Gravitational waves beyond general relativity and the standard model Ulrich Sperhake

M Agathos, C Moore, T Evstafyeva, D Gerosa, C Ott, I Romero-Shaw, R Rosca-Mead

DAMTP, University of Cambridge

KDK@65, Kostas Fest Syros, 2 Sep 2024

Live Score

W modes	
Teddy bears, Koalas etc	
Middle aged men and Mercedes	
Romantics	
Inappropriate advances	
Moustache	1

A tale of three eras

Timeline

Then: 2001/02,

PL. 🔨	TEAM	SP.	s	U	N	TORE	DIFF.	PUNKTE
1 - 🔊	Olympiakos Piräus (M)	26	17	7	2	69:30	39	58
2 - 🐞	AEK Athen	26	19	1	6	65:28	37	58
з — 👰	Panathinaikos Athen	26	15	7	3	53:25	28	55
4 - 👹	PAOK Saloniki (P)	26	14	6	6	55:45	10	48
5 - 🎯	Skoda Xanthi	26	12	6	8	34:26	8	42
6 - 🕒	Iraklis Saloniki	26	9	9	8	32:35	-3	36
7 - 🎁	Panionios Athen	26	в	11	7	37:33	4	35
s - 🧭	OF Iraklion	26	9	6	11	32:35	-3	33
9 - 📩	Aris Saloniki	26	7	8	11	25:34	-9	29
10 ^ 🏶	AS Aigaleo (N)	26	7	5	14	27:46	-19	26
11 🖌 🛞	Akratitos Ano Liosia (N)	26	в	5	15	29:41	-12	23
12 — 😻	Ionikos Nikea	26	5	7	14	21:47	-26	22
13 ^ 🍯	Panachaiki Patra	26	з	9	14	28:55	-29	18
14 ~ 🛞	Ethnikos Asteras	26	4	Б	17	19:44	-25	17

Now: 2024

PL. 🔨	теам	SP.	s	U	N	TORE	DIFF.	PUNKTE
1 ^ 関	PAOK Saloniki	26	19	3	4	65:21	45	60
2 🖌 🖉	AEK Athen (M, P)	26	17	8	1	60:25	35	59
a 🔨 🧑	Olympiakos Piräus	26	18	3	Б	58:24	34	57
4 🖌 🛞	Panathinaikos Athen	26	17	5	4	62:21	41	56
s - 🍯	Aris Saloniki	26	12	6	8	39:29	10	42
6 - 嶺	PAS Lamia	28	9	7	10	35:44	-9	34
7 - 🥸	Asteras Tripolis	26	9	4	13	36:46	-10	31
8 - 🛞	Atromitos Athen	26	6	10	10	29:44	-15	28
9 ^ 🕱	Panserraikos (N)	28	8	9	11	28:45	-17	27
10 🖌 🌒	OF Iraklion	26	5	10	11	26:44	-18	25
11 - 🎬	AE Kifisias (N)	26	4	9	13	31:56	-25	21
12 – 🦁	Panetolikos Agrinio	26	4	8	14	28:46	-20	20
13 - 🙀	NFC Volos	26	4	7	15	24:52	-28	19
14 - 🚳	PAS loannina	26	з	9	14	25:48	-23	18

In the beginning there was a network

Gravitational Physics in Thessaloniki (AUTH)

EUROPEAN NETWORK GROUP

- Kostas Kokkotas
- Nikolaos Stergioulas
- Johannes Ruoff (Post-doc, Marie-Curie Fellow)
- E. Berti (Network Post-doc, October 2001)
- Uli Sperhake (Network Post-doc, November 2001)
- Adam Stavridis (PhD student)
- Miltos Vavoulidis (PhD student)

Live Score

W modes	
Teddy bears, Koalas etc	1
Middle aged men and Mercedes	
Romantics	?
Inappropriate advances	
Moustache	~

