutions with a singularity
- For a long time: mathematical curiosity
 valuable insight into theory
 but real objects in the universe?
- That picture has changed dramatically!

How to characterize a black hole?

- Consider light cones
- Outgoing, ingoing light
- Calculate surface area of outgoing light
- Expansion:=Rate of change of that area
- Apparent horizon:=
 Outermost surface with zero expansion
- "Light cones tip over" due to curvature

Black Holes in astrophysics

Black holes are important in astrophysics

- Black holes found at centers of galaxies
- Structure of galaxies
- Important sources of electromagnetic radiation
- Structure formation in the early universe

Fundamental physics of black holes

Allow for unprecedented tests of fundamental physics
 Strongest sources of Gravitational Waves (GWs)
 Test alternative theories of gravity
 No-hair theorem of GR
 Production in Accelerators

Gravitational wave (GW) physics

- \bigcirc Einstein \Rightarrow GWs; Analog of electromagnetic waves
- Strongest source: coalescing black holes
- \bigcirc GWs \Rightarrow change in separation < Atomic nucleus over 1 km

Latest laser technology: GEO600, LIGO, TAMA, VIRGO Space mission: LISA 8

Targets of GW physics

Confirmation of GR

Hulse & Taylor 1993 Nobel Prize

- Parameter estimation of black holes M, S
- Optical counterparts
 Standard sirens (candles)
 Graviton mass
- Test the Kerr nature
- Cosmological sources
- Neutron stars: Equation of state
- Waveforms crucial for detection and parameter estimation

9

Space interferometer LISA

10

Pulsar timing arrays

Modelling of black-hole binaries

- Analytic solutions for dynamic systems: Hopeless!!!
- Modelling:
 - Approximation theories (PN, Pertrubation theory,...)
 - Numerical Relativity (this talk!)

- Strenght and weaknesses efficient, approximative, Appr.: NR: slow, "exact theory", works, availability?
 - works?, available
 - Good GW modeling uses both!

The big picture

2. The basics of numerical relativity

A list of tasks

- Target: Predict time evolution of BBH in GR
- Einstein equations: Cast as evolution system
 - Choose specific formulation
 - Discretize for Computer
- Choose coordinate conditions: Gauge
- Fix technical aspects: Mesh-refinement / spectral domains
 - Excision
 - Parallelization
 - Find large computer
- Construct realistic initial data
- Start evolution and wait...
- Extract physics from the data Gourgoulhon gr-qc/0703035

2.1. The Einstein equations

Theoretical framework of GW course Modeling Description of spacetime

- Description of spacetime

 Metric $g_{\alpha\beta}$
- Field equations: $G_{\alpha\beta}(g_{\alpha\beta}, \partial g_{\alpha\beta}, \partial^2 g_{\alpha\beta}) = 8\pi T_{\alpha\beta}$
 - MTW: "Spacetime tells matter how to move, matter tells spacetime how to curve"

In vacuum:
$$G_{\alpha\beta} = R_{\alpha\beta} = 0$$

- 10 PDEs of 2^{nd} order for the metric
- System of equations very complex: Pile of paper! Numerical methods necessary for general scenarios!

3+1 Decomposition

- GR: "Space and time exist as unity: Spacetime"
- NR: ADM 3+1 Split
- Iapse, shift \Rightarrow Gauge
- Einstein equations
 ⇒ 6 Evolution eqs.
 4 Constraints

Arnowitt, Deser, Misner (1962) York (1979) Choquet-Bruhat, York (1980)

Constraints preserved under time evolution!

ADM Equations

- Evolution equations $(\partial_t - L_\beta)\gamma_{ij} = -2\alpha K_{ij}$
 - $(\partial_t L_\beta)K_{ij} = -D_i D_j \alpha + \alpha [R_{ij} 2K_{im}K^m_j + K_{ij}K]$
- Constraints $R + K^2 - K_{ij}K^{ij} = 0$ $-D_jK^{ij} + D^iK = 0$
- Evolution
 - Solve constraints
 - Evolve data
 - Construct spacetime
 - Extract physics

