Gravitational waves from boson stars and their potential signature in LIGO observations Ulrich Sperhake T Evstafyeva, M Agathos, I Romero-Shaw arXiv:2406.02715 (PRL), cf also 2108.11995, 2212.08023

DAMTP, University of Cambridge

VI Amazonian Symposium on Physics Federal University of Para, Belem 21 Nov 2024

1. Background

The idea of boson stars

"Gravitational-electromagnetic entities" or Geons

Wheeler 1955

PHYSICAL REVIEW

VOLUME 97, NUMBER 2

JANUARY 15, 1955

Geons*

JOHN ARCHIBALD WHEELER Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received September 8, 1954)

Associated with an electromagnetic disturbance is a mass, the of equations of self-consistent geon; mass and radius values. gravitational attraction of which under appropriate circumstances 4. Transformations and interactions of electromagnetic geons; is capable of holding the disturbance together for a time long in evaluation of refractive index barrier penetration integral for comparison with the characteristic periods of the system. Such spherical geon; photon-photon collision processes as additional

- Energy = mass gravitates \rightarrow Compact (equilibrium?) objects
- Geons are not equilibrium configurations
- Dark matter candidates: QCD axions, ALPs, dark photons,...
- Complex fields (scalar, vector,...) 0 \rightarrow Genuine equilibrium states; $T_{\alpha\beta}$ stationary!
- First shown for scalar fields \rightarrow "Boson stars" 0 Feinblum & McKinley PR 168 (1968), Kaup PR 172 (1968), Ruffini & Bonazzola PR 187 (1969)

A boson star zoo

- Mini BSs (no self-interaction) Kaup PR (1968) and others
- Solitonic" BSs (self-interacting scalar field) → more compact
 Colpi+ PRL (1986), Lee PRD (1987), ...
- Proca stars Brito+ Phys.Lett.B (2016)
- ℓ -boson stars (multiple scalar fields) Alcubierre+ CQG (2018)
- Multi-oscillating BSs Choptuik+ PRL (2019)
- Thin-shell BSs (one scalar with false vacuum state)
 Collodel & Doneva 2203.08203
- Higher-spin fields Jain & Amin 2109.04892
- Multi-field BSs Sanchis-Gual+ PRL (2021)

May condense from local over-densities Widdicombe+ JCAP (2018)
 Focus here: Single-scalar, solitonic BSs

• GR + minimally coupled complex scalar field φ

$$S = \int \sqrt{-g} \left\{ \frac{1}{16\pi G} R - \frac{1}{2} [g^{\mu\nu} \nabla_{\mu} \bar{\varphi} \nabla_{\nu} \varphi + V(\varphi)] \right\} \, \mathrm{d}x^4$$

$$T_{\alpha\beta} = \partial_{(\alpha}\bar{\varphi}\,\partial_{\beta)}\varphi - \frac{1}{2}g_{\alpha\beta}[g^{\mu\nu}\partial_{\mu}\bar{\varphi}\,\partial_{\nu}\varphi + V(\varphi)]$$

- Potential; analogous to EOS: $V_{\min}(\varphi) = m^2 |\varphi|^2$, $V_{\text{soli}}(\varphi) = m^2 |\varphi|^2 \left(1 - 2\frac{|\varphi|^2}{\sigma_0^2}\right)^2$, or ...
- Spherically symmetric equilibrium models

Ansatz: $\varphi(t,r) = A(r)e^{i\omega t}$

Regular solutions only for countably infinite values $\omega_0 < \omega_1 < \omega_2 < \dots$ (ground state, excited states)

• E.g. Maximal-mass mini boson star (Kaup limit)

 $\omega_0 = 0.853 \, m \,, \qquad M = 0.633 \, M_{\rm Pl}^2 / m$

Excited states unstable: collapse to BH, dispersion or migration to stable ground-state BS Balakrishna, Seidel, Suen PRD (1998)

Mass-Radius curves similar to Tolman-Oppenheimer-Volkoff stars

Mass-Radius curves similar to Tolman-Oppenheimer-Volkoff stars

unstable

stable

Spinning Boson Stars

Scalar BSs cannot spin perturbatively Kobayashi+ PRD (1994)

Spinning scalar BSs exist with but have quantized spin
 Schunck & Mielke Phys.Lett.A (1998)

 Spinning scalar BSs likely unstable in contrast to spinning Proca stars! Sanchis-Gual+ PRL (2019)

Possibly due to toroidal structure: scalar field vanishes at origin

- What happens in scalar BS inspiral and merger?
 - Kerr BH
 - Non-spinning BS; angular momentum shed
 - Total dispersal
 - Spinning BS with exact angular momentum?