2nd order perts. of collapsing NSs

8 THE RADIATIVE PART OF THE EXTERIOR SECOND ORDER PERTURBATIONS 24

For convenience we will omit the superscript " τ " from the perturbation variables in the remainder of this section. The resulting second order field equations for the radiative part are given by

$$\begin{split} \exp & \operatorname{tr} = \frac{r - 2M}{2r} \left\{ \tilde{Y}_{2r} \left[2\bar{R}_{1,r} \frac{2r - 3M}{r(r - 2M)} - \bar{H}_{2,r} \frac{2r - 5M}{r(r - 2M)} - \bar{H}_{2,r} \frac{M(r - 2M)}{r^3} + 2\bar{K}_{1,r} \frac{M}{r^4} \right] \right\} \\ & -4\bar{K} \frac{M}{r^5} - 2\bar{R}_2 \frac{M^2}{r^4} - 2\bar{R}_0 \frac{M^2}{r^2(r - 2M)^2} - \bar{R}_{0,rr} - \bar{R}_{2,t} + 2\bar{R}_{1,r\delta} - 2\bar{K}_{3t} \frac{1}{\tau(r - 2M)} \right] \quad (8.21) \\ & + (\cos \theta \partial_\theta + \partial_{\theta \theta}) \tilde{Y}_{2\theta} \left[(\bar{G}_{rr} - 2\bar{h}_1) \frac{M}{r^4} + (2\bar{h}_{1,t} - \bar{R}_0 - \bar{G}_{,u}) \frac{1}{\tau(r - 2M)} - 2\bar{G} \frac{M}{r^4} \right] \right\} . \\ eqtr &= \frac{1}{2} \left\{ \tilde{Y}_{2\theta} \left[-2\bar{K}_{dr} \frac{1}{r^2} + 2\bar{K}_{d} \frac{r - M}{r^3(r - 2M)} + 2\bar{R}_{2,t} \frac{r - 2M}{r^3} \right] + (\cot \theta \partial_\theta + \partial_{\theta \theta}) \tilde{Y}_{2\theta} \right. \\ & \left[\bar{G}_{d} \frac{r - M}{r^3(r - 2M)} - 2\bar{h}_0 \frac{M}{r^3(r - 2M)} + (\bar{h}_{0,r} - \bar{G}_{,dr} + \bar{h}_{1,\delta} - \bar{H}_1) \frac{1}{r^5} \right] \right\} . \end{split}$$

$$\begin{split} & \operatorname{eqrr} = \frac{1}{r^{2}(r-2M)} \left\{ (\cot \theta \partial_{\theta} + \partial_{00}) Y_{20} \\ & \left[-G \frac{r-3M}{r^{2}} + G_{r} \frac{2r-5M}{2r} + \tilde{h}_{1} \frac{M}{r} + \tilde{h}_{1,r} (r-2M) - \tilde{H}_{2} \frac{r-2M}{2} - G_{rr} \frac{r-2M}{2} \right] \\ & + \tilde{Y}_{20} \left[-2\bar{K} \frac{r-3M}{r^{2}} + 2\bar{K}_{rr} \frac{2r-5M}{2r} - \bar{H}_{1,r} \frac{Mr^{2}}{r-2M} + 2M\bar{H}_{2} \frac{2r-3M}{2r} + \frac{1}{2}r^{2}\bar{H}_{0,rr} + \frac{r^{3}}{2}\bar{H}_{2,r} \\ & -\bar{H}_{0,r} \frac{Mr^{2}}{2(r-2M)} + \bar{H}_{0} \frac{Mr(2r-3M)}{(r-2M)^{2}} + \bar{H}_{2,r} (r-2M) \frac{2r-3M}{2} - r^{3}\bar{H}_{1,tr} - \bar{K}_{rT} (r-2M) \right] \right\}, \\ & (8.24) \\ & \operatorname{eqz}\theta = \delta_{\theta}\tilde{Y}_{20} \left[-\frac{G}{r^{3}} + \frac{\bar{K}}{r^{5}} + \bar{h}_{1,r^{2}} \frac{r}{2(r-2M)} + \frac{1}{2r^{2}}\bar{O}_{,r} + \bar{H}_{2} \frac{r-M}{2r^{2}} - \bar{H}_{0} \frac{r-M}{2(r-2M)^{2}} \\ & + \bar{H}_{0,r} \frac{r}{2(r-2M)} - \frac{\bar{K}_{rr}}{2r^{2}} - \bar{h}_{0,rr} \frac{r}{2(r-2M)} - \frac{\bar{h}_{1}}{r^{2}} + \frac{\bar{h}_{0,t}}{r-2M} - \bar{H}_{1,t} \frac{r}{2(r-2M)} \right] \\ & \exp\theta\theta = \tilde{Y}_{20}A + (B\cot\theta\partial_{\theta} + C\partial_{20})\tilde{Y}_{20}, \\ & \exp\theta\phi = \sin^{2}\theta \left[A\tilde{Y}_{20} + (C\cot\theta\partial_{\theta} + B\partial_{\theta \theta})\tilde{Y}_{20} \right], \end{aligned}$$