Sperhake et al., PRD 69, 024012 19

GR specific problems

- Initial data must satisfy constraints
 Numerical solution of elliptic PDEs
 Here: Puncture data Brandt & Brügmann '97
- Formulation of the Einstein equations
- Coordinates are constructed \Rightarrow Gauge conditions
- Different length scales \Rightarrow Mesh refinement
- Equations extremely long ⇒ Turnover time Paralellization, Super computer
- Interpretation of the results? What is "Energy", "Mass"?
 Gourgoulhon gr-qc/0703035

Eqs.: Baumgarte, Shapiro, Shibata, Nakamura (BSSN)

$$ds^2 = -lpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

$$\begin{split} \phi &= \frac{1}{12} \ln \gamma & \hat{\gamma}_{ij} = e^{-4\phi} \gamma_{ij} \\ K &= \gamma_{ij} K^{ij} & \hat{A}_{ij} = e^{-4\phi} \left(K_{ij} - \frac{1}{3} \gamma_{ij} K \right) \\ \hat{\Gamma}^i &= \gamma^{ij} \hat{\Gamma}^i_{jk} = -\partial_j \hat{\gamma}^{ij} \end{split}$$

$$\begin{aligned} (\partial_t - \mathcal{L}_{\beta})\hat{\gamma}_{ij} &= -2\alpha \hat{A}_{ij} \\ (\partial_t - \mathcal{L}_{\beta})\phi &= -\frac{1}{6}\alpha K \\ (\partial_t - \mathcal{L}_{\beta})\hat{A}_{ij} &= e^{-4\phi} \left(-D_i D_j \alpha + \alpha R_{ij}\right)^{\mathrm{TF}} + \alpha (K \hat{A}_{ij} - 2 \hat{A}_{ik} \hat{A}^k{}_j) \\ (\partial_t - \mathcal{L}_{\beta})K &= -D^i D_i \alpha + \alpha \left(\hat{A}_{ij} \hat{A}^{ij} + \frac{1}{3} K^2\right) \\ \partial_t \hat{\Gamma}^i &= 2\alpha \left(\hat{\Gamma}^i_{jk} \hat{A}^{jk} + 6 \hat{A}^{ij} \partial_j \phi - \frac{2}{3} \hat{\gamma}^{ij} \partial_j K\right) - 2 \hat{A}^{ij} \partial_j \alpha + \hat{\gamma}^{jk} \partial_j \partial_k \beta^i \\ &+ \frac{1}{3} \hat{\gamma}^{ij} \partial_j \partial_k \beta^k + \beta^j \partial_j \hat{\Gamma}^i + \frac{2}{3} \hat{\Gamma}^i \partial_j \beta^j \\ & - \left(\chi + \frac{2}{3}\right) \left(\hat{\Gamma}^i - \hat{\gamma}^{jk} \hat{\Gamma}^i_{jk}\right) \partial_l \beta^l \\ & \underbrace{\text{Yo et al.} (2002)} \end{aligned}$$

10

Alternative: GHG Pretorius '05

Generalized harmonic (GHG)

- Harmonic gauge: choose coordinates so that $\nabla_{\mu} \nabla^{\mu} x^{\alpha} = 0$
- 4-dim. Version of Einstein equations $R_{\alpha\beta} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\partial_{\nu}g_{\alpha\beta} + ...$ (no second derivatives!!) Principal part of wave equation
- Generalized harmonic gauge: $H_{\alpha} := g_{\alpha\nu} \nabla_{\mu} \nabla^{\mu} x^{\nu}$

$$\Rightarrow R_{\alpha\beta} = -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \partial_{\nu} g_{\alpha\beta} + \dots - \frac{1}{2} \left(\partial_{\alpha} H_{\beta} + \partial_{\beta} H_{\alpha} \right)$$

Still principal part of wave equation!!!

- Reminder: Einstein Eqs. Say nothing about α , β^{i}
- Avoid coordinate singularities! González et al. '08

- Reminder: Einstein Eqs. Say nothing about α , β^{i}
- Avoid coordinate singularities!

- Reminder: Einstein Eqs. Say nothing about α , β^{i}
- Avoid coordinate singularities!

- Reminder: Einstein Eqs. Say nothing about α , β^{i}
- Avoid coordinate singularities!