GW detection and parameter estimation

Generic transient search

- No specific waveform model
- Identify excess power in detector strain data
- Use multi detector maximum likelihood Klimenko et al. 1511.05999

Binary coalescence search

- "Matched Filtering"
- Compare data stream with GW templates
 ("Finger print search")
- Bayesian analysis: Prior \rightarrow Posterior

Boson-star binaries: parameters

8+1 Intrinsic parameters as for black holes

Masses m_1, m_2

Spins S_1, S_2

Eccentricity (often ignored; GW emission circularizes orbit)

7 Extrinsic parameters

Location: Luminosity distance D_L , Right ascension α , Declination δ Orientation: Inclination ι , Polarization ψ Time t_c and Phase ϕ_c of coalescence

Other parameters

Matter: Potential function σ_0 , scalar phase $\delta\phi$, antimatter ϵ

2. Motivation and tools

Motivation

- Dark-matter candidates: Ultralight, axion-like fields 10⁻¹¹...10⁻²⁰ eV
- Bosonic fields can form equilibrium configurations:
 - Boson stars Kaup 1968
- Properties: Compactness 0 to > NSs, any Mass
- Use BSs as proxy for not BHs in GR

Questions and work plan

- Can we observe boson stars with LIGO-Virgo-KAGRA?
- If yes, what does PE with current approximants yield?
- Can we simulate BS binaries with sufficient accuracy?

- Perform high-precision NR simulations of BSs
- Inject resulting waveforms into LIGO detector noise
- Recover signals and parameters with Binary BH/NS approximants
- Test residuals

• Massive complex scalar field + GR

$$s = \int \frac{\sqrt{-2}}{2} \left\{ \frac{R}{8\pi G} - [g^{\mu\nu} \nabla_{\mu} \bar{\varphi} \nabla_{\nu} \varphi + V(\varphi)] \right\} d^{4}x$$

$$\Rightarrow \text{ Einstein-Klein-Gordon equations}$$
• Space-time (3+1) formulation: CCZ4
Alic et al 2012
• Use two numerical relativity codes
GRChombo Radia et al 2021
Lean US 2006
• Technical details:

$$dx = \frac{1}{48} \dots \frac{1}{32}, \text{ domain size} \sim 1024, \text{ 8 refinement levels}$$

3. Results

Example boson-star inspiral

Courtesy of T Evstafyeva

BS binaries

We simulate 5 BS binaries through inspiral, merger and ringdown. Characterized by

- Quasi-circular, non-spinning, equal-mass: $e \approx 0$, $S_{1,2} = 0$, q = 1
- Number of orbits N
- Compactness 0.1 or 0.2
- Scalar dephasing $\delta \phi \in [0,\pi]$
- BS-BS or BS-anti BS binary?
- Total mass: Any by trivial rescaling of the scalar mass

Name	Nickname	Compactness	N (orbits)	$\delta \phi$	BS or ABS
A17-d14, -d12	standard	0.2	14, 11	0	BS-BS
A17-d15-p090	dephased	0.2	16	$\pi/2$	BS-BS
A17-d15-p180	anti-phase	0.2	16	π	BS-BS
A17-d12-e1	anti-BS	0.2	11	0	BS-ABS
A147-d19	fluffy	0.1	18	0	BS-BS

BS binaries

- Phase error $\approx 0.1 \dots 0.2$
- Amplitude error $\leq 3\%$
- Eccentricity $\approx 0.002...005$

A17-d14

BS binaries

Waveform approximants

Parameter estimation performed with Bilby Ashton et al 2019

IMRPhenomXP: Frequency domain Pratton et al 2021

- Quasi-circular, spin-precessing black-hole binaries
- Quadrupole modes

IMRPhenomPv2_NRTidal: Frequency domain Dietrich et al 2017, 2019

- Quasi-circular, spin-precessing neutron-star binaries
- Solution Tidal deformability parameters $\Lambda_{A,B}$

We have tested more with similar results.