8 THE RADIATIVE PART OF THE EXTERIOR SECOND ORDER PERTURBATIONS 25

where

$$\begin{split} A &= -rR_{1,\ell} + B_2 \left(1 - \frac{2M}{r}\right) \left(1 + \frac{M}{r}\right) - R_{,r} \frac{M}{r^3} + B_{2,r} \frac{(r-2M)^2}{2r} - R_{,rr} \frac{r-2M}{2r} \\ &+ \bar{R}_{,R} \frac{r}{2(r-2M)} + \frac{1}{2} r \bar{R}_{3,r} - \bar{R}_0 \frac{M}{r-2M}, \end{split}$$
(8.28)

$$B = -\frac{\bar{R}}{2r^2} + \frac{r-2M}{r^2} \left(\bar{h}_1 + \frac{\bar{G}}{r} - \frac{1}{2} G_F \right), \tag{8.29}$$

$$\begin{split} C &= -\bar{G}_{rr} \frac{r-2M}{2\tau} - \frac{1}{2r^2} \bar{K} - \bar{h}_{0,l} \frac{r}{r-2M} + \bar{H}_{l} \frac{r}{2(r-2M)} + \bar{h}_{l,r} \left(1 - \frac{2M}{r}\right) - \bar{H}_{2} \frac{r-2M}{2\tau} \\ &+ \bar{G}_{r} \frac{r-4M}{2r^2} + \frac{\bar{h}_{l}}{r} + \bar{G}_{r} \frac{r}{2(r-2M)} + 2\bar{G} \frac{M}{r^5}. \end{split}$$

$$(8.30)$$

The equations for the perturbation functions resulting from Eqs. (8.21)-(8.25) are obtained straightforwardly by using the relation

$$(\cot \theta \hat{a}_{\theta} + \hat{a}_{00}) Y_{20} = -i(l+1) Y_{20}, \qquad (8.31)$$

and/or factoring out the spherical harmonic \tilde{Y}_{24} . For Eqs. (8.26) and (8.27) we consider the sum and difference of the equations after dividing the latter by $\sin^2 \theta$

 $2A\ddot{Y}_{20} + (B+C)(\cos\theta\partial_0 + \partial_{yy})\ddot{Y}_{20} = 0, \qquad (8.32)$

 $(B - C)(\cot\theta\partial_{\theta} - \partial_{\theta\theta})\hat{Y}_{20} = 0, \qquad (8.33)$

which leads to

$$eqAB = A - l(l+1)B,$$
 (9.34)

$$eqBC = B - C. \tag{8.35}$$

8.3 The constraint equations

In our formulation we are interested in gauge invariant equations, that is equations that can be formulated in terms of the gauge invariant variables q_1 and q_2 defined in Eqs. (8.16), (8.17). One suitable way of identifying the corresponding linear combinations of the field equations (8.21)-(8.35) is to eliminate the perturbations of the lapse function and the shift vector H_0 , H_1 and h_0 . Since we have seven field equations and three gauge perturbations to eliminate we may expect to find four gauge independent linear combinations. I have found three so far and we shall see whether 1 need to find another one or not. First we consider the gauge invariant constraint which is given in terms of the field equations by

$$\operatorname{constraint} = -\frac{r^4}{2(r-2M)^2} \frac{\operatorname{equal}}{\tilde{Y}_{23}} - \frac{r^2}{2} \frac{\operatorname{equal}}{\tilde{Y}_{26}} - \frac{r}{r-2M} \operatorname{eqAB} - \frac{3r}{r-2M} \operatorname{eqBC}, \quad (8.36)$$