• General scenarios require "live" conditions $\partial_t \alpha = F(\alpha, \beta^i, \gamma_{ij})$ $\partial_t \beta^i = G(\alpha, \beta^i, \gamma_{ij})$ Hyperbolic, parabolic or elliptic PDEs

riypersone, parasone er emptier bee

- Pretorius '05 Generalized Harmonic Gauge
- Goddard, Brownsville '06 moving punctures $1 + \log$ slicing, Γ driver
- based on Alcubierre et al. (AEI)Bona, Massó 1990s

Diagnostik: Wellenformen

- In and outgoing direction are specified via Basis vectors n^{α} , \mathbf{M} , m^{α} , \overline{m}^{α} Kinnersley '69
- Newman-Penrose scalar

$$\Psi_4 = R_{\alpha\beta\gamma\delta} n^{\alpha} \overline{m}^{\beta} n^{\gamma} \overline{m}^{\delta}$$

- At Null-Infinity ! But cf. Nerozzi & Ellbracht '08
- Waves are normally extracted at fixed radius

$$\Rightarrow \Psi_4 = \Psi_4(t, \theta, \phi)$$

Decompose angular dependence

$$\Psi_{4} = \sum_{\mathbb{W}_{n}} \psi_{\mathbb{W}}(t) Y_{\mathbb{W}}^{-2}(\theta, \phi) \qquad \text{``Multipoles''}$$

Gives directly E_{rad} , P_{rad} , J_{rad}

A brief history of BH simulations

- Pioneers:Hahn, Lindquist '60s, Eppley, Smarr et.al. '70s
 Grand Challenge: First 3D Code Anninos et.al. '90s
 Further attempts: Bona & Massó, Pitt-PSU-Texas, ... AEI-Potsdam Alcubierre et al. PSU: first orbit Brügmann et al. '04 Codes unstable
- Breakthrough: Pretorius '05 "GHG"
 UTB, Goddard '05 "Moving Punctures"
- Currently: ≈ 10 codes, a.o.

Pretorius, UTB/RIT, Goddard, PSU/GT, Sperhake, Jena/FAU, AEI/LSU, Caltech-Cornell, UIUC, Tainan/Beijing

3. Animations

Animations

- Lean Code Sperhake '07
- Extrinsic curvature trK
- Apparent horizon
 AHFinderDirect Thornburg

Animations

at T=0.00M

Animations

Event horizon of binary inspiral and merger BAM

Thanks to Marcus Thierfelder

7. Results on black-hole binaries

Free parameters of BH binaries

- Total mass M_{ADM}
 - \succ Relevant for detection: Frequencies depend on M_{ADM}
 - Not relevant for source modeling: trivial rescaling

• Mass ratio
$$q = \frac{M_1}{M_2}$$
, $\eta = \frac{M_1 M_2}{(M_1 + M_2)^2}$
• Spin S_{11}^{m} , S_{22}^{m}

Initial parameters

....

- **b** Binding energy $E_{\rm b}$ Separation
- \blacktriangleright Orbital angular momentum L

Eccentricty

Alternatively: frequency, eccentricity

7.1. Non-spinning equal-mass holes

al sub-state to sub-state
The BBH breakthrough

 Simplest configuration
 GWs circularize orbit ⇒quasi-circular initial data

Pretorius PRL '05

- BBH breakthrough
- Initial data: scalar field
- Radiated energy $R_{ex}[M] = 25 50 75 100$ E[%M] = 4.7 3.2 2.7 2.3
- Eccentricity e = 0...0.2

37

Non-spinning equal-mass binaries

• Total radiated energy: $3.6\% M_{ADM}$

• M = 2 mode dominant: > 98%

The merger part of the inspiral

Buonanno, Cook, Pretorius '06 (BCP)

- merger lasts short: 0.5 – 0.75 cycles
- Eccentricity small ≈ 0.01 non-vanishing Initial radial velocity

Comparison with Post-Newtonian

Goddard '07

- 14 cycles, 3.5 PN phasing
- Match waveforms: \u03c6, \u03c6
- Accumulated phase error 1 rad

Buonanno, Cook, Pretorius '06 (BCP)

3.5 PN phasing
 2 PN amplitude

Comparison with Post-Newtonian

Jena '07

- 18 cycles
- phase error < 1 rad 6th order differencing !!
- Amplitude: % range

Cornell/Caltech & Buonanno

- 30 cycles
- phase error ≈ 0.02 rad
- Effective one body (EOB)