Injections and parameter estimation

- Inject BS signals with specified parameters:
 Fixed: sky location, inclination, initial phase, time etc
 Variable: total mass, luminosity distance
- 2 Approaches: (1) Allow spins to vary in the analysis
 (2) Spins fixed to zero throughout analysis

Main diagnostics:

- Recovered masses, spins
- Recovered SNR, Log Bayes factor
- Test residual for Gaussianity

Compact BSs using IMRPhenomXP

- Injections often recovered but with biased parameters!
- Example A17-d15 with $M_{tot} = 77 M_{\odot}$, $d_L = 200 \text{ Mpc}$ in the analysis

• **Recovered:** $M_1 = 37.8 \pm 1.1 M_{\odot}, M_2 = 25.4 \pm 1.2 M_{\odot}, d_L = 236 \pm 20 \text{ Mpc},$

 $a_1 \approx 0.95, a_2 \approx 0.15$

Recovered SNR \approx injected SNR

 $\log \mathscr{B}_{N}^{S} = 5392$

Parameter bias not random!

Results using IMRPhenomXP

- Fixing spins to zero:
 - \rightarrow poor m_1, m_2 for standard BBS
 - decent m_1, m_2 for anti-phase BBS
- Variable spins:
 - decent m_1, m_2 and anti-aligned spins for standard BBS
 - $poor m_1, m_2$ and aligned spins for anti-phase BBS

Results using IMRPhenomXP

BBH approximants recover parameters best for anti-BS !!

Corner plot:

A17-d12-e1 vs. A17-d12

 These features can be explained with the chirp strength

Understanding the PE bias

- Main feature: Steepness of chirp
- For non-spinning BH binaries:
 - \bigcirc equal mass \Rightarrow shallow chirp
 - \bigcirc unequal masses \Rightarrow steep chirp (think of EMRIs)
- For spinning BH binaries:
 - \bigcirc aligned spins \Rightarrow shallow chirp
 - \bigcirc anti-aligned spins \Rightarrow steep chirp

The orbital 'Hang-up' effect Capanelli et al gr-qc/0601091

Understanding the PE bias

PE bias

VS

Chirp steepness

Understanding the PE bias: Standard BS

Fixed spins

- BS chirp steeper
- ⇒ Like unequal-mass BHs
- \Rightarrow Bilby reports unequal masses

<u>Variable spins</u>
 anti-aligned spins
 ⇒ Steeper chirp
 ⇒ Steep BS chirp also captured by anti-aligned spins

Understanding the PE bias: anti-phase

Fixed spins

- BS chirp shallower
- ⇒ Best matched by ~equal mass BHs
- ⇒ Bilby reports ~equal masses

Variable spins
 aligned spins
 ⇒ Shallow chirp
 ⇒ Bilby reports aligned spins and allows unequal masses

Understanding the PE bias: anti-BS

Fixed or variable spins

BS chirp similar to BHs
⇒ Comparable mass ratios
∧ Small spins

High-mass regime LIGO mainly sees merger burst ⇒ Less reliable PE

Recovery of "Fluffy" BS binaries Parameter estimation always erratic for fluffy BBS BH approximants may capture inspiral or merger but never both! 0 Residual often not compatible with Gaussian noise 0 7.5 Data stream Injection, $M_{\text{tot}}^{\text{inj}} = 72.4 M_{\odot}$, $d_L = 500 \text{Mpc}$ 5.0 Whitened Strain IMRPhenomXP 2.50.0 -2.5 -5.0-7.50.20 0.25 0.30 0.35 0.05 0.10 0.15 0.00 0.404 Data stream Injection, $M_{\text{tot}}^{\text{inj}} = 4.97 M_{\odot}$, $d_L = 31.25 \text{Mpc}$ Whitened Strain 2 IMRPhenomPv2 NRTidal -2 -4 0.08 0.00 0.02 0.04 0.06 0.10 0.12 0.14 0.16 t[s]