Wouldn't it be easier to do NR?

Rapidly rotating neutron stars in scalar-tensor theories of gravity

Daniela D. Doneva,^{1,2,*} Stoytcho S. Yazadjiev,^{3,1} Nikolaos Stergioulas,⁴ and Kostas D. Kokkotas^{1,4}

¹Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076, Germany
 ²INRNE - Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
 ³Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164, Bulgaria
 ⁴Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Scalar field for non-rotating and rotating NSs 1309.0605

0

Dark stars: gravitational and electromagnetic observables

Andrea Maselli,^{1,*} Pantelis Pnigouras,^{1,†} Niklas Grønlund Nielsen,^{2,‡} Chris Kouvaris,^{2,§} and Kostas D. Kokkotas^{1,¶}

¹Theoretical Astrophysics, IAAT, University of Tüebingen, Tüebingen 72076, Germany ²CP³-Origins, Centre for Cosmology and Particle Physics Phenomenology University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark (Dated: April 25, 2017)

Tidal deformability of fermionic and bosonic dark stars 1704.07286

Spring 2003

Sep 2005

What's wrong about middle aged men and Mercedes Sports Cars ?

Live Score

W modes	
Teddy bears, Koalas etc	1
Middle aged men and Mercedes	1
Romantics	?
Inappropriate advances	
Moustache	1

Part 1 Core Collapse in ST theory

US, Moore, Rosca-Mead, Agathos, Gerosa, Ott 1708.03651, Rosca-Mead, US, C Moore, M Agathos, D Gerosa, C Ott 2005.09728 cf also 1903.09704, 2007.14429, 2302.04495

Do we need a theory beyond GR?

When asked what he would do if Eddington's mission failed...

Then I would feel sorry for the good Lord. The theory is correct anyway.

(Albert Einstein)

izquotes.com

But we have reasons to search for "beyond GR"

- Renormalization: Requires, e.g., higher curvature terms.
 \rightarrow GR is low-energy limit of more fundamental theory
- \bigcirc Dark energy: Why is Λ so small and why $ho_{
 m dark} \sim
 ho_{
 m mat}$
- Dark matter: "Neptun" or "Vulcan" ?

Scalar tensor theory of gravity

- Scalars appear naturally in extra-dimensional theories
- Scalars prominent in cosmology
- ST theory well-posed; fairly well understood mathematically
- No-hair theorems limit potential of black-hole spacetimes
- Matter: Neutron stars, core-collapse
- Best example of smoking gun to date:
 - Spontaneous scalarization Damour & Esposito-Farese PRL 1993
- Collapse studies in massless case

Novak PRD 1998/1999 Novak & Ibanez ApJ 2000, Gerosa+ CQG 2016

Core-collapse scenario to 0th order

- Massive stars: $M_{\rm ZAMS} = 8 \dots 100 \ M_{\odot}$
- Core compressed from $\sim 1500 \text{ km}$ to $\sim 15 \text{ km}$ $\sim 10^{10} \text{ g/cm}^3$ to $\gtrsim 10^{15} \text{ g/cm}^3$
- Released gravitational energy: $\mathcal{O}(10^{53})$ erg $\sim 99 \%$ in neutrinos, $\sim 10^{51}$ erg in outgoing shock, explosion
- Explosion mechanism: still uncertainties...
- Failed explosions lead to BH formation
- Collapsar": possible engine for long-soft GRBs
- Star's life handled for us by Woosley & Heger Phys.Rept. 2007
 - \rightarrow Initial pre-collapse profile