RIT

First comparison with spin; not conclusive yet

41

Zoom whirl orbits

Pretorius & Khurana '07

- 1-parameter family of initial data: linear momentum
- Fine-tune parameter
 - ⇒ "Threshold of immediate merger"
- Analogue in gedodesics !
- Reminiscent of "Critical phenomena"
- Similar observations by PSU

Max. spin $j_{fin} = 0.78$ for $L \approx M^2$

42

7.2. Unequal masses

Unequal masses

- Still zero spins
- Astrophysically much more likely !!
- Symmetry breaking
 - Anisotropic emission of GWs
 - Certain modes are no longer suppressed
- Mass ratios
 - ▶ Stellar sized BH into supermassive BH $\approx 10^6$
 - ► Intermediate mass BHs $\approx 10^3$
 - ► Galaxy mergers $\approx 1...10^3$
 - Currently possible numerically: $\approx 1...10$

Gravitational recoil

- Anisotropic emission of GWs radiates momentum → recoil of remaining system
- Leading order: Overlap of Mass-quadrupole with octopole/flux-quadrupole Bonnor & Rotenburg '61, Peres '62, Bekenstein '73
- Merger of galaxies
- \Rightarrow Merger of BHs
- ⇒Recoil
- \Rightarrow BH kicked out?

Gravitational recoil

Escape velocities

Globular clusters dSph dE Giant galaxies Merrit et al '04 30 km/s 20 – 100 km/s 100 – 300 km/s ≈1000 km/s

Ejection or displacement of BHs has repercussions on:

- Structure formation in the universe
- BH populations IMBHs via ejection?
- Growth history of Massive Black Holes
- Structure of galaxies

Kicks of non-spinning black holes

- Simulations PSU '07, Goddard '07
- Parameter study Jena '07
- Target: Maximal Kick
- Mass ratio: $M_1 / M_2 = 1...4$
- 150,000 CPU hours
- Maximal kick 178 km/s for $M_1 / M_2 \approx 3$
- Convergence 2nd order
- $E_{\rm rad} \approx 3\%$, $J_{\rm rad} \approx 25\%$
- Spin 0.45...0.7

Features of unequal-mass mergers

Berti et al '07

- Distribution of radiated energy
 - More energy in higher modes
 - Odd y modes suppressed for equal masses
- Important for GW-DA

Mass ratio 10:1

- In preparation: González, U.S., Brügmann
- Mass ratio q = 10; Bam
- 4th order convergence

- Astrophysically likely configuration: Sesana et al. '07
- Test fitting formulas for spin and kick!

Kick:
$$v = 1.2 \times 10^4 \eta^2 \sqrt{1 - 4\eta} (1 - 0.93\eta)$$
 (Fitchett '83
Gonzalez et al. '07)

7.3. Spinning black holes

Spinning holes: The orbital hang-up

• $\uparrow \uparrow$ Spins parallel to $\stackrel{\bowtie}{L} \Rightarrow$ more orbits, E_{rad}, J_{rad} larger $\downarrow \uparrow \downarrow$ Spins anti-par. to $\stackrel{\bowtie}{L} \Rightarrow$ fewer orbits E_{rad}, J_{rad} smaller

UTB/RIT '07

no extremal Kerr BHs

Spin precession and flip

0.1

-0.1 -0.2

- X-shaped radio sources Merritt & Ekers '07
- Jet along spin axis
- Spin re-alignment \Rightarrow new + old jet
- Spin precession 98° Spin flip 71° UTB, Rochester '06

Recoil of spinning holes

Kidder '95: PN study with Spins

 $\frac{d\mathbf{P}}{dt} = \dot{\mathbf{P}}_{N} + \dot{\mathbf{P}}_{SO}, \quad = \text{``unequal mass''} + \text{``spin(-orbit)''}$

Penn State '07: SO-term larger $\frac{a}{m} = 0.2,...,0.8$ extrapolated: v = 475 km/s

- AEI '07: One spinning hole, extrapolated: v = 440 km/s
- UTB-Rochester: v = 454 km/s