Conclusions

- NR simulations of BS binaries about as accurate as for BHs
- BS binaries recovered well with BH approximants \rightarrow degeneracy
- But systematic bias in parameter estimation
- Compact BBSs "look" very similar to BBHs
- Fluffy BBSs have more characteristic signatures

Next Challenges

- Identify smoking-gun signatures from BS binaries
- Generate comprehensive GW template banks
- Efficient tools for analysing GW observations with BS templates

4. Extra slides

Convergence

General relativity in 30 seconds

- Spacetime as a curved manifold
- Key quantity: spacetime metric $g_{\alpha\beta}$
- Curvature, geodesics etc. all follow
- Einstein equations

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

- 10 non-linear PDEs for $g_{lphaeta}$
- $T_{\alpha\beta} =$ Matter fields
- Conceptually simple,
- hard in practice
- E.g. Schwarzschild

$$g_{\mu\nu} = \begin{pmatrix} \left(1 - \frac{2GM}{rc^2}\right) & 0 & 0 & 0 \\ 0 & -\left(1 - \frac{2GM}{rc^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2\theta \end{pmatrix}$$
$$ds^2 = c^2 dt^2 \left(1 - \frac{2GM}{rc^2}\right) - \frac{dr^2}{1 - 2GM/rc^2} - r^2 d\theta^2 - r^2 \sin^2\theta d\phi^2$$

General relativity in 30 seconds

- Spacetime as a curved manifold
- Key quantity: spacetime metric $g_{lphaeta}$
- Curvature, geodesics etc. all follow
- Einstein equations

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

- 10 non-linear PDEs for $g_{\alpha\beta}$
- $T_{\alpha\beta}$ = Matter fields
- Conceptually simple,
- hard in practice
- E.g. Schwarzschild

$$g_{\mu\nu} = \begin{pmatrix} \left(1 - \frac{2GM}{rc^2}\right) & 0 & 0 & 0 \\ 0 & -\left(1 - \frac{2GM}{rc^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2 \theta \end{pmatrix}$$
$$ds^2 = c^2 dt^2 \left(1 - \frac{2GM}{rc^2}\right) - \frac{dr^2}{1 - 2GM/rc^2} - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2$$

Gravitational waves: weak-field solutions

- Consider small deviations from Minkowski in Cartesian coordinates
- "Background": Manifold $\mathcal{M} = \mathbb{R}^4$, $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$
- "Perturbation": $h_{\mu\nu} = \mathcal{O}(\epsilon) \ll 1 \Rightarrow g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$
- Coordinate freedom: "Transverse-traceless (TT)" gauge $h^{\mu}{}_{\mu} = 0, \ \partial^{\nu}h_{\mu\nu} = 0$
- Vacuum, no cosmological constant: $T_{\mu\nu} = 0$, $\Lambda = 0$

• Einstein's eqs.:
$$\Box h_{\mu\nu} = 0$$

• Plane wave solution in z direction: $h_{\mu\nu} = H_{\mu\nu}e^{ik_{\sigma}x^{\sigma}}$

$$k^{\mu} = \omega(1, 0, 0, 1) \qquad H_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & H_{+} & H_{\times} & 0 \\ 0 & H_{\times} & -H_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Effect on particles

- Geodesic eq.
- Particle at rest at x^{μ} stays at $x^{\mu} = \text{const}$ in TT gauge
- Proper separation:

 $ds^{2} = -dt^{2} + (1 + h_{+}) dx^{2} + (1 - h_{+}) dy^{2} + 2h_{\times} dx dy + dz^{2}$

- Effect on test particles: Mirshekari 1308.5240
- Debate on physical reality until late 1950s
 e.g.Saulson GRG (2011)

The interferometer diagram: LIGO

Abbott et al, PRL 116 (2016) 061102

Seismic, thermal, shot noise

GW150914

• Sep 14, 2015 at 09:50:45 UTC: SNR ~ 24 Abbott et al. PRL 2016, Abbott et al. PRX 2016

• BBH inspiral, merger and ringdown: $m_1 = 35^{+5}_{-3} m_{\odot}$, $m_2 = 30^{+3}_{-4} M_{\odot}$