Theoretical framework

Einstein frame: conformal metric $\bar{g}_{\mu\nu} = F(\varphi) g_{\mu\nu}$

Action 0

$$S = \frac{1}{16\pi} \int dx^4 \sqrt{-\bar{g}} \left[\bar{R} - 2\bar{g}^{\mu\nu} \partial_\mu \varphi \,\partial_\nu \varphi - 4V(\varphi) \right] + S_m [\psi_m, \bar{g}_{\mu\nu}/F(\varphi)]$$

- Energy momentum tensor: $T_{\alpha\beta} = \rho h u_{\alpha} u_{\beta} + P g_{\alpha\beta}$ 0
- Spherical symmetry: $d\bar{s}^2 = \bar{g}_{\mu\nu}dx^{\mu}dx^{\nu} = -F\alpha^2 dt^2 + FX^2 dr^2 + r^2 d\Omega^2$

$$u^{\alpha} = \frac{1}{\sqrt{1 - v^2}} [\alpha^{-1}, \ vX^{-1}, \ 0, \ 0]$$

- Equations (gravity): $\partial_r \alpha = \dots$, $\partial_r X = \dots$ $\partial_t \partial_t \varphi = \dots$
- Equations (matter): $(\rho, h, v) \leftrightarrow (D, S^r, \tau) \Rightarrow HRSC$ GR1D code O'Connor & Ott CQG 2009

Equation of state

 Pressure: "cold" + "thermal" contribution: P = P_c + P_{th}
 Hybrid EOS for cold part: P_c = $\begin{cases}
 K_1 \rho^{\Gamma_1} & \text{if } \rho \leq \rho_{\text{nuc}} \\
 K_2 \rho^{\Gamma_2} & \text{if } \rho > \rho_{\text{nuc}}
 \end{cases}$

• Internal energy from 1st law: $\epsilon_c = \begin{cases} \frac{K_1}{\Gamma_1 - 1} \rho^{\Gamma_1 - 1} & \text{if } \rho \leq \rho_{\text{nuc}} \\ \frac{K_2}{\Gamma_2 - 1} \rho^{\Gamma_2 - 1} + E_3 & \text{if } \rho > \rho_{\text{nuc}} \end{cases}$

• Thermal pressure: $P_{\rm th} = (\Gamma_{\rm th} - 1)\rho(\epsilon - \epsilon_c)$

• Parameters: $\Gamma_1 = 1.3$, $\Gamma_2 = 2.5$, $\Gamma_{th} = 1.35$

 $K_1 = 4.9345 \times 10^{14} \text{ [cgs]}, \quad \rho_{\text{nuc}} = 2 \times 10^{14} \text{ g cm}^{-3}$ $K_2, \quad E_3 \quad \text{from continuity at} \quad \rho = \rho_{\text{nuc}}$

The coupling function and potential

Coupling function, potential:

$$F(\varphi) = e^{-2\alpha_0\varphi - \beta_0\varphi^2}$$

$$V(\varphi) = \frac{1}{2}\mu^2\varphi^2$$

• Only for $\mu \lesssim 10^{-19} \, \text{eV}$!! Here: $\mu[\text{eV}] \in [10^{-15}, 10^{-12}]$ Ramazanoglu & Pretorius PRD 2016

• Free parameters: μ , α_0 , β_0 , Γ_1 , Γ_2 , Γ_{th} + progenitor M_{ZAMS} , ζ

Spontaneous scalarization

• Phase transition in the solution space as we vary β_0 Damour & Esposito-Farese PRL 1993

• $\beta_0 \lesssim -4.35 \Rightarrow$ New families of solutions

Lots of substructure Rosca-Mead+ Symmetry 2020

Scalarized stars often energetically favored!