56

Super Kicks

Side result RIT '07, Kidder '95: maximal kick predicted for

 $v \approx 1300 \text{ km/s}$

- Test hypothesis
 - González, Hannam, US, Brügmann & Husa '07

Use two codes: Lean, BAM

• Generates kick v = 2500 km/s for spin $a \approx 0.75$

Super Kicks

Side result RIT '07, Kidder '95: maximal kick predicted for

 $v \approx 1300 \text{ km/s}$

- Test hypothesis
 - González, Hannam, US, Brügmann & Husa '07

Use two codes: Lean, BAM

- Generates kick v = 2500 km/s for spin $a \approx 0.75$
- Extrapolated to maximal spin v = 4000 km/sRIT '07
- Highly eccentric orbits v = 10000 km/sPSU '08

What's happening physically?

Black holes "move up and down"

A closer look at super kicks

- Physical explanation: "Frame dragging"
- Recall: rotating BH drags objects along with its rotation

A closer look at super kicks

- Physical explanation: "Frame dragging"
- Recall: rotating BH drags objects along with its rotation

Thanks to F. Pretorius

How realistic are superkicks?

- Are superkicks real?
- Gas accretion may align spins with orbit Bogdanovic et al.
- Kick distribution function: $v_{kick} = v_{kick} \left(S_1, S_2, M_1 / M_2 \right)$
- Analytic models and fits: Boyle, Kesden & Nissanke, AEI, RIT, Tichy & Marronetti,...
- Use numerical results to determine free parameters
- 7-dim. Parameter space: Messy! Not yet conclusive...
- Schnittman & Buonanno '08
 Schnittman & Buonanno '08

7.4. Numerical relativity and data analysis

VERISON AD AVERISON AD AVERISON AD

The Hulse-Taylor pulsar

Hulse, Taylor '93

- Binary pulsar 1913+16
- GW emission
- Inspiral
- Change in period
- Excellent agreement with relativistic prediction

The data stream: Strong LISA source

SMBH binary

65

The data stream: Matched filtering

Matched filtering (not real data)

Noise + Signal

Theoretically Predicted signal

Overlap

- Filter with one waveform per parameter combination
- Problem: 7-dim parameter space
- We need template banks!

Numerical relativity meets data analysis

Ajith et al. '07 **O** PN, NR \Rightarrow hybrid waveforms

Approximate hybrid WFs with phenomenological WFs

- Fitting factors: 0.99
- Create look-up tables to map between phenomenological and physical parameters

Numerical relativity meets data analysis

PSU '07

- Investigate waveforms from spinning binaries
- Detection of spinning holes likely to require inclusion of higher order multipoles

Cardiff '07

Higher order multipoles important for parameter estimates

Pan et al. '07

- Equal-mass, non-spinning binaries
- Plot combined waveforms for different masses

Ninja

Large scale effort to use NR in DA

Noise curves

Size doesn't matter... or does it?

Expected GW sources

How far can we observe?

72
7.4. High energy collisions

Motivation

- US, Cardoso, Pretorius, Berti & González '08
- Head-on collision of BHs near the speed of light
- Test cosmic censorship
- Maximal radiated energy
- First step to estimate GW leakage in LHC collisions
- Model GR in most violent regime
- Numerically challenging
 - Resolution, Junk radiation

Shibata et al. '08

- Grazing collisions, cross sections
- Radiated energy even larger

Total radiated energy

• Total radiated energy: $14 \pm 3\%$ about half of Penrose's limit

7.5. Neutron star – BH binaries

Neutron star is disrupted

Etienne et al. '08

Neutron star is disrupted

Etienne et al. '08

Neutron star is disrupted

Etienne et al. '08

Waveforms

Etienne et al. '08

- Ringdown depends on mass ratio q = 1, 3, 5
- Active research area: UIUC, AEI, Caltech/Cornell

Future research

Main future research directions

- Gravitational wave detection
 - PN comparisons with spin
 - Generate template banks
 - Understand how to best generate/use hybrid wave forms
 - Simulate extreme mass ratios
- Astrophysics
 - Distribution functions for Kick, BH-spin, BH-mass
 - Improve understanding of Accretion, GW bursts,...
- Fundamental physics
 - High energy collisions: radiated energy, cross sections
 - Higher dimensional BH simulations