Time evolutions cooking book recipe

- Choose your Woosley-Heger progenitor $M_{
 m ZAMS}, \zeta$
- Specify parameters μ , α_0 , β_0 , Γ_1 , Γ_2 , Γ_{th}
- Specify the grid
- Run (may need checkpointing, but no Parallelization)
- Extract GW signals at $R_{ex} \sim \mathcal{O}(1)$ light second
- Propagate signal to astrophysical distances; easy if $\mu = 0$, not easy if $\mu \neq 0$

Core collapse in massless ST theory

• Here: $\mu = 0 \Rightarrow V(\varphi) = 0$

$$\alpha_0 = 10^{-4} \,, \quad \beta_0 = -4.35$$

Gerosa, US, Ott CQG 2016

• Weak signals (β_0 constraints!), Heaviside like

• $r\varphi \gg$ massless case; fairly insensitive to parameters; dispersion!

Waveforms ``far from" the source

- LIGO will observe the above scalar profiles after they propagate to large distances
- In the massless case this is almost trivial $\varphi(t;r) = \frac{1}{r}\varphi(t-r;r_{extract})$
- In the massive case things are more complicated: signals
 propagate with
 dispersion

Waveforms ``far from" the source

- Far from the source, scalar dynamics are governed by the flat-space Klein-Gordon wave equation $\partial_t^2 \varphi \nabla^2 \varphi + \omega_*^2 \varphi = 0$
- Easier to work with the radially rescaled field $\sigma \equiv r\varphi$
 - As the signal propagates outwards:
 - Low frequencies are suppressed
 - High frequency power spectrum is unaffected
 - Signal spreads out in time

0

- High frequencies arrive earlier than low frequencies
- Signal becomes increasingly oscillatory

Waveforms ``far from" the source

- Signals become more oscillatory as they propagate outwards
- In the large-distance limit the stationary phase approximation applies \rightarrow analytic expression for the time domain signal
- Signals have a characteristic "inverse chirp" lasting many years

Detection with LIGO-Virgo

GWs from core-collapse in ST gravity may fall into 3 classes:

- Burst signals: For light scalars $(\mu < 10^{-20} \text{ eV})$ and short distances (10 kpc), the pulse does not disperse significantly; will look like a < 1 s burst
- Continuous wave signal: for heavier scalars, long dispersion turns pulse into a quasi-monochromatic signal
 - → capture using standard directed CW searches, assuming EM counterpart; e.g. SN1987A, Kepler1604
- Stochastic background:
 - Many quiet sources + very long duration (superposed)
 - Cosmological redshift + mass variation \rightarrow smeared low-fcutoff around $\sim \omega_*$

Rosca-Mead, Agathos, Moore & US PRD 2023

Conclusions

- Spontaneous scalarization occurs as in massless case, but effect can be more dramatic because the scalar mass "screens" the effect of the scalar, allowing larger values of α₀, β₀ to be compatible with binary pulsar observations
- Signals propagate with dispersion, signals can last for years to centuries at kpc distances
- Signals can show up in LIGO/Virgo burst, CW or stochastic searches

Part 2 GWs from Boson-star binaries

T Evstafyeva, US, I Romero-Shaw, M Agathos 2406.02715, cf also 2108.11995, 2212.08023

Motivation

- Test nature of compact objects: BHs, NSs, ECOs?
- Dark-matter candidates: Ultralight, axion-like fields
- Bosonic fields can form equilibrium configurations:
 Boson stars Kaup 1968
- Properties: Compactness 0 to > NSs, any Mass
- Use BSs as proxy for not BHs in GR

Questions and work plan

- Can we observe boson stars with LIGO-Virgo-KAGRA?
- If yes, what does PE with current approximants yield?
- Can we simulate BS binaries with sufficient accuracy?

- Perform high-precision NR simulations of BSs
- Inject resulting waveforms into LIGO detector noise
- Recover signals and parameters with Binary BH/NS approximants
- Test residuals

• Massive complex scalar field + GR

$$s = \int \frac{\sqrt{-2}}{2} \left\{ \frac{R}{8\pi G} - [g^{\mu\nu} \nabla_{\mu} \bar{\varphi} \nabla_{\nu} \varphi + V(\varphi)] \right\} d^{4}x$$

$$\Rightarrow \text{ Einstein-Klein-Gordon equations}$$
• Space-time (3+1) formulation: CCZ4
Alic et al 2012
• Use two numerical relativity codes
GRChombo Radia et al 2021
Lean US 2006
• Technical details:

$$dx = \frac{1}{48} \dots \frac{1}{32}, \text{ domain size} ~ 1024, \text{ 8 refinement levels}$$

BS binaries

We simulate 5 BS binaries through inspiral, merger and ringdown. Characterized by

- Quasi-circular, non-spinning, equal-mass: $e \approx 0$, $S_{1,2} = 0$, q = 1
- Number of orbits N
- Compactness 0.1 or 0.2
- Scalar dephasing $\delta \phi \in [0,\pi]$
- BS-BS or BS-anti BS binary?
- Total mass: Any by trivial rescaling of the scalar mass

Name	Nickname	Compactness	N (orbits)	$\delta \phi$	BS or ABS
A17-d14, -d12	standard	0.2	14, 11	0	BS-BS
A17-d15-p090	dephased	0.2	16	$\pi/2$	BS-BS
A17-d15-p180	anti-phase	0.2	16	π	BS-BS
A17-d12-e1	anti-BS	0.2	11	0	BS-ABS
A147-d19	fluffy	0.1	18	0	BS-BS

BS binaries

• Phase error $\approx 0.1 \dots 0.2$

• Amplitude error $\leq 3\%$

Waveform approximants

Parameter estimation performed with Bilby Ashton et al 2019

IMRPhenomXP: Frequency domain Pratton et al 2021

- Quasi-circular, spin-precessing black-hole binaries
- Quadrupole modes

IMRPhenomPv2_NRTidal: Frequency domain Dietrich et al 2017, 2019

- Quasi-circular, spin-precessing neutron-star binaries
- \bigcirc Tidal deformability parameters $\Lambda_{A,B}$

We have tested more with similar results.

Injections and parameter estimation

- Inject BS signals with specified parameters:
 Fixed: sky location, incliation, initial phase, time etc
 Variable: total mass, luminosity distance
- 2 Approaches: (1) Allow spins to vary in the analysis
 (2) Spins fixed to zero throughout analysis

Main diagnostics:

- Recovered masses, spins
- Recovered SNR, Log Bayes factor
- Test residual for Gaussianity

Results using IMRPhenomXP

Injections often recovered but with biased parameters!

• Example A17-d15 with $M_{tot} = 77 M_{\odot}$, $d_L = 200 \text{ Mpc}$ in the analysis

• **Recovered:** $M_1 = 37.8 \pm 1.1 M_{\odot}, M_2 = 25.4 \pm 1.2 M_{\odot}, d_L = 236 \pm 20 \text{ Mpc},$

 $a_1 \approx 0.95, a_2 \approx 0.15$

Recovered SNR \approx injected SNR

 $\log \mathscr{B}_{N}^{S} = 5392$

Parameter bias not random!

Results using IMRPhenomXP

- Fixing spins to zero:
 - $Poor m_1, m_2$ for standard BBS
 - decent m_1, m_2 for anti-phase BBS
- Variable spins:
 - \bigcirc decent m_1, m_2 and anti-aligned spins for standard BBS
 - $poor m_1, m_2$ and aligned spins for anti-phase BBS

Results using IMRPhenomXP

- Paramerer estimation always erratic for fluffy BBS
- BBH approximants recover parameters best for anti-BS !!

Corner plot:

A17-d12-e1 vs. A17-d12

 These features can be explained with the chirp strength

Conclusions

- NR simulations of BS binaries about as accurate as for BHs
- BS binaries recovered well with BH approximants \rightarrow degeneracy
- But systematic bias in parameter estimation

Live Score

W modes	1
Teddy bears, Koalas etc	1
Middle aged men and Mercedes	1
Romantics	?
Inappropriate advances	×
Moustache	1

Many thanks Kosta!

